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Abstract
Temporal connectives are function words that relate events in
time. Despite their ubiquity and utility, children acquire the
meanings of temporal connective words late in development.
Experimental work has uncovered patterns in the acquisition
of temporal connectives that clarify the learning challenge that
these words pose to children. In particular, developmental
studies have identified differing acquisition trajectories across
connective types, asymmetries in learning within pairs of re-
lated connectives, and monotonic increases in comprehension
with age. Expanding on prior theoretical accounts, we formal-
ize temporal connective acquisition in a computational word
learning framework. We demonstrate that each of the empir-
ically determined acquisition patterns emerges in the learning
behavior of our computational model. Finally, we discuss our
findings in relation to earlier theories and to general learnabil-
ity concerns in language acquisition.
Keywords: computational modeling; language acquisition;
learnability; semantics; time

Introduction
Did you brew a cup of tea before settling into your desk
chair? Were you listening to a Charles Mingus record while
the kettle boiled? Temporal connective words like ‘before’
and ‘while’ enable speakers to express temporal relations be-
tween events and may facilitate sophisticated forms of causal
and event reasoning. Temporal connectives are present in
many languages and some researchers have proposed that
they function as semantic universals (von Fintel & Matthew-
son, 2008). Despite the ubiquity and utility of temporal con-
nectives in natural language, children do not fully acquire
their meanings until after age 7 (Feagans, 1980). Moreover,
children exhibit distinct learning trajectories for each of the
temporal connectives, complicating efforts to explain tempo-
ral connective acquisition within a unified framework. In the
present study, we develop a new model of temporal connec-
tive acquisition that synthesizes formal semantic analyses of
the meanings of temporal connectives with statistical learn-
ing methods capable of inferring these meanings from devel-
opmentally plausible amounts of data. In what remains of
the introduction, we first review the empirical findings that
pertain to theories of temporal connective acquisition, then
present two prominent theoretical accounts, and lastly intro-
duce our word learning framework.

Empirical Findings
Developmental studies have identified unique patterns of ac-
quisition that distinguish temporal connective types. Ac-
cording to Feagans (1980), children first understand temporal

connectives expressing sequence (‘before’ and ‘after’), then
temporal connectives expressing simultaneity (‘while’), and,
lastly, temporal connectives expressing both sequence and
duration (‘since’ and ‘until’). Investigating children’s com-
prehension of all three types of connectives, Feagans (1980)
found that children understand sentences containing ‘before’
and ‘after’ at age 3 and those containing ‘while’ at age 7, but
do not exhibit above-chance understanding of sentences con-
taining ‘since’ and ‘until’ at any age in that range. A cross-
linguistic study confirmed the general tendency of this learn-
ing trajectory in English, Thai, and Lisu (Winskel, 2003).

Beyond the developmental differences found across tem-
poral connective types, several studies have identified unique
acquisition trajectories among the words within a connective
type. Beginning with Clark (1971), experimenters have rou-
tinely observed that children understand the connective ‘be-
fore’ prior to ‘after,’ in spite of their superficial similarity
(Feagans, 1980; Winskel, 2003; Blything, Davies, & Cain,
2015). Additionally, both Feagans (1980) and (Winskel,
2003) report that ‘until’ is better comprehended than ‘since’
among cohorts of English-speaking children, although this
comparison has attracted less theoretical attention.

Finally, several studies provide evidence for monotonic
increases of temporal connective comprehension with age.
Feagans (1980), Winskel (2003), and Blything et al. (2015)
all report main effects of age in their linear model analyses,
and Clark (1971) also reports a strong negative correlation be-
tween a subject’s error rate and age. Crucially, these improve-
ments persist beyond the specific age group in which children
were judged to have acquired the meaning of a connective,
which is typically determined by a performance threshold in
the experimental task.

Theoretical Accounts
Theoretical treatments of temporal connective acquisition
have attempted to account for the empirical findings just out-
lined in terms of broader developmental principles. A promis-
ing direction of research has related semantic analyses of the
temporal connectives to their relative ease of acquisition. An
early theory offered by Clark (1971) posits that distinct com-
binations of binary-valued and hierarchically-organized fea-
tures comprise the meanings of the temporal connectives. In
order of generality to specificity, the features Clark proposes
are: time (indicating whether the word refers to a temporal
relation), simultaneous (indicating whether events in relation
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overlap), and prior (indicating that one event precedes an-
other). The theory predicts that children acquire features in
general-to-specific order, and that within each stage of fea-
ture acquisition, the positive value of the feature is learned
first. Accordingly, children will first learn the correct mean-
ing of ‘when’ (+time, +simultaneous), then the meaning of
‘before’ (+time, -simultaneous, +prior), and lastly the mean-
ing of ‘after’ (+time, -simultaneous, -prior).

An alternative theory from Feagans (1980) proposes that
the logical complexity of temporal connectives determines
their order of acquisition. Feagans (1980) surveys formal se-
mantic analyses of the temporal connectives and notes that
their relative complexity matches the order of acquisition
present in empirical data. That is, children first acquire the
temporal connectives that possess the fewest logical elements
(‘before’ and ‘after’) and then proceed to acquire connectives
consisting of more logical elements (‘while’ then ‘since’ and
‘until’). Rather than positing the existence of several distinct
temporal features, Feagans contends that children construct
temporal connective meanings from just a single primitive re-
lation, the temporal ordering of two events.

Word Learning Framework
Our study develops a word learning model that can formally
assess the predictions of Feagan’s theory. We hypothesize
that learners build semantic expressions for the temporal con-
nectives from simpler representational primitives. We take in-
spiration from language of thought (LOT) models of concept
and word learning, which provide a formalism for uniting
compositional semantic representations with statistical learn-
ing mechanisms that can infer target meanings from observed
data (Fodor, 1975; Goodman, Tenenbaum, Feldman, & Grif-
fiths, 2008; Piantadosi, 2011; Goodman, Tenenbaum, & Ger-
stenberg, 2014; Piantadosi, Tenenbaum, & Goodman, 2016;
Piantadosi & Jacobs, 2016). Prior research has shown that
LOT models can learn the meanings of quantifiers, another
important class of function words, under assumptions and
with learning targets comparable to those of the current study
(Piantadosi, Tenenbaum, & Goodman, 2012). In the next sec-
tion, we introduce the target temporal connective meanings
that our model will attempt to learn.

Semantic Analysis of Temporal Connectives
A rich and long-standing tradition in formal semantics has an-
alyzed the usage of temporal connectives and produced pre-
cise logical expressions of their meanings. In these analy-
ses, temporal connectives are treated as functions that map
event contexts to binary truth values (true or false). We first
present the basic intuitions behind influential formal semantic
accounts of the five temporal connectives and then describe
the interval-based event representation used in this work.

‘Before’ and ‘after’: Perhaps surprisingly, leading anal-
yses of the semantics for ‘before’ and ‘after’ suggest that
they are not exact converses of one another (Anscombe, 1964;
Beaver & Condoravdi, 2013). That is, it is not the case that
for all true utterances of the form ‘A after B’, ‘B before A’ is

also true. For example, consider that Alice was in California
from 2015 to 2019 and Bob was in California from 2016 to
2018. On the basis of these facts, we can state that Alice was
in California after Bob was. However, we cannot say that Bob
was in California before Alice was (presumably because Al-
ice arrived there first). Our target expressions for ‘before’ and
‘after’ follow the analysis of Anscombe (1964) and preserve
their asymmetries.

‘Since’ and ‘until’: These two words can be viewed as
special cases of ‘after’ and ‘before,’ respectively. That is,
whenever ‘A since B’ is true, ‘A after B’ must be true, and the
same relationship holds for the ‘until-before’ pair. In a sen-
tence containing ‘since’ or ‘until,’ the main clause expresses
an event whose duration extends into a reference time point
determined by the context. Our target expressions for these
two words follow the analysis in temporal logic from Kamp
(1968), which is widely accepted in the field of formal se-
mantics (Zwarts, 1995; Condoravdi, 2010).1 Kamp’s analy-
sis focuses only on the retrospective cases of ‘since’ and the
prospective cases of ‘until.’ In these cases, the contextual ref-
erence points can be naturally modelled as the moments of
utterance. To illustrate this, consider the following two utter-
ances of retrospective ‘since’ and prospective ‘until’: ‘He has
been playing piano since he attended grade school’ and ‘I will
be working in the office until she comes back.’ For the ‘play-
ing piano’ event, we assume an ongoing process that persists
into the moment of utterance. For the ‘working’ event, we as-
sume that it started before the moment of utterance and will
end at some point during the ‘coming back’ event.

‘While’: For ‘A while B’ to be true, A and B just need
to overlap with one another in time (Monens, 1971; Bennett
& Partee, 2004). Suppose that Charlie slept from 2 PM to 4
PM and that it rained from 3 PM to 5 PM; in this case, one
can validly assert both that Charlie was sleeping while it was
raining and that it was raining while Charlie was sleeping.
A common application of ‘A while B’ establishes that A is a
part of B, as in ‘She took a psychology course while she was a
freshman in college.’ Since the sub-event relation is a special
case of the overlapping relation, our target expressions for
‘while’ conform to such usages.

Interval-Based Event Representation
The formal semantic analyses reviewed above are often ex-
pressed in first-order logic. For the present study, we translate
first-order logical formulas into semantically equivalent ex-
pressions in a simpler representational language that assumes
an interval-based representations of events. In our represen-
tation, time is discrete and linear, so time points are repre-
sented by integers. An event E is represented by an interval
defined by two integers e1 and e2, which are the start and
end points of E, respectively. Our formulation diverges from
the set-based representations typically employed by semanti-
cists, but confers two main advantages: firstly, intervals are

1Kamp (1968) and Zwarts (1995) are not readily available online.
For an overview of Kamp’s semantics, see Section 4 of Goranko and
Rumberg (2020) or Chapter II of van Benthem (1991).
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Table 1: Target hypotheses of the semantics

Word Target Hypothesis

A before B a1 < b1
A after B b1 < a2
A since B (a1 < t)∧ (t ≤ a2)∧ (a1 ≤ b2)∧ (b1 < t)
A until B (a1 ≤ t)∧ (t < a2)∧ (b1 ≤ a2)∧ (t < b2)
A while B (b1 < a2)∧ (a1 < b2)

cognitively plausible representations of events in time (Ivry
& Hazeltine, 1995), and secondly, interval representations are
more memory-efficient and computationally tractable than set
representations, and so they are commonly used in computa-
tional systems that perform temporal reasoning (Allen, 1983).

Importantly, for all of the five temporal connectives, we
obtain quantifier-free translations of the quantified first-order
semantics using just the integer comparators =, <, ≤, and
the Boolean connectives. For example, the expression (∃a ∈
A) (∀b ∈ B) a < b is a first-order logic formula that expresses
our target semantics for ‘A before B.’ It says that there exists
a time point a in A such that for any time point b in B, a
precedes b. Given our assumptions about the structure of time
(discrete and linear) and events (the start point preceding the
end point), this proposition is equivalent to a1 < b1 in our
notation, which says that the start point of A, a1, precedes the
start point of B, b1. To see why, note that b1 precedes all other
points in B. Therefore, a1 precedes all points in B. a1 is in A,
so a point in A that precedes all points in B exists.2 The final
target hypotheses for our model are shown in Table 1. In the
next section, we proceed to describe the key components of
our learning model.

The Learning Model
We define w = 〈before, after, since, until, while〉 as the
words whose hypothetical meanings m = 〈m1, . . . ,m5〉 the
learner is representing such that mi is the meaning of wi. For
example, the target m5 for w5 = while is

λ A B t . (b1 < a2)∧ (a1 < b2) .

A given data point for learning consists of a tuple 〈ui,ci〉,
where ui ∈ w is the utterance attached to a context ci. A con-
text, ci, consists of two events, A and B, and a moment of
utterance, t. The components of a context are the input ar-
guments to the Boolean functions that learners construct. An
illustration of our learning setup is shown in Figure 1.

We are interested in computing P(m | u,c), the probability
of a set of meanings m, given observed contexts c paired with
utterances u. By Bayes’ rule,

P(m |u,c) ∝ P(u |m,c) ·P(m) . (1)

2Although the five word meanings considered here have equiva-
lent quantifier-free expressions in the interval representation, not all
first-order logical expressions admit of such translations.

Figure 1: Word learning setup. Adults produce utterances
according to the target temporal connective meanings, and
the learner’s goal is to infer these meanings from observed
utterances and contexts. Suppose that an adult utters ‘Jack
set the kettle to boil before he turned on the radio’ at time
t. Here the event ‘Jack sets the kettle to boil’ (A), the event
‘Jack turns on the radio’ (B), and time t form a context. In this
case, the learning target depends only on A and B, since the
moment of utterance, t, is not part of the semantic expression
for ‘before.’

In the following subsections we describe the grammar
that generates expressions m, a probabilistic extension of the
grammar that defines prior probabilities P(m), and a func-
tion that computes the likelihood of utterances given a set of
meanings and observed contexts, P(u |m,c).

Grammar
The target temporal connective meanings we previously de-
scribed can be generated by a context-free grammar (CFG).
Such grammars consist of non-terminal variables that expand,
through the successive application of production rules, into
strings consisting exclusively of terminal symbols. Our CFG,
which is specified in Table 2, always returns a Boolean func-
tion of the input. It supports the standard Boolean connec-
tives, not, and, and or, which can define any other binary
Boolean operation (e.g., implies).3 The grammar also in-
cludes integer comparators =, <, and ≤. The int arguments
of the comparators can be any of the input integers: a1, a2,
b1, b2, or t.

One should note that this is a very expressive grammar that
can generate many logical expressions that are irrelevant to
the temporal relations under consideration. For example, the
grammar can generate hypotheses like (a2 < t∧b2 < t), which
means that both A and B ended before the time of utterance.
The target expressions for ‘since’ and ‘until’ are functions
that consist of three Boolean connectives, of which there are
216 possibilities in total. For each of those possibilities, one
can obtain still different expressions by changing the integer-
comparison arguments (a1 = t, b2 ≤ a2, etc.) for the Boolean

3The technical notion here is that the three functions form a func-
tionally complete set of Boolean operations (Enderton, 2001).
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Table 2: The grammar used to generate meanings of temporal connectives.

Nonterminal Expansion Description

START → λ A B t . BOOL A function of A, B, and t that returns a truth value
BOOL → true Always true

→ false Always false
→ (and BOOL BOOL) True if and only if (iff) both arguments are true
→ (or BOOL BOOL) True iff at least one argument is true
→ (not BOOL) True iff the argument is false
→ (= int int) True iff the two arguments are equal
→ (< int int) True iff the first argument is less than the second
→ (≤ int int) True iff the first argument is less than or equal to the second

int → a1 The first element of argument A (the start point of A)
→ a2 The second element of argument A (the end point of A)
→ b1 The first element of argument B (the start point of B)
→ b2 The second element of argument B (the start point of B)
→ t Argument t (the time point of the utterance)

connectives. So the entire hypothesis space of expressions
containing at most three Boolean connectives is, by combina-
torial approximation, on the order of 108. Therefore, learning
specific temporal relations in our grammar is highly nontrivial
as it requires identifying plausible relations in a large space
of possible hypotheses.

Prior
We define prior probabilities, P(m), over hypothetical mean-
ings using an extension of our grammar. Having specified the
CFG in Table 2, we transform it into a probabilistic context-
free grammar (PCFG) by assigning probabilities to the expan-
sion rules. For every non-terminal, we assign uniform prob-
abilities to each of its expansion rules so that the prior does
not prefer any particular expansions.

This PCFG induces a prior distribution over all possible hy-
potheses. The prior probability of a hypothesis is proportional
to the product of the probabilities of its constituent gram-
mar expansions. Our prior specification penalizes grammar
expansions and therefore biases learning towards shorter hy-
potheses. Thus, we build a simplicity bias into our model,
which has been shown to capture the behavioral tendencies
of experimental subjects (Feldman, 2000; Chater & Vitányi,
2003).

Likelihood
We formulate a likelihood that represents language produc-
tion from the learner’s perspective. We assume that the
learner determines how likely a speaker would have been to
utter a meaning in a hypothetical set m given observed event
contexts c. That is, the likelihood measures the probability
that utterances ui ∈ u would be produced in contexts ci ∈ c
given that the speaker holds m to be the meaning of the tem-
poral connectives.

We assume that each utterance ui depends only on the hy-
pothetical meanings m and the context ci, but not any of the

other utterances or their corresponding contexts, and thus can
rewrite the likelihood as:

P(u |m,c) =
n

∏
i=1

P(ui | m,ci) . (2)

Importantly, multiple utterances can be true in a given con-
text under some hypothetical meanings m. So, to compute
P(ui | m,ci), we first partition w into two sets by evaluating
each wx on the function represented in its corresponding mx.
wtrue contains those words that are true under the current con-
text ci and meanings m,

wtrue(m,ci) = {wx ∈ w | mx(ci) = true}, (3)

while wfalse consists of the remaining words:

wfalse(m,ci) = w−wtrue(ci). (4)

We assume that speakers generate utterances that are true
of a context with probability α = 0.95, which characterizes
the amount of noise in the data. In the likelihood, we model
this production noise as a speaker’s choosing ui randomly
from the set w, either ignoring or misapplying the functions
present in m.

If ui ∈wtrue, the utterance’s inferred meaning applies to the
context and:

P(ui | m,ci) =
α

|wtrue(ci)|
+

1−α

|w|
. (5)

The two terms correspond to the two ways in which a true ut-
terance could have been generated: either from sampling with
uniform probability from the elements of wtrue or by choosing
ui randomly from the set of all temporal connective words w.
If, instead, ui ∈ wfalse, then only this second possibility ap-
plies and thus:

P(ui | m,ci) =
1−α

|w|
. (6)
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The likelihood for a true utterance given in Equation 5 fol-
lows the size principle (Tenenbaum, 1999), a crucial feature
of our model that biases the learner to prefer meanings that
are true in fewer contexts.

Inference

Given the expressiveness of our grammar, many of the gener-
ated hypotheses will have low probability, either because of
their long length (small prior) or inability to explain the data
(low likelihood). To approximate the posterior distribution,
we employ Markov chain Monte Carlo (MCMC) methods.
As a practical computational constraint, we set the maximum
number of grammar expansions in a hypothesis to 15. We
run an incremental sampling procedure beginning at 25 data
points (consisting of five examples of each word) and incre-
ment in steps of 25 up to a maximum data amount of 600.
The training data for all words are generated according to the
likelihood given by Equation 5 assuming the target semantics
given in Table 1. When generating data for a given word, we
randomly select event intervals A and B, a time point t, and
accept that context with its likelihood probability. At each
data increment, we run the Metropolis-Hastings algorithm for
50,000 steps to sample the posterior, P(u |m,c), for many pos-
sible settings of m, and store the ten sets of meanings with the
greatest posterior probability. We repeat the entire sampling
procedure 30 times.

Results

Following machine learning best-practices, we evaluate the
top hypotheses our model learns on a testing dataset. This
testing dataset is generated as follows: for each word, we
produce five-thousand positive and five-thousand negative ex-
amples according to the target hypotheses in Table 1. Chance
performance (e.g., a hypothesis that is trivially true for all
contexts) on this task is 50%. Evaluating our model on a test-
ing dataset allows us to identify partially-learned hypotheses
that exhibit above-chance performance but may lack compo-
nents of the target semantics.

We retrieve the top ten hypothetical meanings m for each
interval step. Next we partition the hypotheses in the ten high-
probability settings of m by word and count the proportion
of the 3,000,000 test examples (10 hypotheses · 30 repeats ·
10,000 test examples per word) that are correctly labeled at
that data amount. We plot these accuracy values for each data
amount in Figure 2, which summarizes our results.

Our model learns the target meanings for all of the tempo-
ral connectives in w. For each connective, the model learns
hypotheses that perform significantly above chance, even at
the smallest data amount (five training examples per word).
Moreover, the learning curve for each temporal connective
exhibits monotonic improvement up to a plateau. Assuming
a 95% accuracy criterion for successful acquisition, the or-
der of acquisition our model attains is: ‘before’ ≺ ‘after’≺
‘while’ ≺ ‘since’ ≈ ‘until.’

Figure 2: Modeling results. The top ten hypotheses learned at
each training data amount and inference chain are evaluated
on 10,000 test examples, split equally between those that are
true and false of each word. Chance performance is thus 50%.

Discussion
Our learning model recapitulates each of the developmen-
tal findings outlined in the introduction. Firstly, the model
acquires accurate representations of the sequential connec-
tives (‘before’ and ‘after’), followed by the simultaneous con-
nective (‘while’), and lastly the connectives expressing both
sequence and duration (‘since’ and ‘until’). Secondly, the
model acquires ‘before’ prior to acquiring ‘after.’ Thirdly,
our model learns increasingly more precise meanings for the
connectives, resulting in monotonically increasing accuracy.

The learning framework we employ captures aspects of
the theoretical proposals offered by both Feagans (1980) and
Clark (1971). The semantic feature theory of Clark (1971)
emphasizes the incremental character of temporal connec-
tive acquisition, which is argued to proceed in discrete stages
as children acquire the specific temporal features necessary
for understanding each of the connectives. Our model also
exhibits incremental learning because the prior introduces a
preference for simple meanings, so that complex expressions
are assigned high probability only when simpler expressions
fail to account for observed utterances. Our account diverges
from Clark’s because the features that constitute our target
meanings are available to the model from the outset as prim-
itives, and so the learner’s task is to infer combinations of
primitive elements that best account for observed utterances.

Our theoretical approach is most consistent with that of
Feagans (1980), which proposes that logical complexity de-
termines the order of temporal connective acquisition. In-
deed, we found that the logical complexity of our target con-
nective meanings determined the amount of training data re-
quired for successful acquisition. Our study extends Fea-
gans’ work by demonstrating that a statistical learner can ac-
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quire accurate meanings for the temporal connectives from
developmentally-plausible amounts of data. Feagans (1980)
observes that the set of temporal connective meanings can be
constructed from a single operation that compares the rela-
tive ordering of two events. In our framework, this operation
is achieved by applying the integer comparators =, <, and ≤
to pairs of event time points. Beyond its representational sim-
plicity, Feagans’ proposal is compatible with theories posit-
ing that a small set of primitive cognitive operations, which
may include the operators relevant to this study, can support
learning across a range of domains (Fodor, 1975; Piantadosi,
2011; Piantadosi & Jacobs, 2016).

A critical feature of our model is its ability to overcome the
subset problem in language acquisition (Wexler & Manzini,
1987; Crain, Ni, & Conway, 1994). Our learning framework
is potentially susceptible to the subset problem because sev-
eral of our target expressions overlap in meaning. Namely,
the contexts in which ‘until’ is true is a small subset of those
in which ‘before’ is true, and the contexts in which ‘since’
and ‘while’ are true are small subsets of those in which ‘af-
ter’ is true. The latter connectives are thus logically stronger
than the former connectives. Because our model learns exclu-
sively from positive data, the subset problem introduces the
worry that our learner will fail to distinguish the meanings
of ‘until’ from ‘before’ and ‘since’ and ‘while’ from ‘after.’
However, the setup of our likelihood, which implements the
size principle (Tenenbaum, 1999), solves this problem by pre-
ferring meanings that are true in fewer contexts. Our model
is biased to learn the correct and logically stronger meanings
for ‘until,’ ‘since,’ and ‘while’ because these meanings assign
higher likelihood to observed utterances.

One limitation of our model is its reliance on a uniform
sample from true meanings in the likelihood specified by
Equation 5. The model of quantifier learning in Piantadosi
et al. (2012) integrated a production probability based on ut-
terance informativeness into its likelihood. These production
probabilities were computed over a large simulated dataset
in support of a Gricean pragmatic framework. By weigh-
ing utterances according to their informativeness, the learn-
ing model will be biased towards more specific hypotheses,
reflecting the presuppositional assumption that speakers will
tend to utter the most specific word that applies to a context.

Our model learns in an idealized setup that diverges in
important respects from the situation children encounter.
Our learning framework was intentionally designed to assess
whether previously reported patterns of acquisition would
emerge in a statistical learner under ideal conditions; hav-
ing determined that these patterns do emerge from the for-
mal learning problem, we now discuss several factors beyond
the current scope of the model that affect children’s learning.
Firstly, unlike our model, real-world learners must contextu-
ally disambiguate the temporal meanings of the connective
words from non-temporal alternatives (e.g., the spatial mean-
ing of ‘before’). Secondly, our model maintains perfect mem-
ory of previously encountered training examples, whereas

children are likely to focus their learning on recently expe-
rienced episodes. Thirdly, our model is not subject to psy-
cholinguistic processing constraints that have previously been
suggested to influence temporal connective acquisition, like
working memory limits during sentence parsing (Blything et
al., 2015; Clark, 1971). Future work could expand upon our
study by building each of these limitations into computational
models and evaluating their impact on word learning.
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