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Abstract 

A large body of research has shown that engaging in 
explanation improves learning across a range of tasks. The act 
of explaining has been proposed to draw attention and 
cognitive resources toward evidence that will support a good 
explanation—information that is broad, abstract, and 
consistent with prior knowledge—which in turn aids discovery 
and generalization. However, it remains unclear whether 
explanation acts on the learning process via improved 
hypothesis generation, increasing the probability that the 
correct hypothesis is considered in the first place, or hypothesis 
evaluation, the appraisal of the correct hypothesis in light of 
evidence. In the present study, we address this question by 
separating the hypothesis generation and evaluation processes 
in a novel category learning task and quantifying the effect of 
explanation on each process independently. We find that 
explanation supports the generation of broad and abstract 
hypotheses but has less effect on the evaluation of hypotheses.  

Keywords: explanation; learning; inference; hypothesis 
generation; hypothesis evaluation 

Introduction 

Though every student knows the fear of being asked to 

explain their answer in front of the class, the benefits of 

explanation for learning have been shown across a broad 

range of domains. In particular, our unique abilities to reason 

abstractly and to infer causal structure in the world are 

heavily influenced by the process of seeking and generating 

explanations for our observations (Lombrozo, 2016). 

Children as young as three years of age are more likely to 

generalize on the basis of causal properties rather than salient 

perceptual features when prompted to explain (Walker, 

Lombrozo, Legare, & Gopnik, 2014; Legare & Lombrozo, 

2014), five and six year-olds are better able to abstract the 

moral of a story when they explain key events (Walker & 

Lombrozo, 2017), and adolescents learning biology concepts 

constructed better mental models and showed improved 

abstraction when they self-explained (Chi, De Leeuw, Chiu, 

& LaVancher, 1994).  

     Explanation also appears to support learning among 

adults. Williams and Lombrozo (2013) showed participants a 

set of eight novel robots that each belonged to a particular 

category and varied along a number of perceptual dimensions 

(e.g., body shape, color). Participants who were asked to 

explain why the robots in an initial learning phase belonged 

to their respective categories were more likely to infer the 

correct categorization rule and apply it to a set of new robots 
than control participants (Williams & Lombrozo, 2013).  

How might explanation benefit learning across such a 

broad range of domains? Prior research has proposed that 

learners who are prompted to explain will privilege 

hypotheses that support “good explanations”, focusing on 

simplicity, breadth, and consistency with prior knowledge 

(e.g., Bonawitz & Lombrozo, 2012; Lombrozo, 2016; 

Walker, Bonawitz & Lombrozo 2017). In other words, 

explaining has been suggested to act like a bottleneck, 

constraining the set of hypotheses to favor those that exhibit 

explanatory virtues. This supports better causal inference and 

abstract reasoning in some domains, but can also make 

learners less attentive to conflicting evidence, biasing them 

too strongly towards abstract and generalizable hypotheses 

(Williams & Lombrozo, 2013; Williams, Lombrozo & 

Rehder, 2013; Walker, Bonawitz & Lombrozo, 2017). 

Broadly, this research suggests that a learner’s goals play a 

selective role in the learning process by influencing which 

hypotheses they are most likely to privilege (Williams & 

Lombrozo, 2010). 

If explanation supports learning by influencing the 

hypotheses that learners endorse, this raises a question: Does 

explanation modify the set of hypotheses that learners 

initially entertain, or does it change how learners appraise the 

hypotheses they are considering? In other words, does 

explanation facilitate reasoning and abstraction via 

hypothesis generation or hypothesis evaluation?  

A growing body of research points to the role that 

environmental and contextual factors play in determining 

which hypotheses are generated during a particular task, 

including working memory capacity, perceived likelihood, 
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the number of alternatives available, and the design of the 

learning environment, among others (e.g., Dougherty & 

Hunter, 2003; Koehler, 1994; Walker, Rett, & Bonawitz, 

2020). If the effectiveness of explanation in learning lies in 

directing attention and cognitive resources to hypotheses that 

are consistent with explanatory virtues, we might expect this 

to predominantly impact the process of hypothesis 

generation. However, there is no prior research indicating 

that explanation might not also affect hypothesis evaluation, 

by, for example, causing learners to over-weight the evidence 

they observe in favor of a particular type of hypothesis.   

In the current study, we examine the role of explanation in 

hypothesis generation and evaluation by modifying existing 

methods that have been developed to pull these interrelated 

cognitive processes apart. Specifically, Bonawitz & Griffiths 

(2010) show that when participants are given a simple prime 

before performing a rule learning task, the prime impacts the 

proportion of participants who correctly infer the rule but 

does not impact how likely participants rate the correct rule 

to be. In this way, priming can be interpreted as constraining 

hypothesis generation, but not evaluation. Building on these 

results, we hypothesize a similar effect of explanation during 

learning.  

To test this, we presented participants with a category 

learning task which requires them to generate and evaluate 

hypotheses about which kinds of fishing lures are most likely 

to catch fish. Participants in an explanation condition were 

prompted to explain the evidence they saw during the task, 

while control participants simply described it. All 

participants were then presented with a hypothesis generation 

task drawing on the “rule report” method used in prior 

research on explanation (Williams & Lombrozo, 2010), 

followed by a separate hypothesis evaluation task modeled 

after Bonawitz & Griffiths (2010). Across these separable 

hypothesis generation and evaluation prompts, we compare 

the performance of explanation with the control description 

condition to understand the role that explanation plays in both 

hypothesis generation and evaluation processes. By 

combining prior research on explanation with investigations 

of hypothesis generation and evaluation, we aim to provide a 

more precise description of the impact that explanation has 

on the learning process. 

In line with existing theoretical proposals, we predict that 

explanation will support learners’ generation of broad and 

abstract hypotheses in this task. It is conceivable that 

explanation might also influence how learners evaluate 

hypotheses, but our predictions were conservative with 

respect to this possibility. In order to investigate how 

explanation impacts hypothesis evaluation, participants 

evaluated both an abstract “target” rule which was consistent 

with 100% of the evidence they had seen, as well as a 

“distractor” rule, which was also consistent with all of the 

evidence observed but was considerably more complex. 

These rules appear in Table 1. If explanation influences 

 
1 All code for this experiment, as well as analysis code for the 

results presented below can be found at: https://github.com/erik-

brockbank/go_fish 

learners’ evaluation of candidate hypotheses, we predict that 

explainers may be more likely to privilege the abstract target 

rule that better reflects explanatory virtues.  

Participants 

Participants were 86 undergraduate students from a large 

West Coast university who received course credit for their 

participation. Participants were randomly assigned to either 

explain or describe conditions.  

Procedure 

Participants completed the experiment in a web browser on 

laboratory computers1. All participants were given 

instructions indicating that they would see a number of 

different fishing lure combinations, and that their task was to 

determine which combinations were most likely to catch fish. 

The fishing lures used throughout the experiment were 

composed of two stacked shapes: one smaller shape on the 

bottom of the fishing lure and one larger shape on the top. 

Each of the top and bottom shapes belonged to one of six 

possible shapes, three of which were rounded (circle, oval, 

and teardrop) and three of which were pointy (triangle, 

diamond, and four-pointed star). Each shape in the fishing 

lure combination had one of four possible colors: red, blue, 

green or yellow. In addition, each shape either did or did not 

have a purple dot. The fishing lure combinations that caught 

fish were determined by the following rule: lures with pointy 

shapes on the bottom catch fish. This rule was chosen based 

on prior work suggesting that explainers are more likely to 

propose more abstract rules (i.e., pointy, rather than triangle, 

diamond, or star) (Williams & Lombrozo, 2010), and rules 

that are more consistent with prior mechanistic knowledge 

(i.e., pointed objects are used to catch fish) (Williams & 

Lombrozo, 2013). This was also confirmed in a pilot study of 

the present experiment. 

The experiment itself was composed of a trial phase, a 

hypothesis generation phase, a hypothesis evaluation phase, 

and a memory check.  

 

Trial Phase In the trial phase, participants observed eight 

fishing lure trials, each consisting of an evidence component, 

a description or explanation component, and a prediction 

component. These are illustrated in Figure 1.  

In the evidence component of each trial, participants were 

shown a novel fishing lure combination and told whether or 

not this combination successfully caught a fish. In the 

subsequent explanation or description component, 

participants in the explain condition were prompted to 

provide a written explanation for the evidence they had just 

seen (“Explain why your friend might have {not have} caught 

a {any} fish with this lure combination”), while in the control 

describe condition, participants were simply asked to 

describe the evidence they had just seen (“Describe this lure 
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combination that your friend caught a fish {didn’t catch a 

fish} with”). This was the only difference between conditions. 

In the prediction component of each trial, participants were 

shown a novel fishing lure combination which retained only 

one of the elements of the earlier lure combination they 

observed and asked to indicate whether they thought this new 

combination would catch fish or not. Participants were not 

given feedback about their predictions.  

Accumulated evidence from previous trials remained 

visible at the bottom of the screen throughout all subsequent 

trials to help participants recall which fishing lure 

combinations did and did not catch fish. The evidence and 

prediction segments of the trials included four fishing lure 

combinations that did catch fish and four that did not. The 

fishing lures chosen and the order they appeared in were 

identical across participants. The decision to present fishing 

lures in the same order for all participants allowed for tight 

control over when participants saw each negative exemplar, 

and therefore when various hypotheses could be ruled out by 

the evidence. Any order effects resulting from the 

presentation of evidence would therefore impact participants 

in both conditions equally.  

Hypothesis Generation Phase After completing the eight 

trials, participants were tested on hypothesis generation. 

First, they were given a free response prompt to assess 

whether they had figured out the target rule: “Describe the 

single best rule you used for deciding whether or not each 

lure combination will catch fish”. Next, they were shown a 

set of eight novel fishing lure combinations and asked to 

indicate whether each of these combinations would catch 

fish, along with a confidence rating from 1 to 7 (see Figure 

2). During the hypothesis generation phase, the evidence 

from earlier trials was not available for reference; this 

ensured that the rules participants provided were generated 

during the trial phase, rather than by careful study during the 

generation phase. 

Participants’ free responses were coded as either correct or 

incorrect, depending on whether they were able to provide a 

rule which was consistent with 100% of the evidence and 

would allow them to successfully classify a novel fishing lure 

combination. By this criterion, participants who were explicit 

about the shapes that caught fish (noting the triangle, 

diamond, and star), but did not refer to them as “pointy,” were 

still coded as correct. Responses that provided insufficient 

evidence that the learner generated the correct rule (e.g., “I 

used the lure’s shape”) were coded as incorrect. A second 

Figure 1: A sample trial seen during the trial phase of the 

experiment. Top, a sample evidence component in which 

participants see a lure combination that does or does not 

catch fish. Middle, a sample response component for 

participants in the explain condition. Control participants 

saw a similar prompt asking them to describe the lure 

combination. Bottom, a sample prediction component for a 

new lure similar to the previous evidence. 

Figure 2: Top, the hypothesis generation classification task 

used to test whether participants had inferred the correct rule 

for categorizing fishing lures. At bottom, the hypothesis 

evaluation task for a sample rule. 
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researcher who was blind to condition coded the responses 

for reliability. Agreement was 99%. Though it was possible 

to have come up with a rule—other than the target rule—

which was consistent with all of the evidence (e.g., the 

distractor rule), no participant provided such a rule.  

 

Hypothesis Evaluation Phase Next, participants were tested 

on hypothesis evaluation. Participants were shown a series of 

six possible rules representing candidate hypotheses about 

which types of fishing lure combinations catch fish. Of the 

six rules, the target rule and a distractor rule were both 

consistent with 100% of the evidence. Three additional 

miscellaneous rules were consistent with five or six pieces of 

evidence, and one additional rule suggested that it was 

randomly determined which fishing lure combinations caught 

fish. Table 1 lists each of the rules that participants evaluated. 

The target rule was chosen to highlight the sort of abstract 

reasoning recruited during explanation, while the distractor 

rule, while also consistent with all of the evidence, was 

significantly more complex. Participants were asked to rate 

the strength of each rule as an explanation of the evidence on 

a 1 to 7 scale (see Figure 2). During this phase, participants 

were again provided with a visual reminder of the outcome 

of each of the eight trials at the bottom of the screen. 

Consistent with prior work (Bonawitz & Griffiths, 2010), this 

was done to assess participants’ appraisal of each hypothesis 

in light of the evidence.  

 

Table 1: Rules used during evaluation. 

 

Rule Category Evidence 

If a lure combination has a red 

shape or a blue shape, it will 

catch fish 

 

Misc. 62.5% 

If a lure combination has a 

diamond, it will catch fish 

 

Misc. 62.5% 

If a lure combination has a 

pointy shape on the bottom, it 

will catch fish 

 

Target 100% 

There is no pattern to which lure 

combinations catch fish: the 

results are random, but there 

are approximately equal 

numbers that catch fish and 

don’t 

 

Random NA 

If a lure combination has a 

yellow shape or a diamond on 

the bottom, it will catch fish 

 

Distractor 100% 

If a lure combination has a 

purple dot on at least one of the 

lures, it will catch fish 

 

Misc. 75% 

Memory Check Finally, participants were given a memory 

probe in which they were shown a set of eight fishing lure 

combinations, including four novel fishing lure combinations 

and four that had previously appeared during the training 

phase. Participants were prompted to indicate whether they 

had seen each fishing lure combination at any point during 

the experiment. 

Results 

To understand the role of explanation on hypothesis 

generation and evaluation, we compare the explain and 

control conditions on the hypotheses they generate, their 

accuracy at classifying novel fishing lure combinations based 

on these hypotheses, and their subsequent evaluation of 

candidate hypotheses about which combinations catch fish. 

Our results provide evidence that explanation supports 

hypothesis generation while having a minimal effect on 

hypothesis evaluation. 

Hypothesis Generation 

We first examine the effect of explanation on hypothesis 

generation. In line with our hypothesis, a significantly greater 

proportion of participants in the explain condition provided 

the correct hypothesis in their free response: 51.2% in the 

explain condition versus 18.6% in the control ( 𝜒2(N = 86, 1) 

= 8.65, p = 0.003). Consistent with their performance on the 

free response item, participants in the explain condition were 

also better able to classify novel fishing lure combinations in 

the judgment task, compared with controls (Mean accuracy: 

explain: 0.81; control: 0.65,  t (84) = -2.84, p = 0.006). Figure 

3 shows accuracy on the judgment task by condition. Finally, 

if we treat people who had 100% accuracy on the judgment 

task as most likely to have generated the correct rule (whether 

or not they were able to articulate it in their free response), 

this proportion is significantly greater in the explain 

condition (explain: 0.54; control: 0.30; 𝜒2(N = 86, 1) = 3.87, 

p = 0.049). These results are robust to lower cutoff scores 

Figure 3: Accuracy on classification task by condition. Error 

bars indicate one SEM. 
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including 7/8 and 6/8 correct. In sum, both the free response 

and classification measures indicate that participants in the 

explain condition were more likely to produce and apply the 

target hypothesis, suggesting that explanation plays a role in 

hypothesis generation.  

Hypothesis Evaluation 

Figure 4 shows evaluation ratings for the target rule, the 

distractor rule, and the average ratings across all remaining 

rules.  The difference between conditions in target rule rating 

is significant, suggesting that explanation may also play a 

role in hypothesis evaluation (Mean ratings: explain: 6.6; 

control: 6.09, t (84) = -2.04, p = 0.045). However, both 

conditions provide target rule ratings that are close to ceiling 

and evaluate the set of all other rules, including the distractor, 

rule to be far worse explanations (Wilcoxon Signed-Rank: 

explain: z = -5.58, p < 0.001; control: z = -5.41, p < 0.001).  

To further investigate effects of explanation on hypothesis 

evaluation, we examine the evaluation ratings of the 

distractor rule across conditions and relative to the target rule. 

We might expect participants in the explain condition to find 

the distractor hypothesis less appealing than controls since 

this rule lacked the explanatory virtues of both simplicity and 

breadth, which they may be more attuned to. However, we 

find no significant difference between conditions in their 

average rating (Mean ratings: explain: 4.12; control: 4.74, t 
(84) = 1.53, p = 0.13). Notably, all participants did rate this 

rule significantly lower than the target rule, despite the fact 

that both rules were consistent with all the evidence observed 

(explain: t (84) = -7.54, p < 0.001; control: t (84) = -3.85, p < 

0.001). This likely reflects a general prior preference for 

explanations which are not only consistent with the evidence, 

but also simple and easily generalizable (Williams, 

Lombrozo & Rehder, 2013). Further, in a comparison of 

mean ratings of the target and distractor rule for participants 

in each condition, the interaction between condition and rule 

type is significant, suggesting that the differential between 

target and distractor rules was different for participants in the 

explain condition than control participants (F(1, 82) = 5.6, p 

= 0.02). This suggests that there may be an effect of 

explanation in producing a greater disparity between target 

and distractor rules. 

Finally, to ensure that these results do not depend on 

whether participants successfully generated the target 

hypothesis, we look at evaluation ratings of the target rule 

among participants who did not generate the target 

hypothesis. We find no difference in rule ratings across 

conditions (Mean ratings: explain: 6.24; control: 5.91, t (54) 

= -0.86, p = 0.39). More importantly, evaluation ratings for 

the target rule remain significantly higher than those for all 

other rules including the distractor (Wilcoxon Signed-Rank: 

explain: z = -3.83, p < 0.001; control: z = -4.75, p < 0.001). 

In line with the results for all participants, among participants 

who did not generate the target hypothesis, there is no 

significant difference between conditions in ratings of the 

distractor rule (Mean ratings: explain: 4.62; control: 5.17, t 

(54) = 1.14, p = 0.26). Finally, participants in both conditions 

rate the target rule significantly higher than distractor rule 

(explain: t (40) = -3.24, p = 0.002; control: t (68) = -2.02, p = 

0.048). This effect appears to be larger for explain 

participants, as with the full participant set; however, in this 

case the interaction between rule type and condition is not 

significant (F(1, 52) = 2.04, p = 0.16). In sum, we find 

evidence that is broadly consistent with the hypothesis that 

participants across both conditions evaluate the target rule 

based on the available evidence, as well as its generality.  

Memory 

Results of the hypothesis generation and evaluation tasks 

strongly support the proposal that explanation facilitates 

generation of broad and abstract hypotheses. To assess 

whether the observed effects of explanation on hypothesis 

generation could be due to a general increase in attention or 

engagement, we looked for condition differences in memory 

for fishing lure combinations. Participants in both conditions 

performed above chance in their overall memory accuracy 

(explain: t (42) = 5.17, p < 0.001; control: t (42) = 3.67, p < 

0.001), with no evidence of higher accuracy for participants 

in the explain condition (Mean accuracy: explain: 0.61; 

control: 0.59, t (84) = -0.61, p = 0.55). This suggests that the 

benefits of explanation on hypothesis generation cannot be 

reduced to a general increase in attention or depth of 

processing. Collapsing across conditions, participants who 

successfully generated the target hypothesis did not perform 

better on the memory task than those who did not (t (84) = 

0.32, p = 0.75). This further suggests that effects of effort or 

processing cannot account for accuracy in hypothesis 

generation. 

Figure 4: Evaluation ratings for target rule, distractor, and all 

other rules by condition. Error bars indicate one SEM. 
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Time on Task 

To understand whether performance on the hypothesis 

generation tasks could simply be attributed to time spent on 

the task, we examined time spent on the experiment as a 

whole, as well as time spent on individual trials within the 

evidence phase. Figure 5 shows overall time on the 

experiment across conditions. Participants in the explain 

condition did not spend any longer on the task than control 

participants; in fact, though it may appear that control 

participants spent longer, this difference is not significant 

(Mean time on task: explain: 731s; control: 816s, t (84) = 

1.18, p = 0.24). 

Looking exclusively at time spent on the evidence trials 

themselves (i.e., the segment of the experiment which 

differentiates the two conditions), the data are similar to the 

overall experiment time: control participants appear to spend 

slightly longer describing the evidence than explainers spent 

explaining it, but this difference is not significant (Mean time 

on trials: explain: 54.6s; control: 67.3s, t (67) = 1.63, p = 

0.11) (see right side of Figure 5)2. Further, participants across 

conditions who generated the target hypothesis did not spend 

longer on the task than those who failed to generate the target 

hypothesis, (t (84) = 0.99, p = 0.33), and did not spend longer 

on evidence trials, (t (67) = 0.93, p = 0.35). This further 

suggests that time spent on the task is not accounting for the 

accuracy in hypothesis generation at the outset. 

Discussion 

In this experiment, we investigated the role explanation plays 

in the process of hypothesis generation and evaluation. Using 

a category learning task with novel stimuli, we find that 

participants who are prompted to provide explanations for the 

evidence they observe are more likely to generate the 

(correct) abstract rule for category membership than control 

participants who were simply asked to describe the evidence. 

 
2 Trial completion time was not recorded for the first 17 

participants (20% of the total sample), balanced across conditions (8 

control, 9 explain). 

This suggests that the benefits that explanation confers on 

learning arise initially by constraining the set of hypotheses 

generated by the learner. By comparison, the effect of 

explanation on hypothesis evaluation is less clear. 

Participants in both conditions rated the target rule 

significantly higher than all other rules, including the 

distractor rule which was consistent with 100% of the 

evidence. In other words, the pattern of results was roughly 

similar for participants in both explain and control 

conditions. However, we also find a significant difference 

between the two conditions in their rating of the target rule; 

since these ratings were near ceiling in both cases, this may 

obscure a larger difference between the two groups in how 

they evaluate hypotheses.  

The results of the memory probe and time analysis allow 

us to rule out a variety of alternative explanations for the 

observed condition differences in hypothesis generation. 

First, it’s possible that participants in the explain condition 

simply tried harder. Generating explanations for the evidence 

observed during the eight trials is undoubtedly more 

challenging than simply describing that same evidence. The 

increased effort and attention in this condition, rather than the 

act of generating explanations, could have plausibly 

accounted for these results. However, if this were the case, 

we would expect participants in the explain condition to have 

better memory for the fishing lure combinations they did or 

did not see at any point in the experiment. The results from 

the memory probe do not support this explanation. 

Second, if participants in the explain condition had spent 

more time on the task, this longer exposure to the stimuli and 

additional time spent generating responses might have made 

them more likely to generate the target hypothesis. However, 

the time on task results also rule out this alternative account. 

In short, the lack of differences in the amount of time spent 

on the task or memory for task stimuli rule out alternative 

proposals that the process of explaining increases overall 

attention or engagement (e.g., Siegler, 2002).  

Though the hypothesis generation results were consistent 

with our initial predictions, the modest impact of explanation 

on hypothesis evaluation deserves further attention. One 

possibility which might account for these results relates to the 

overlapping demands of generating explanations with 

hypothesis generation and evaluation. In particular, the 

prompts to explain and the hypothesis generation task may 

themselves involve some amount of tacit hypothesis 

evaluation. Further, the evaluation task may rely to some 

degree on explanatory reasoning, such that when participants 

were prompted to explicitly evaluate the provided rules, 

differences between the two conditions were more difficult to 

discern. A second possibility (noted above) is that 

participants’ evaluations of the target rule were close to 

ceiling in both conditions. This was presumably due to the 

fact that participants were able to reference the evidence 

while evaluating hypotheses. Future work might address 

Figure 5: Mean experiment completion time and mean trial 

completion time by condition. Error bars indicate one SEM. 
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these concerns in several ways. First, the evaluation task 

could be modified to remove the evidence from view, 

increasing memory demands. Given that all participants 

performed similarly on the memory probe, any effects 

observed on this revised evaluation task should be due to 

condition differences. Second, the current study could be 

replicated without including the generation task, thus limiting 

the amount of evaluation that occurs prior to the explicit 

evaluation prompt. Finally, future work will consider the 

qualitative content of the explanations and descriptions 

provided during the evidence phase to shed light on the 

specific hypotheses considered during learning.  

In sum, we find strong initial evidence that explanation 

primarily supports learning via improved hypothesis 

generation. This work opens the door for further research 

defining the precise cognitive mechanisms underlying the 

effects of explanation in learning and inference, as well as 

broader questions about how learners generate useful 

hypotheses about the world.  
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