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Abstract 
Decision making under risk is often studied as a preferential 
choice governed by stable individual personality 
characteristics, but risky choice can also be viewed as a 
dynamic problem of resource accumulation to survive. When 
decision makers aim to reach a particular goal in limited time, 
such as “earn at least $100 in five choices,” risky choice 
becomes a non-trivial planning problem. This problem has an 
optimal solution that can differ from immediate expected-value 
maximization. We studied the optimality of risky choices under 
such minimum goal requirements experimentally and find that 
the observed choices under goals approximate the optimal 
solution. However, because the optimal model is very complex, 
we examine if simpler models can predict people’s choices 
better. We test an extended version of prospect theory, 
assuming a dynamic reference point that depends on the 
distance to the goal. This “dynamic prospect theory” was better 
than the alternative model in describing people’s decisions 
(i.e., for 63% of the participants, it was the best model). Our 
findings show that humans can excel in a highly complex, 
dynamic, risky choice problem and that a dynamic version of 
prospect theory provides one possible explanation for how 
people decide under risk when long-term goals matter.  

Keywords: risky choice; energy budget rule; risk sensitivity; 
goals; choice modeling 

Introduction 
There is a long tradition in testing different theories to 

explain decision making under risk. These theories examine 
whether concepts besides people’s risk preferences need to 
be considered to provide an accurate description of the 
cognitive processes underlying risk-taking. However, this 
work has mainly ignored the situational aspects, such as long-
term goals or requirements of the decision maker. Recent 
work has shown that situational goals, such as “you need 
$100 in five risky choices”, significantly affect risky choices. 
High goals cause behavior change from risk-aversion 
(variance avoidance) to risk-seeking (Fujimoto & Takahashi, 
2016; Korn & Bach, 2018; Mishra, 2014). We investigate 
whether people adaptively take goals into account in their 
risk-taking behavior and how optimal their behavior is. 
Furthermore, we explore how an extended, dynamic version 

of cumulative process theory (Tversky & Kahneman, 1992) 
can describe people’s risky choices in comparison to 
alternative models. 

In the context of evolutionary survival strategies, 
behavioral biologists have long argued that changes in risk 
taking with higher goals are fitness-maximizing behavior 
(Houston & McNamara, 1988). If energy needs are high, a 
safe option may yield too little energy to meet a minimum 
energy requirement. Decision makers should become risk-
seeking and thereby bet on the high outcome of a riskier 
energy resource, given equal expected values of the options. 
This became known as risk-sensitive foraging (Caraco, 1981; 
Real & Caraco, 1986). Goal-dependent changes in risk taking 
may thus be an optimal response to meet resource goals, in 
line with a biological fitness-maximizing model for risky 
choice under requirements (Houston & McNamara, 1988).  

Interestingly, people tend to show the optimal behavior. In 
a recent study on risk-taking with requirements, people 
indeed behaved in a near-optimal fashion (Korn & Bach, 
2018). By contrast, in other higher-order cognitive tasks, 
optimal decision making is a rare result (e.g., Herce Castañón 
et al., 2019). And animals, for instance, when engaging in 
risky choices with various sizes of goals, are not consistently 
optimal (Caraco, 1981; Kacelnik & El Mouden, 2013). 
Importantly, the optimal solution to risk-taking with 
requirement problems is computationally complex (see 
below), and people do not adhere to the predictions by the 
optimal model deterministically. Some authors have recently 
hypothesized that an extension of Kahneman and Tversky’s 
prospect theory (1979; 1992) can explain the observed 
behavior in risky choice tasks with goals (McDermott et al., 
2008), which is a yet untested claim. Furthermore, it has been 
questioned on theoretical grounds to what extend cumulative 
prospect theory can represent decision making according to 
risk sensitive foraging theory (Houston et al., 2014). 
Therefore, our work examines a dynamic extension of 
prospect theory as a cognitive model to describe human 
decision making under risk with goals and a finite time 
horizon. 
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Models of finite-horizon risky choice with goals  
Our optimal benchmark model for risky choice with goals 
and limited time formulates the choice as a discrete-time 
dynamic programming problem and solves it by backward 
induction (Houston & McNamara, 1988). The optimal choice 
in trial t depends on the number of remaining trials, the 
options, the goal g, and on the currently accumulated point 
state s. Figure 1 illustrates the model’s solution strategy: The 
model spans the tree of all possible future states1 and 
probabilities until after the very last trial. Given the goal g, 
the model computes a final reward based on the obtainable 
states after the very last trial in T; usually, the reward function 
is binary (other forms are possible): 

𝑅𝑅(𝑠𝑠, 𝑔𝑔) =   �
0, 𝑠𝑠 < 𝑔𝑔
1, 𝑠𝑠 ≥ 𝑔𝑔 

The model then determines the expected reward for all 
states s in the decision trial preceding the very last trial, T-1, 
for both options. The expected reward (ER) of the risky 
option is:  

𝐸𝐸𝑅𝑅𝑟𝑟(𝑜𝑜𝑅𝑅, 𝑠𝑠, 𝑇𝑇 − 1) =   � 𝑅𝑅(𝑥𝑥𝑖𝑖 +  𝑠𝑠, 𝑔𝑔) × 𝑝𝑝𝑖𝑖𝑖𝑖
,  

where xi and pi denote the risky gamble’s ith outcomes and 
probabilities, g is the goal. The expected reward of the safe 
option, 𝐸𝐸𝑅𝑅𝑠𝑠, in T-1, is computed analogously. 

The model maximizes the expected reward for each state s 
in trial T-1, which gives the optimal action a*: 

𝑎𝑎∗(𝑠𝑠,𝑇𝑇 − 1) = Max{𝐸𝐸𝑅𝑅𝑅𝑅 ,𝐸𝐸𝑅𝑅𝑆𝑆} 
The model assumes a deterministic choice of 𝑎𝑎∗ in the last 
trial T-1 for all states s. Given 𝑎𝑎∗ in T-1, it determines the 
expected reward in the preceding trial T-2 for all states s for 
both options and defines the action 𝑎𝑎∗ that maximizes this 
expected reward for each state in T-2. Given the resulting 

                                                        
1Mathematically it suffices to span the tree using the unique states 

deterministic optimal choices in T-2, the model determines 
the expected reward and optimal choice for all states in T-3. 
This process of backward optimal action selection given 
optimal future choices repeats until the model arrives at the 
expected rewards in trial 1, which it maximizes. The optimal 
solution is risk-neutral and finds the maximum expected 
reward. 

Figure 1 exemplifies this optimal model. Assume a risky 
option that yields +10 with 60% or +1 and a safe option that 
yields +7 with 80% or +4, and a time horizon of 2, and a 
current state s of 0. In the final trial (T-1), four states are 
possible (1, 4, 7, 10), and for each of those, the model derives 
expected reward for both options (circles), which it 
maximizes (dashed red circles). For instance, in state +10 in 
T-1, the safe option S has an expected reward of 1, which 
exceeds the risky option’s reward of .6. In the trial before, 
which is the first trial (T-2), the expected reward of the safe 
option, conditional on selecting the optimal choice in T-1, 
equals .76, which exceeds the expected reward of .60 of the 
risky option. The optimal response for trial 1 is “safe.” The 
algorithm can compute the optimal choice (best action 
policy) for each possible time horizon, starting state, given 
gambles.  

Computational Complexity. The optimal model requires 
the full future state-and-outcome tree (Figure 1). The number 
of final nodes in this tree grows exponentially with the 
number of trials, options, and outcomes (the curse of 
dimensionality, Bellmann (1961)). For a choice between two 
two-outcome gambles with 2 trials, the tree has 16 final 
nodes; with 3 trials, the number of final nodes equals 253; 
and with 5 trials, it equals 4,294,967,296. Beyond the optimal 
model’s poor scalability, after each change in the trial count 
and each change in the state, the optimal model either 
requires the re-computation of the tree or the full tree must be 
held in memory as a lookup table. Therefore, the optimal 
model is cognitively complex from a computational resource 
standpoint, rendering it less plausible that people go through 
the necessary computations to solve the task. 
 
Dynamic Prospect Theory. Prospect theory (Kahneman & 
Tversky, 1979; Tversky & Kahneman, 1992) assumes risk 
aversion for gains (outcomes above a reference point) and 
risk-seeking for losses (outcomes below a reference point). If 
people would take the goal as their reference point, prospect 
theory can describe shifts from risk-averse to risk-seeking 
behavior with higher goals (McDermott et al., 2008). This 
goal-based reference-point theory, however, is not dynamic 
and fails to track a continually changing resource state 
(Houston et al., 2014). To model multiple-trial choices with 
requirements, we will make the novel contribution of 
extending prospect theory to assume a dynamic reference 
point that depends on the remaining number of trials (T-t), 
and the distance of current state s to the distant goal g: 

𝑟𝑟𝑡𝑡 = 
(𝑔𝑔 − 𝑠𝑠)
𝑇𝑇 − 𝑡𝑡

. 

in each trial t; for illustrative purposes we used the full tree here. 

 
 

Figure 1. Illustration of the optimal solution and backward 
induction for a 2-trial task with a goal of 14 points and two 
options (R = 10 with 60% or 1; and S = 7 with 80% or 4). 

(1) 

(2) 

(3) 
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The possible outcomes x of a gamble are then transformed 
relative to the reference point rt  as 𝑥𝑥 − 𝑟𝑟𝑡𝑡. We modeled the 
choices with the five-parameter version of prospect theory 
(power utility, specified as in Tversky and Kahneman, 1992), 
in which the utility of a gamble g is given by 

𝑢𝑢(𝑔𝑔) = � 𝜋𝜋(𝑝𝑝𝑖𝑖)𝑣𝑣(𝑥𝑥𝑖𝑖)
𝑖𝑖

, 

where x is the ith outcome of a gamble minus the dynamic 
reference point, 𝑟𝑟𝑡𝑡 . The value function is given by 𝑣𝑣(𝑥𝑥) = 𝑥𝑥𝛼𝛼  
for positive or zero x and −𝜆𝜆(−𝑥𝑥)𝛽𝛽 for negative x. The 
probability weighting function is 𝑤𝑤(𝑝𝑝𝑖𝑖) = 𝑝𝑝𝛾𝛾 /(𝑝𝑝𝛾𝛾 + (1 −
𝑝𝑝)𝛾𝛾 )1/𝛾𝛾  and we used two probability weighting parameter, 𝛾𝛾+ 
for positive and zero x and 𝛾𝛾− for negative x. Based on 𝑤𝑤(𝑝𝑝𝑖𝑖), 
the cumulative probability weight is then given by 𝜋𝜋(𝑝𝑝𝑖𝑖) =
𝑤𝑤(∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≥𝑥𝑥 ) − 𝑤𝑤(∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖>𝑥𝑥 ) for positive and zero x, and 
𝑤𝑤(∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖≤𝑥𝑥 ) − 𝑤𝑤(∑ 𝑝𝑝𝑖𝑖𝑥𝑥𝑖𝑖<𝑥𝑥 ) for negative x. 

The idea behind the dynamic reference point is that, all else 
equal, high goals or a short time horizon set higher reference 
points. For high reference points, gain outcomes are more 
likely to lie below the reference point (a loss compared to the 
reference point), and prospect theory predicts risk-seeking 
behavior. In contrast, lower goals and long time horizons set 
lower reference points. For low reference points, gain 
outcomes are more likely to exceed the reference point, and 
prospect theory predicts risk-aversion. 

Model complexity. Although prospect theory is a more 
complex model in comparison to the optimal model in terms 
of its number of parameters—it has five parameters 
compared to zero parameters in the optimal model—in terms 
of the processing complexity, the optimal model scales less 
well than prospect theory. Prospect theory does not suffer 
from the curse of dimensionality, because it requires the 
computation of the reference point and a transformation of 
outcomes and probabilities, which scale linearly with 
growing numbers of outcomes and probabilities. 

Experiment 
To examine risky choices with requirements, we conducted 
an incentivized choice experiment. 

 
Participants. Sixty participants recruited from Prolific 
Academic completed an online study, one participant was 
excluded (for self-reported low data quality), leaving a final 
sample of N = 59; 29 males, 28 females and 2 preferred not 
to state (49%, 47%, and 3%, respectively), the mean age was 
29 years (Med = 25, SD = 9, range 19-58 years), data were 
collected from December 2018 to January 2019, the study 
was approved by the ethics committee of the Department of 
Psychology at the University of Basel. The mean study 
duration was 40 minutes (Med = 36, SD = 26). The study was 
incentivized (five randomly drawn blocks were paid, given 
that in a ,block, the goal was reached). 
 
Procedure. Participants engaged in a risky choice under 
requirement task (Figure 2, following Pietras, Searcy, 
Huitema, & Brandt (2008)). The task consisted in collecting 
points to reach a point goal by making five choices among a 
pair of risky gambles. The gambles were two-outcome 
gambles in the gain domain; risky gambles had higher 
variances than safe gambles (the Appendix lists the stimuli). 
The goal, point status, the gambles, and a trial counter were 
displayed on the screen, as shown in Figure 2a. After 
participants made their choice, one outcome was drawn from 
the chosen gamble and displayed on the screen, and the point 
total increased by the value of the outcome. Each block 
consisted of five choices between the same gambles, after 
which the point total had to meet the goal (Figure 2b). After 
a 5-trial block, the point total was re-set to zero; no points 
were carried over between blocks. New blocks involved 
various gambles and goals; all blocks started with 0 points; 
all blocks consisted of 5 trials to reach the goal. We presented 
nine combinations of goals and gambles, repeated seven 

Figure 2. The 5-trial risk and requirements task. (a) Example choice in a block with a goal of 32. Shown is trial 2 of 5 in 
which the left gamble is chosen. After the choice, outcome feedback appears based on a draw from the chosen gamble’s 
outcome distribution; the outcome raises the point total, shown as bar, from 10 to 20, and the trial counter increases from 
2 to 3. (b) A 5-trial block is characterized by a goal, and two gambles. (c) Experimental procedure, see text. 

(4) 
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times, resulting in 63 blocks (Figure 2c). The block order was 
randomized. 

Further, participants made 32 “one-shot” choices: The 
stimuli for these choices were a combination of a state, a goal, 
a trial number, and options (like Figure 2a). Participants made 
precisely one choice, asked to act as if they found themselves 
in this situation, after which no outcome feedback appeared, 
and they did not finish the block. The one-shot choices were 
not incentivized.  The reason for including these choices was 
that during the 5-trial phase, the states that participants 
experienced were not comparable between participants, 
except for the initial state. We wanted comparable choices to 
test model predictions. 

The goals in the experiment had various difficulties, 
measured as best chance to reach the given goal by the end of 
the block according to the optimal strategy (the expected 
reward in the first trial after backward induction, Eq. 3) Easy 

                                                        
2 Mixed-effects logit regression of the risky choices with the 

predictor goal and a by-subject random intercept and slope for goal. 
3 Excluding trials in which the value of the risky equals the value 

of the safe option according to the optimal model, because in these 
trials both risky and safe choices are optimal. Including these trials, 
the observed choices in the 5-choice phase are 85% optimal. An 

blocks in the 5-trial phase had 74%-92% chance to reach the 
goal, medium blocks had 60%-68%, and hard blocks had only 
44%-48%. The chances in the one-shot choices ranged from 
6% to 96%; for the one-shot choices, difficulties were given 
by the expected reward in the state and trial that were shown. 

Results 
The analyses were conducted in R (v3.6.3, R Core Team, 
2019) using the lme4 package (v1.1, Bates et al., 2015); 
cognitive modeling used the cognitivemodels package 
(v0.0.7, Jarecki & Seitz, 2020).  

 
Behavioral Results. Figure 3 shows that with higher goals, 
participants shifted from risk-averse to risk-seeking behavior. 
The proportion of risky choices in the blocks with goals as 
low as 20 (M=.29, SD=.17) or 24 (M=.17, SD=.17) were 
lower than the risky choice proportions in the blocks with a 
high goal of 40 (M=.75, SD=.20); with a significant effect2 
of goal on risky choice, F(1, 59) = 254, p < .001. This goal-
dependent change in risk-seeking behavior is in line with 
previous results (Fujimoto & Takahashi, 2016; Korn & Bach, 
2018; Pietras et al., 2008). The subsequent analysis will 
analyze the data by goal, trial, point total, against the optimal 
model as a gold standard. 
 
Approximate Optimality of Human Risky Choices. 
Overall, 75% of the observed choices in the 5-trial blocks 
equaled the optimal choice—across all experienced point 
totals, goals, and trials.3 In the one-shot phase, 56% of the 
choices equaled the optimal model. For a detailed analysis of 
the choice optimality, we contrasted the observed risky 
choices with the predicted metric advantage of the risky 
option over the safe option from the optimal model. To this 
end, we used the data from the 5-trial blocks. The advantage 
of options depends on the expected reward (ER) of both 
options by state and trial (Eq. 2, the chance to meet or exceed 
the goal in the remaining trials if choosing an option now and 
following the optimal policy strictly after that). For all 
experienced states and trials, the expected rewards of a risky 
choice 𝐸𝐸𝑅𝑅𝑅𝑅 and a safe choice 𝐸𝐸𝑅𝑅𝑆𝑆  were compared, yielding 
the advantage of the risky choice, 𝑎𝑎 = 𝐸𝐸𝑅𝑅𝑅𝑅 − 𝐸𝐸𝑅𝑅𝑆𝑆 . Higher 
values favor the risky option more strongly, values of 0 mean 
no advantage. Optimal agents would deterministically select 
“risky” for a > 0, and select “safe” for a < 0, else randomize.  

Figure 4 shows that human behavior follows the computed 
advantage of the risky option not in a deterministic but in a 
soft-max fashion (S-shaped curve). For zero advantage, the 
choice proportions are close to what we expect from random 
choices, which is the optimal behavior. A regression analysis4 
showed that a higher advantage significantly increased the 

optimal value maximizing decision maker would achieve 70% 
accuracy. 

4 Mixed-effect logit regression; predicting choices from the fixed-
effect predictors advantage + difference in the expected values 
(risky-safe), and the random effect predictors by-participant random 
intercept and slope for advantage, using a logit link. 

Figure 3. The observed risky choice share as a function of 
the advantage (see text) of the risky option as predicted by 
the optimal model. Lines are best-fitting logit regressions; 

colors separate trials in the 5-trial blocks. 
Obs. Count = observation count at each advantage. 

Figure 4. Increase in Risky Choice with the Goal 

46



 

risky choice likelihood (b = 4.52, 95% CI [3.79, 5.29], p < 
.001); risky choices also depended on the expected value of 
the risky compared to the safe gamble (b = 0.27, 95% CI 
[0.25, 0.31], p < .001). A comparison of models showed that 
including the trial number as a predictor improved the model 
fit relative to the increase in model complexity 
(AIC+trial = 19,669 < AIC–trial = 19,812 and BIC+trial = 19,724 
< BIC–trial = 19,859, 𝜒𝜒2  = 144, p < .001). Removing the 
(fixed-effect) of the optimal advantage of the risky option as 
a predictor while keeping the expected value of the risky 
compared to the safe option worsened the model fit 
(AIC+adv = 19,669 < AIC–adv = 19,740 and BIC+adv = 19,724 
< BIC–adv = 19,787, 𝜒𝜒2= 72, p < .001). 

The result that risky choice tracks the optimal advantage of 
the risky option is particularly interesting from a cognitive 
processing perspective. Notably, at no point during the task 
were participants informed about the numerical advantage of 
the risky option, but they processed the trial count, the 
gambles, the state, and the goal. Three aspects are worth 
highlighting in this respect: Foremost, deriving the optimal 
solution to the risky choice under requirement problem is 
computationally complex, as outlined in the introduction. As 
a second point, it is also clear that participants’ choices are 
imperfect compared to the optimal choices, approximating 
optimality in a soft-max fashion but not maximizing 
deterministically, in line with probabilistic choice models 
(Rieskamp, 2008). Thirdly, and potentially surprisingly, the 
observed risky choices in trial five do not seem to become 
more deterministic than in earlier trials, which is interesting 
because, in the last trial, the choice problem is easier than in 
the first trial. 

 
Model Comparison. To test how well prospect theory 
describes the risky choices, we compared the extension of 
prospect theory to an extension of the optimal model. 
Because participants’ choices smoothly followed the 
advantage of the risky option, we specified the optimal model 
with a soft-max choice rule (Sutton & Barto, 2018) to select 
among the expected rewards of the risky and safe option in 
Eq. 3 (Korn & Bach, 2018). The optimal model thus had one 
free choice rule parameter. Prospect theory also used the soft-

max choice rule and had a total of six free parameters. The 
model comparison included a random-choice model 
predicting Pr(risky)=0.5 as a baseline. All free model 
parameters were estimated on the data in the 5-trial phase by 
maximum likelihood at the individual level; and the one-shot 
choices were used for out-of-sample predictions. To this end 
we compared the models regarding their predictive 
performance in the one-trial choices. The predictions of the 
optimal model were derived, assuming the block would be 
played until the fifth trial. The predictive performance was 
assessed using evidence weights from the log likelihood of 
the models (Wagenmakers & Farrell, 2004) in an individual-
level strategy classification in which an evidence strength > 
0.5 defines the winning model. The model comparison results 
differ for fitting and out-of-sample prediction (Table 1). The 
results from the out-of-sample prediction of the one-shot 
choices show that n=37 participants were best predicted by 
the extended prospect theory, and only n=11 participants 
were best-described by the soft-max optimal model; the 
baseline model predicted  11 participants best. Table 1, which 
shows the mean model fits aggregated across participants, 
reveals that although the optimal model with a soft-max 
choice rule outperforms the dynamic prospect theory in 
fitting (due to the parameter-based complexity of CPT), 
prospect theory predicts substantially better.  

 
Table 1. Performance of the Models 

Model NPar 
Fit  

to 5-trial phase  Prediction of 
one-shot phase 

  AIC BIC AICw  LLw 
Dynamic CPT 6 358 911 0.41  0.57 
OPT+soft-max 1 356 354 0.59  0.19 
Baseline 0 437 437 0.01  0.24 
Note: NPar  = number of free parameters, including the 
soft-max choice rule parameter. AIC/BIC = 
Akaike/Bayesian Information criterion, AICw = Akaike 
weight, values of 1 indicate strong relative evidence for 
a model, 0 indicates weak evidence (Wagenmakers & 
Farrell, 2004), LLw = like AICw based on log-
likelihood for the out-of-sample prediction. CPT = 
prospect theory, OPT = optimal model. 
 

 
Figure 5, which plots the predicted against the observed 

risky choices, shows that, at high advantage levels, the CPT 
model under-predicts the average riskiness slightly. The 
optimal model over-predicts only certain trials with 
intermediate advantage levels. The result that prospect theory 
outperforms the optimal model in out-of-sample prediction, 
despite the greater number of free parameters compared to 
the optimal model, might be interpreted as that people fail to 
calculate the complicated optimization on the fly when 
confronted with a single description-based scenario. By 
contrast, if participants had experience with the trial and their 
past choices, their performance became closer to the optimal 

Figure 5. Model predictions against observed data (bars) 
error bars are SDs; CPT=prospect theory, OPT=Optimal 

model 
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model.  

  
Response Times. Figure 6 shows the response times (log-

transformed). The response times in trial 1 of the 5 available 
trials in a block (M=1,845 milliseconds, back-transformed) 
were slower than the decisions in the later trials 2, 3, 4, and 5 
(Ms = 628 ms, 622 ms, 653 ms, 734 ms, respectively), with 
significant pairwise differences of the estimated regression5 
coefficients ∆b1-2= 1.077, p < .0001;  ∆b1-3= 1.085, 
p < .0001;  ∆b1-4= 1.032, p < .0001;  ∆b1-5= 0.900, p < .0001. 
Further, the response times were also faster the higher the 
advantage of either the risky or the safe option, and the 
advantage had a quadratic effect on response times (b = –
0.246, p < .001), and this regression specification 
outperformed a regression with no quadratic term 
(AIC+quadr = 41,247 < AIC-quadr = 41,280 and BIC+quadr  = 
41,341 < BIC-quadr  = 41,366; χ2= 34, p < .001). In line with 
research on value-based decisions, we can interpret the 
inverted-u-shape of the response time curves as a proxy for 
choice difficulty: the trials with small or zero advantages 
were more complicated to process than trials where one of the 
options was the better choice. 

Regarding concerns about the quality of response-time data 
from online studies, we designed the study following 
principles for high response time accuracy in web-based 
studies using CSS animations, which can cause a slight bias 
(30-100ms over-estimation) but low noise in the response 
times (SD < 10ms) in modern browsers (Garaizar & Reips, 
2018; Reimers & Stewart, 2015); and these measurement 
uncertainties are low compared to the 1,000 ms differences in 
response times between trial 1 and the remaining trials, that 
we found in our data. 

Discussion 
In this study, we have shown that goals have a significant 

                                                        
5 Mixed-effect logit regression; predicting log(response times) 

from advantage + difference in expected values + trial + (trial)2; and 

effect on risky choice. In the context of reaching a choice goal 
by making risky decisions, people can approximate a 
complex optimal planning solution for risky choice tasks that 
involve various goals and a 5-trial time horizon. Consistent 
with predictions by the optimal model for the task, people 
dynamically selected the risky option more often as the 
expected reward of the risky option increased relative to the 
expected reward of the safe option. A dynamic extension of 
prospect theory could describe slightly less than half of the 
participants better than the optimal choice model from 
behavioral biology, and prospect theory predicted the 
majority of the participants better than the optimal model. 
Theoretically, given the computational demands of the 
optimal model, prospect theory seems to provide a model 
with higher plausibility, at least in the early trials, where the 
optimal model is more complicated to compute than in later 
trials. However, qualitatively the dynamic prospect theory 
model could not consistently describe the aggregated choices 
(Figure 5), suggesting that other heuristics might describe the 
processes of goal-directed risky choice even better.  

In general, goal-dependent changes in risk preferences are 
in line with a broader biobehavioral view on human risk-
taking. Following this view, the cognitive processes 
underlying decision making under risk have evolved, at least 
partly, as a solution to resource and requirement problems. 
Following the biobehavioral view, an essential under-studied 
component of people’s risk-taking is its function for the 
decision-maker. Risky decisions may be fruitfully viewed as 
a means to an end, for example, to reach financial, personal, 
or social requirements. We believe that the interplay of risk 
attitudes in interaction with situation-specific demands 
provides exciting new research avenues for risk researchers. 
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Appendix 
 

Table A1. Stimuli used in the Experiment 
 

Difficulty Goal Safe  Risky EVS EVR VarS VarR 
  x1 Pr(x1) x2  x1 Pr(x1) x2     

Easy 24 5 0.9 4  7 0.2 1 4.9 2.2 0.09 5.76 
Easy 32 7 0.8 4  10 0.6 1 6.4 6.4 1.44 19.44 
Easy 40 8 0.8 2  10 0.8 0 6.8 8.0 5.76 16.00 
Medium 24 5 0.7 4  7 0.2 1 4.7 2.2 0.21 5.76 
Medium 25 5 0.8 4  9 0.4 2 4.8 4.8 0.16 11.76 
Medium 35 7 0.7 5  9 0.7 2 6.4 6.9 0.84 10.29 
Hard 20 4 0.8 3  8 0.2 0 3.8 1.6 0.16 10.24 
Hard 33 7 0.7 3  9 0.6 1 5.8 5.8 3.36 15.36 
Hard 35 7 0.7 3  10 0.6 1 5.8 6.4 3.36 19.44 
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