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Abstract 

The ability to chain together sequences of information and 
action is pivotal to everyday acquisition of skills. Despite 
extensive research of sequence learning, little focus has been 
given to individual performance in standard tasks measuring 
this capability. As a result, little is known regarding what 
knowledge participants gain during such tasks. In the current 
work, an individual- and item-based analysis is performed of 
eye movements that occur during a spatial sequence learning 
task and reflect anticipation of upcoming target locations. We 
show that the knowledge participants acquire during the task 
is tightly linked to a-priori response biases they bring into the 
experiment. Results suggest that a-priori biases may be a 
sizeable influence on performance in learning experiments, 
that tends to be overlooked. Implications for designing and 
reading studies of sequence learning are discussed. 

Keywords: sequence learning; SRT; biases; prior knowledge; 
individual differences 

Introduction 

Skillful behavior entails producing chains of discrete actions 

as a single unified procedure. Underlying the acquisition of 

skill is therefore an ability to sequence incoming 

information and ongoing action. This ability is termed 

sequence learning (Clegg, Digirolamo, & Keele, 1998; 

Lashley, 1951). In the lab, it is predominately studied using 

the serial reaction time (SRT) task (Nissen & Bullemer, 

1987).  

The typical finding of SRT is that participants grow 

quicker in responding to sequences they were previously 

exposed to compared to responding to unfamiliar sequences. 

Enhanced speed is taken to indicate improved anticipation 

of sequence elements ahead of time, even though knowledge 

of the sequence is not necessarily explicitly available to 

participants by the end of the task (Cleeremans & 

McClelland, 1991; Marcus, Karatekin, & Markiewicz, 

2006). Due to the robustness and relative simplicity of the 

task, a huge literature has come to surround SRT. However, 

not much is known regarding the precise knowledge that 

participants gain during SRT. The reason for this is that 

most studies examine groupwise effects averaged across the 

entire target sequence. Higher-resolution knowledge of what 

portion of the sequence is learned by participants during the 

task and when it is learned would shed light on open 

questions in the field, such as what learning mechanism 

underlies sequence learning (Kirsch, Sebald, & Hoffmann, 

2010). Such understanding would also be instrumental for 

fine-grained assessment of individual learning capabilities, a 

feature that is particularly important in SRT due to its 

extensive use in the study of clinical populations (Ferraro, 

Balota, & Connor, 1993; Green, Kern, Williams, McGurk, 

& Kee, 1997). 

Recently, a measure based on eye movements has been 

shown to capture the major learning effects of SRT similarly 

to reaction time (RT; Marcus et al., 2006; Vakil, Bloch, & 

Cohen, 2017). Locations that participants fixate their gaze at 

before sequence elements appear on screen seem to capture 

their anticipation of upcoming elements, and hence learning 

of the sequence. This novel metric of learning reveals 

mistakes that participants make in their anticipation, 

information that is unavailable in the standard RT measure. 

It is therefore possible using this metric to identify both 

correct and incorrect behavioral patterns during the task. In 

the current work we set out to perform such an analysis of 

the oculomotor anticipation signal during an SRT task, at 

the level of the individual participant. In particular, we 

aimed to examine what behavioral patterns participants have 

at the beginning and at the end of SRT, and how they relate 

to one another. Patterns of consistent behaviors at the end of 

the experiment supposedly reflect knowledge gained 

throughout the task and so should mirror the to-be-learned 

sequence that participants are exposed to. However, patterns 

existing at experiment onset may reflect predispositions held 

by participants a-priori to the study.  

The topic of prior knowledge brought into the experiment 

by participants has long been acknowledged in the field of 

psychology (Harlow, 1949), but is mostly overlooked. An 

implicit assumption underlying most studies is that 

participants enter an experiment tabula rasa with regards to 

the experimental material. However, it has been shown that 

such an assumption is not always true. In an auditory 

statistical learning task, for example, participants’ mother 

tongue had influenced whether experimental non-words 

were successfully acquired or not, depending on whether 

they aligned with phonetic transitions that are prevalent in 

the language (Siegelman, Bogaerts, Elazar, Arciuli, & Frost, 

2018). Even short exposure to conflicting associations in an 

artificial language (Gebhart, Aslin, & Newport, 2009) or 

simply to the cue without the response in a contextual 

cueing task (Jungé, Scholl, & Chun, 2007) had hampered 

subsequent acquisition of such statistics. 

In the current work we aimed to uncover biases that 

participants bring into a simple spatial target detection task 
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and examine how these relate to the eventual learning of a 

sequence that inhabits the task. To do so, we performed a 

probabilistic analysis of oculomotor anticipations 

participants had in a spatial SRT task. To enhance the power 

of our results we pooled together for this work participants 

from two different experiments: one standard SRT 

experiment and another SRT experiment of longer training. 

We analyze the first six blocks only, the length of the 

standard SRT, and so this data is equivalent in both studies.  

In order to examine the homogeneity of biases found in 

the task, and to corroborate that response patterns at 

experiment onset do not reflect rapid learning occurring 

within the task but rather biases existing a-priori to it, three 

different stimuli streams were examined in this work. 

Participants of the fixed-sequence group were presented 

stimuli governed by a fixed repeating sequential order, as in 

standard SRT. There were two such sequences, and thus two 

subgroups with different stimuli streams. Participants in the 

random-sequence group were presented stimuli governed by 

the same statistical constraints as in the fixed-sequence 

group, but no fixed sequence inhabited the stream (see 

Random-sequence group section in Methods).  

Methods 

Participants 

Sixty-eight undergraduate students (40 females, mean age = 

24.4, range: 18-37) participated in the experiment for course 

credit or 30 NIS.  

Procedure 

Four white squares, in diamond formation, were presented 

against grey background on a computer monitor of 

1680X1050 resolution. Participants were requested that 

when a black dot appears on screen, they locate it as quickly 

as possible and press a keyboard arrow key corresponding to 

the square that the dot appeared in (up arrow for top square, 

left arrow for left square, etc.). Each target was presented 

for 3s or until a button was pressed. A 500ms inter-stimuli 

interval (ISI) separated each target disappearance from the 

appearance of the next target (Figure 1). The experiment 

comprised 648 targets. Keypress times and eye movements 

were collected throughout the experiment (eye movements 

captured using SMI iView 250 RED).  

 

Figure 1: Experimental paradigm.  

Fixed-sequence group. For participants in the fixed-

sequence group (n=38), target locations followed a 

repeating sequential order of length twelve that is second-

order conditional (SOC), meaning that location frequency 

and first-order transitions are counter-balanced (Reed & 

Johnson, 1994). Two such sequences were used. Target 

locations for twenty-four participants followed sequence A: 

3-4-2-3-1-2-1-4-3-2-4-1, and target locations for fourteen 

other participants followed sequence B: 3-4-1-2-4-3-1-4-2-

1-3-2 (numbers indicating location: 1 = down, 2 = left, 3 = 

right, 4 = up). Nine concatenated sequences constituted one 

block. Each block started from a different position within 

the sequence.  

Random-sequence group. For participants in the random-

sequence group (n=30), 648 targets were shown in an order 

with location statistics that maximally mimicked those of 

the SOC sequences, but without containing a repeating 

sequential order. Therefore, all locations appeared at similar 

frequencies without repeating the same location back-to-

back, and first order transitions were counter-balanced, as in 

SOC sequences. In contrast to the SOC sequences, however, 

second order transitions were counter-balanced as well (and 

hence uninformative). Lastly, twelve second order 

transitions that constitute a reversal (e.g. 2-1-2, 3-4-3, etc.) 

occurred at near uniform frequency, embedding in the 

stimuli stream reversals at a ratio similar to that existing in 

the two SOC sequences.  

Item-based analysis 

Eye movements captured during ISIs underwent fixation 

analysis using SMI’s built-in velocity-based algorithm for 

fixation detection. Fixations were found in 99% of ISIs. 

Fixations were considered anticipation of an upcoming 

target at the target location that they were closest to, 

effectively dividing the screen into four distinct areas of 

interest (AOIs). When fixations were detected in more than 

one AOI during an ISI, the last fixated AOI was considered 

the anticipation.  

Under SOC sequences, the minimal learning required to 

solve the task is of the second order (e.g. after 2-1 comes 4) 

as frequency and first order transitions are uninformative. It 

has also been shown that participants preferentially acquire 

second order information in similar statistical learning tasks 

(Cleeremans & McClelland, 1991; Maheu, Dehaene, & 

Meyniel, 2019). Therefore, we analyzed second order 

learning, regarding triplets of target locations as separate 

items. Each pair of neighboring stimuli was regarded a 

prefix, and the anticipation in the ISI that succeeded it was 

regarded the response to that prefix (hence reflecting 

learning of second order transitions). Twelve different 

prefixes appear in the stimuli stream (all possible pairs of 1, 

2, 3 & 4, except for pairs in which both elements are the 

same). There are four possible responses to each prefix, and 

so forty-eight unique items exist in analysis. 

Our analysis searched in each participant for anticipatory 

behaviors that were non-random. If a participant had 
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responded in a consistent manner to a prefix whenever that 

had appeared in the stimuli stream, we consider that a 

meaningful non-random behavior of the participant. If this is 

found at the end of the experiment, we consider it a 

“learned” behavior. If it is found at the very onset of the 

experiment, we consider it a “bias”.  

Randomness was determined according to a right-tailed 

binomial test. Responses during the first or last block were 

examined per each prefix, corresponding to the first or last 

nine responses to that prefix (for analysis of learning or of 

bias, respectively). The amount of each response was tested 

for exceeding chance level, considering that the chance 

probability of producing each response is 25%. Response at 

a rate that could be attributed to chance with a p-value of 

0.01 or under was considered non-random (corresponding to 

at least six identical responses out of the nine examined 

ones).  

Throughout the paper, in cases in which sphericity is 

violated according to Mauchly’s test of sphericity (p < 

0.05), Greenhouse-Geisser corrected values are reported.  

Results 

Participants grew quicker to respond to target locations 

throughout the task (main effect of block: F(2.5, 164.9) = 

38.28, p < 0.001, 
p = 0.37), but more so in the fixed-

sequence group (interaction between group and block: 

F(2.5, 164.9) = 4.28, p = 0.01, 
p = 0.06). Rate of correct 

oculomotor anticipation revealed similar effects (main effect 

of block: F(3.4, 226.6) = 21.55, p < 0.001, 
p = 0.25; 

interaction between group and block: F(3.4, 226.6) = 7.12, p 

< 0.001, 
p = 0.1; Figure 2).  

 

Figure 2: A) Average RT to target locations throughout 

the experiment. B) Average percentage of trials in which 

participants correctly anticipated upcoming target locations. 

Error bars represent SEM.  

Item-based analysis 

Our method of item-based analysis had detected an average 

of 5.9 biases (SD = 2.6) per each participant in the study, 

and an average of 6.2 learned items (SD = 2.7). In both 

cases, more non-random behaviors were found within the 

fixed-sequence group. Fixed-sequence group had an average 

of 6.6 biases (SD = 2.6) and random-sequence an average of 

5.1 (SD = 2.3; t(66) = 2.38, p < 0.05). Fixed-sequence group 

had learned an average of 7 items (SD = 2.4) and random-

sequence and average of 5.2 (SD = 2.8; t(66) = 2.99, p < 

0.01).  

With regards to their identity, the twenty-four items that 

belonged to either sequence A or to sequence B were more 

prevalent as biases than the twenty-four items that belonged 

to neither of the sequences across all participants (main 

effect of item type: F(1,65) = 7.18, p < 0.01, , 
p = 0.1, 

main effect of participant group: F(2,65) = 2.81, p = 0.07, 

, 
p = 0.08, interaction between item type and participant 

group: F(2,65) = 1.65, p = 0.2, , 
p = 0.05). This is due to 

the fact that half of the latter type of items entail a reversal 

(a response in which gaze returns to the location of the 

target before last), which were less common as biases in all 

participants (t(67) = 9.95, p < 0.001).  

Across all participants, items of sequence A were equally 

common as biases as items of sequence B (t(67) = 1.23, p = 

0.22). Within participants of the fixed-sequence group only, 

items from the sequence governing the task were just as 

likely to be biases as items from the alternative sequence 

(t(37) = 0.52, p = 0.61).  

Learning, however, was preferentially of the sequence 

driving the stimuli stream within the fixed-sequence group 

(t(37) = 5, p < 0.001). Participants of this group learned 4 

items of their own sequence (SD = 2) and only 1.9 items of 

the other sequence (SD = 1.2). No preference for learning 

items of either sequence was found within the random-

sequence group (M = 1.5, SD = 1.3 for sequence A items 

and M = 1.4, SD = 1.2 for sequence B items; t(29) = 0.52, p 

= 0.61). See Figure 3 for a heatmap of individual biases and 

learning as identified in analysis.  

 

Figure 3: Heatmaps of non-random oculomotor behaviors 

– biases on the left and learning on the right. Rows indicate 

participants and columns indicate items. The top group of 

rows are participants of the fixed-sequence group whose 

target location order was determined by sequence A. The 

middle group of rows are fixed-sequence participants whose 

target location order was determined by sequence B. The 

bottom group of rows are participants of the random-

sequence group. Items of sequence A and those of sequence 

B are grouped in the leftmost and middle group of columns, 

respectively. The other 24 items that are not part of either 

sequence A or sequence B are grouped on the right.  
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Effect of bias on performance and learning 

In order to assess the influence of biases on sequence 

learning, we next turned to analyze participants of the fixed-

sequence group only. Participants of the fixed-sequence 

group had 6.6 biases on average (SD = 2.6). Of these, 4.5 

biases (SD = 2.4) conflicted with the correct response (e.g. 

for a participant of sequence B, in which 3-1 is followed by 

4, a bias existed to respond 2 after 3-1). 2.1 (SD = 1.4) 

biases matched the correct response.  

At the beginning of the experiment, biases dictated the 

rate of correct response to their prefix, depending on 

whether they matched the correct response or not. The effect 

of this different starting point diminished with practice 

(F(1,453) = 27.11, p < 0.001, 
p = 0.06). But, even by the 

last block of the experiment, the rate of correct response 

differed according to what relevant bias had existed in the 

first block (F(2,453) = 38.09, p < 0.001, 
p = 0.14). Correct 

response rate was highest in items whose starting point was 

highest (matching biases: M = 67.4%, SD = 30.1%), and 

lowest when the starting point was lowest (conflicting 

biases: M = 31.2%, SD = 29.2%; Figure 4A). As nine of our 

subjects underwent extended training, we were able to 

perform a preliminary examination of whether the effect of 

biases persisted over an experiment three times longer. 

Indeed, an effect of initial bias existed even eighteen blocks 

since experiment onset (F(2,105) = 8.89, p < 0.001, 
p = 

0.15), as correct response to items with matching biases 

reached 81.2%, (SD = 20.2%), but only 48.7% (SD = 35%) 

to items with conflicting biases (inset of Figure 4A).  

The existence of a bias at experiment onset, and whether 

the bias matched or conflicted with the correct response, 

also predicted whether the correct response was eventually 

learned (F(2,453) = 32.23, p < 0.001, 
p = 0.13). When 

there was no relevant bias related to a prefix, the correct 

response was learned in 32% of the cases. When a bias 

existed and conflicted with the correct response, the correct 

response was learned in only 19.4% of cases. When the bias 

and the correct response were the same, learning occurred in 

67.5% of cases (Figure 4B).  

 

Figure 4: A) Percent of correct oculomotor anticipation of 

items according to what bias, if any, existed for their prefix. 

In inset is the same graph, but only for the nine participants 

that underwent extended learning over 18 blocks. Shaded 

area represents SEM. B) Percent of items correctly learned 

given the bias that existed for their prefix.  

Agreement between bias and experiment group 

To examine the effect of biases on SRT outcomes, we 

quantified per each participant the extent to which her biases 

fit the experimental group she was assigned to. Per each bias 

that matched the sequence governing the participant’s 

stimuli stream we counted one fit point (+1), and per each 

bias that conflicted with the sequence we deducted one fit 

point (-1). This gave a score that reflected each individual’s 

fit to the experimental group she was randomly assigned to, 

based on her a-priori biases. This score could theoretically 

vary between -12 (if the participant had a biased response to 

all prefixes and none of them were the correct response) and 

12 (if all prefixes had a correct bias). But no such extreme 

case existed, and the average fit score was -2.4 (SD = 2.9).  

There are more options and hence a higher probability of 

an a-priori bias to conflict with the correct response than to 

match it, as is evident in the amount of conflicting and 

matching biases detected in our analysis, and so most 

participants had a negative fit score (71.1%). To assess the 

effect of fit, we therefore compared participants that had a 

non-negative fit score (the best fitting participants), to an 

equal number of participants with the worst fit score (score 

of -4 or below; n = 11 for both groups). The remaining 16 

participants that had intermediate fit scores were not 

included in this analysis.  

In correct anticipation rate, both main effects of block and 

of fit were significant (F(2.4, 47) = 18.16, p < 0.001, 
p = 

0.48 and F(1, 20) = 12.34, p < 0.01, 
p = 0.38 

respectively), and there was no interaction between block 

and fit (F(2.4, 47) = 2.1, p = 0.13, 
p = 0.1; Figure 5A). 

However, the lack of interaction could be due to the test 

being underpowered, as it seems that correct anticipation of 

participants with a bad fit catches up with correct 

anticipation of participants whose fit is not bad (correct 

anticipation in block 6: t(20) = -1.41, p = 0.17). More 

participants with extended training are needed to examine 

whether this is true.  

In RT, ANOVA across trajectories of the two groups 

revealed, again, a main effect of block on RT (F(2.4, 48.6) = 

15.43, p < 0.001, 
p = 0.44), a main effect of fit (F(1, 20) = 

10.27, p < 0.01, 
p = 0.34), and no interaction between fit 

and block (F(2.4, 48.6) = 1.49, p = 0.23, 
p = 0.07; Figure 

5B). The effect of fit on RT persisted throughout all six 

blocks of this experiment and, in contrast to correct 

anticipation, showed no sign of diminishing. Moreover, a 

correlation existed between fit score and individual RT 

across all participants (r(36) = -0.39, p < 0.05), such that 

higher fit scores predicted faster RT during the last block of 

the experiment (Figure 5C).  
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Figure 5: A) Average correct anticipation rate of 

participants whose biases were either a reasonable or a poor 

fit with the sequence driving their stimuli stream. B) 

Average RT according to the same partition. Error bars 

represent SEM. C) Relationship between fit score and RT 

by the end of the experiment. Dots reflect individual 

participant data, solid line reflects best linear fit and shaded 

area reflects 95% confidence interval.  

Discussion 

The current work examines consistent patterns of 

anticipation at the onset and conclusion of an SRT task, on 

an individual- and item-based level. Results indicate that 

there is a strong relationship between behavioral biases 

participants enter an experiment with, and the knowledge 

they eventually gather during that experiment.  

Prevalence and identity of biases  

Across participants, we found that half of the stimuli pairs 

(M = 5.9) elicited a consistent oculomotor response at 

experiment onset. The prevalence of this finding highlights 

the size of the tabula rasa assumption we tend to make in 

laboratory studies of learning, usually implicitly.  

Biases were slightly more prevalent in fixed-sequence 

participants than in random-sequence participants (M = 6.6 

vs. M = 5.1, respectively). We suggest that this may be due 

to weak biases that could be lost within the first block 

already, and so were dependent on the stimuli stream for 

reinforcement. Weak biases could be preserved if they 

matched the stimuli stream in fixed-sequence participants. 

However, they would always be conflicting in the random-

sequence case (as any bias) because any consistent response 

in that stream would produce more mistakes than correct 

responses, and so they would be lost in this group. 

Similarly, items corresponding to reversals were less 

prevalent as biases than other items, and we suggest again 

that this is due to their elimination very early in the 

experiment due to negative reinforcement. “Stuck” items, in 

which gaze remains in the same location as the last target in 

the prefix, are even more erroneous in the current task than 

reversals, but biases of this sort did exist to a larger extent. 

We suggest that this is because leaving gaze in place 

indicates not only anticipation of an upcoming target, but 

also lack of any anticipation attempt (passive waiting for the 

next target). Future study of biases should perhaps include a 

test phase prior to the main task in which biases are tested in 

isolation before the experimental material is presented. This 

may prevent contamination by rapid learning, but on the 

other hand may introduce other confounds stemming from 

exposure to the experimental material in configurations that 

differ from those of the task.  

Biases distributed similarly between sequence A items 

and sequence B items in fixed-sequence and in random-

sequence participants. The fact that these biases appeared 

similarly regardless of whether they were correct or 

incorrect for the participant affirms that the biases we detect 

derive mostly from processes that are a-priori to the 

experiment material.  

We found no principle predicting what makes certain 

items more prone to become a bias than others. We 

hypothesized that salient structures, either in stimuli or in 

response, such as shifting eyes to the left following targets 

at the right and then at the bottom (forming a clockwise 

motion) would tend to appear as a bias more often than 

others. Such structures have been shown to be easier to learn 

in SRT (Reed & Johnson, 1994). However, we found no 

evidence to support this hypothesis. Additional study with 

larger samples is required to examine whether universal 

principles exist in determining common biases. 

Item-based learning 

Participants in our study that had a repeating sequence 

underlying their stimuli stream had learned, according to our 

analysis, only 4 of the possible 12 items comprising the 

sequence (33%). This sparsity resonates with the finding 

that only a subset of learnable items in statistical learning 

tasks are eventually learned (Schlagbauer, Muller, 

Zehetleitner, & Geyer, 2012). Participants have learned an 

additional 3 items, on average, that did not correspond to the 

stimuli sequence and were hence incorrect. Participants of 

the random-sequence group have learned 5.2 items during 

the experiment, all of which are incorrect.  

Learning in our analysis reflects a convergence towards a 

certain behavior at the last block of the experiment. We find 

that this convergence is meaningful, as participants 

predominantly converge towards the correct behavior when 

a correct behavior exists (Tal & Vakil, in press). 

Convergence onto incorrect responses, both in the fixed-

sequence group and in the random-sequence group, could 

reflect either incorrect learning (e.g. learning based on first 

order transitions, that will be correct only in a third of 

trials), or acquisition of stereotypical responses that are 

unrelated to the prefix that preceded them (e.g. due to 

fatigue). We find slight support for both explanations, but 

on a small scale. Importantly, we find similar entropy in 

learned responses of both groups during the final block of 
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the study, ruling out the possibility that learning in the 

random-sequence group reflects uniform responses 

independent of the their prefix more so than in the fixed-

sequence group. Additional study is needed to understand 

the nature of incorrect learning, whether it is resilient and 

enhanced over time, and whether a relationship exists 

between correct and incorrect learning occurring in the task.  

Both with regards to correct and to incorrect learning, a 

certain amount of false positive findings can be expected to 

exist in our analysis. Specifically, tests of item learning rely 

on an alpha level of 0.01, simplistically suggesting a false 

positive rate of 1%. This would correspond to 8.2 items 

incorrectly classified as learned, constituting 1.9% of the 

422 items that we have detected as learned. This 

approximation is probably inflated, as 66% of the detected 

learned items were at a response rate corresponding to alpha 

levels of 0.001 or lower, but in either case it should have 

only a negligible effect on results. 

Influence of biases on learning 

The particular biases that participants expressed at the very 

first trials of the experiment had a lasting effect on 

performance. Correct anticipation of all items improved 

with practice, but the gap produced by biases at experiment 

onset still existed in performance when the experiment 

ended. Preliminary evidence suggests that this gap in 

performance prevails even after extended training, three 

times longer than the current experiment (whose length is 

quite typical of SRT studies). Our findings therefore suggest 

that biases affect eventual outcomes of SRT studies, both in 

the oculomotor measure of performance and in the more 

standard measure of RT learning effects. 

Moreover, initial biases greatly influenced the amount, 

identity and extent of the items that participants had 

eventually learned during the experiment. Items presented to 

a participant were over three times more likely to be learned 

if the participant had biases that happened to match them, 

than if she had biases that happened to conflict with them.  

Taking learning potential into consideration in addition to 

learning endpoint is especially warranted in domains in 

which learning is considered a reliable individual capacity 

such as in statistical learning (Siegelman & Frost, 2015). 

This is because overriding a conflicting bias with a new 

response entails more learning than simply learning the 

same response when no predisposition needs to be 

overcome, let alone simply maintaining that predisposition 

if it happens to agree with the to-be-learned response to 

begin with. Worse endpoint performance could therefore 

nevertheless conceal a better capacity for learning. Of our 

thirty-eight participants in the fixed-sequence group, 

thirteen (34.2%) would be in a better position to learn the 

sequence presented to them if they had been randomly 

assigned to the other sequence rather than to the one they 

were assigned to. In the field of sequence learning, such 

information is of added value because SRT is used in 

clinical populations to assess learning dysfunctions. We 

hope similar work in this vein would enhance the resolution 

of investigation into individual capabilities and biases, to 

form a measure of sequence learning that could inform on 

finer aspects of learning and on the various reasons that may 

underlie differences in performance.  
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