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Abstract 

Humans are highly variable in their ability to learn and execute 
complex tasks; however, there are conflicting theories on skill 
acquisition. This study compared two different explanations 
for how association learning interacts with other cognitive 
processes: a) reinforcement learning and working memory are 
separate, competing processes operating simultaneously on 
association learning; and, b) associations are proceduralized 
into production rules and reinforcement learning acts on those 
rules. Participants completed a simple association learning task 
followed by a delayed test under two conditions designed to 
contrast these theories. The results are consistent with a 
proceduralization account in which reinforcement learning and 
working memory are not competitive interfering systems, but 
there remain important questions about how these two accounts 
may be best integrated. 

Keywords: reinforcement learning; working memory; 
procedural learning; skill acquisition 
 

Imagine you just encountered a light switch for the first time. 
With some trial and error, you surmise that by positioning 
your fingers above or below the switch and elevating or 
lowering your hand, you can reposition the switch at its 
vertex. After the switch has clicked into place, you notice the 
level of luminance in the room change. You try to recreate 
your new discovery and are repeatedly met with predictable 
results. The next time you encounter a light switch, you could 
operate it by remembering what you did last time. Upon 
further interactions with the light switch this process is 
further proceduralized, up to the point where you no longer 
think about the positioning of your hand, the actuation of your 
joints, the mechanism of the pivoting switch, and the range 
of outcomes that may follow. With enough experience, it is 
more efficient to use a proceduralized rule: if the goal is to 
produce light and contained in the room is a light switch, then 
flip the light switch. 

There are at least two theoretical frameworks that describe 
the processes involved in learning associations such as that 
between a switch and the correct response to activate the 
switch. One perspective is that these simple associations are 
learned via reinforcement learning. Another perspective is 
that this is a rudimentary skill acquired in the same manner 
as other skills. The goal of the study reported here was to 
examine predictions arising from these two theoretical 
frameworks. Both frameworks have substantial empirical 
evidence supporting them. Therefore, the long-term goal of 

this research is to examine ways in which these two 
frameworks might be integrated into a more comprehensive 
theoretical framework. 

In the skill acquisition framework, skill is theorized to 
transition from a declarative representation to a procedural 
representation (Anderson, 1982). The declarative 
representation can come from reading a set of instructions or 
via a trial-and-error process like that described for the light 
switch. As the declarative representation is retrieved in 
performing the skill, it becomes proceduralized into a 
procedural memory. Within the ACT-R architecture 
(Anderson et al., 2004), declarative knowledge is represented 
as a chunk and procedural knowledge as a production rule 
that can be executed to perform the skill. A production 
compilation mechanism explains how declarative knowledge 
is compiled into new production rules (Taatgen & Anderson, 
2002). Once a new production has been compiled, it offers an 
additional method for doing the task that does not rely on 
retrieving a declarative memory. The compiled procedure 
and the procedure to retrieve the declarative representation 
(i.e., a retrieval-based strategy) are now alternative 
competing procedures. As these procedures get reinforced 
upon successful execution of the skill, the faster and less error 
prone compiled production gains a much higher estimate of 
utility and gets selected much more often than the retrieval 
strategy. This skill acquisition mechanism has been used to 
explain skills such as learning the past tense (Taatgen & 
Anderson, 2002). In this account of skill learning, 
reinforcement learning is used to learn which procedure is 
most likely to yield a quick and accurate response, and 
working memory holds any retrieved declarative chunks 
while they are used by a production. 

An alternative framework arising from the study of 
reinforcement learning proposes that reinforcement learning 
competes with a more explicit working-memory based 
system of learning (Collins, 2018; Collins et al., 2017; 
Collins et al., 2017; Collins & Frank, 2012). A recent study   
explored a potential interaction between reinforcement 
learning and working memory (Collins, 2018). From this 
perspective, working memory is a short-term, capacity 
limited form of memory used to briefly hold task-relevant 
information, and reinforcement learning is a slower, capacity 
unlimited mechanism whereby actions increase or decrease 
in their likelihood of being repeated as a function of their 
consequences. These two systems are said to both 
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simultaneously operate on learning tasks such that items 
being held in working memory do not receive updates to their 
value via reinforcement learning (Collins, 2018). 

Original Study 
The original study used a simple associative learning task, 
wherein participants learned which of three keys was the 
correct key to press for each image in a set of images (Collins, 
2018). For example, if an image of a triangle was shown, one 
might guess that the “a” key was correct. Correct/incorrect 
feedback would then be provided, and the next image shown. 
Over many presentations of the triangle with feedback, one 
would eventually learn the correct key press. During the 
learning phase of this task, participants were asked to learn a 
block of images and the correct key that corresponded with 
each image. Each block consisted of a set of either 3 or 6 
images that were categorically related (e.g., colors, shapes). 
Each image in a block was presented 12-14 times in a 
pseudorandom order, and there were 12 blocks of  images. 
Half of the blocks had 3 images in the set (small set size) and 
half had a set size of 6 images (large set size). Different set 
sizes (3 and 6) were used in the learning phase to introduce 
different levels of working memory load. The assumption 
was that for the small set size, but not for the large set size, it 
was more likely that all of the stimulus-response associations 
could be held in working memory.  

After a delay following the learning phase, there was a 
surprise test phase, in which participants were presented with 
the images in random order and asked to select the correct 
key associated with each image. During learning, the larger 
set size takes longer to learn and responses to those items take 
longer. Counterintuitively, during the test phase, responses 
for images from the larger sets were recalled more accurately 
(and more slowly) than those from the smaller sets (Collins, 
2018). The interpretation of the results was that associations 
presented in smaller set sizes are more often held in working 
memory, which operates more quickly leading to better 
learning performance. Working memory is capacity limited 
so all of the associations for the large set size could not be 
held there. Associations held in working memory were not 
updated via reinforcement learning. Because working 
memory representations are not held onto over a long delay, 
only the representations learned via reinforcement learning 
are available at test. Associations learned in larger sets are 
updated via reinforcement learning more frequently and were 
available at test. Therefore, performance on large set size 
items was higher at test and experienced less forgetting than 
the low set size. The conclusion, supported by a comparative 
model fits of models of reinforcement learning and working 
memory, was that a model with interacting working memory 
and reinforcement learning systems was the best explanation 
of the results (Collins, 2018). 

Present Study 
The theory of skill acquisition and production compilation 
offers another possible interpretation of these results. When 
an image is first encountered, each of the three keys has the 

same relative probability of being correct. Once the correct 
response for an image has been produced, then an alternative 
strategy for responding is available (i.e., recall what key was 
correct last time). Once this response has been recalled a 
number of times, a compiled production is available that 
eliminates declarative retrieval: if the goal is to respond to 
shapes and you see a triangle, then press the “a” key. The 
utility of the newly compiled rule increases via reinforcement 
and eventually surpasses the declarative retrieval strategy as 
it consistently yields the same response more quickly than 
retrieval (Anderson et al., 2004; Taatgen & Anderson, 2002).  

During learning, as shown in Figures 1a and 1b, the 
average delay between items shown in the smaller set size is 
smaller than the delay in the large set size. This delay has 
implications for the rate of learning and the rate of compiling 
a task-specific production rule, accounting for the differential 
rate of learning for the two set sizes. The chances are higher 
that the correct response for a large set size image cannot be 
recalled because the delay between trials of the same image 
is longer. 

 

 
Figure 1a: Stimuli in smaller set sizes have a smaller interval 
between presentations. Response mappings can be more 
easily retrieved from declarative memory because of the 
shorter delay, allowing more opportunities for the response 
mapping to be compiled into a production rule. 
 

 
Figure 1b: Stimuli in larger set size blocks have a longer 
interval between presentations, making it more difficult to 
retrieve the previous response from declarative memory 
when the stimulus is next encountered. Consequently, this set 
size takes longer to learn and there are fewer opportunities 
for a compiled production to be produced and compete with 
the retrieval strategy. 

 
During the test phase, a critical aspect of the original study 

is that stimuli were presented at random, rather than in blocks 
from the same category as they were presented in the learning 
phase. If the compiled productions from learning contain 
information about the category, then they will fail to apply in 
the test where the category information is not a central part 
of the task. For example, this rule references the category and 
would not apply in the test phase: if the goal is to respond to 
shapes and you see a triangle, then press the “a” key. In this 
case, during the test phase, only the retrieval strategy is 
available. Retrieval time and success will be related to the 
frequency and recency that these stimuli were retrieved from 
declarative memory. In the case of the smaller set size, 
frequency and recency of retrieval will be on average lower 
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because a compiled production took over and eliminated 
declarative retrieval. Therefore, the lower accuracy for the 
small set size during test results from failure to retrieve 
because the task-specific rule eliminated the need to retrieve 
that information during learning. 

The crux of this alternative explanation for the findings of 
Collins (2018) is that when task-specific production rules can 
be compiled quickly and reinforced enough times, then they 
eliminate the need to retrieve the correct response from 
declarative memory. Since recency and frequency are both 
predictive of future retrieval success, reducing recency leads 
to greater difficulty retrieving the correct response at test 
when the proceduralized rule is not applicable. These 
alternative theoretical explanations have important 
implications for how skill acquisition, working memory, and 
reinforcement learning interact. 

The current study compares these two theories by 
replicating the method of the prior research (Collins, 2018) 
and manipulating across participants the presentation of the 
items at test. Randomization in the test phase presumes that 
the associations were learned individually, rather than in 
blocks as they were presented in the learning phase. A 
between-subjects manipulation where half the participants 
see the original design with the stimuli randomized at test and 
the other half of the participants encounter stimuli blocked 
according to category in the same manner as the learning 
phase should reveal if response mappings are learned 
procedurally or retrieved from working memory. 

By reinstating the same method at test as during learning, 
any proceduralized rules are still applicable and will generate 
faster and more accurate responses than the retrieval strategy. 
With this small modification to the experiment, it is expected 
that 1) response accuracy will be the same or greater for the 
small set size than for the large set size; and, 2) the response 
time for the small set size will be faster than the large set size. 
These hypothesized results for the blocked testing condition 
are the opposite of what is expected in the randomized test 
condition (e.g., a replication of the original results).  

Method 

Participants 
A sample of 176 adult participants was recruited from 
undergraduate courses at a large public university in 
exchange for course credit. Based on an effect size estimated 
from the results reported in Collins (2018), it is expected that 
70 participants in each condition (for a total of 140) should 
yield .8 power. As in the original study, an asymptotic 
performance criterion of 75% correct was set for response 
accuracy in the learning phase of the associative learning task 
to ensure that participants had learned response mappings 
prior to test. Asymptotic performance was measured as the 
average response accuracy on the last 6 trials for each image. 
30 participants were eliminated based on this criterion, 
resulting in a sample size of 146.  

Tasks 
Participants completed an associative learning task 

identical to that described by Collins (2018). The learning 
and test phases of the task were separated by performance of 
the automated operation span task (Unsworth et al., 2005). 
The original study used a visual N-back task for the delay 
between learning and test. The nature of the delay should not 
matter as long as participants are not rehearsing the stimuli or 
responses. The operation span task lasted on average 13 
minutes (similar to the original study’s delay of 11 minutes). 
The operation span (OSPAN) was selected because the task 
duration was similar to the visual n-back task used in the 
original design while also providing a measure of working 
memory. 
 
Associative Learning Task During the learning phase, 
participants were asked to learn a set of images and pair them 
with a set of responses. In each block, there are either 3 or 6 
distinct objects from the same category (e.g., shapes), each 
having one of 3 distinct correct key presses. The goal is to 
learn via correct/incorrect feedback the corresponding key 
press for each object. Each block includes 13 trials per 
stimulus, regardless of the number of distinct images (3 or 6) 
presented in the block. Each block and its respective stimuli 
were presented in a pseudorandom order unique to each 
participant, with a uniform distribution of delays (number of 
stimuli between repetitions of one stimulus) for each stimulus 
(Figure 2). There was a total of 14 blocks of images in this 
phase: eight blocks of categories with three images (i.e., set 
size 3) and six blocks of set size 6. The first and last blocks 
of the training phase were set size 3 and were not analyzed to 
control for primacy and recency. The remaining 12 blocks 
were presented in random order. 

In the test phase, participants were presented with the same 
stimuli from the learning phase and asked to provide the 
associated keypress, without reinforcement. Participants 
were randomly divided into one of two conditions in the 
testing phase. In the random condition, all stimuli from all 
learning blocks were presented in random order as in the 
original study (Collins, 2018). In the blocked condition, 
stimuli in the testing phase were presented in blocks, in the 
same manner that they were presented in the learning phase.  

 
 

Figure 2: Stimuli are presented in a pseudorandomized order 
for 1500 ms. Feedback is presented for 500 ms immediately 
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after the response, followed by a 500 ms fixation cross. 
During the test phase, the trials are identical except that 
feedback is not displayed.  

 
Operation Span The OSPAN was used both as a distractor 
task between the learning phase and test phase and as a 
measure of working memory capacity. The OSPAN task asks 
participants to remember a series of letters in sequence while 
completing math problems. Participants were first presented 
with a simple math problem, which they were asked to 
complete as quickly as possible. After responding to the 
problem, they were briefly presented with a single letter. 
After 3-7 problem-letter pairs, participants were asked to 
recall the letters in order and select corresponding boxes. 
Feedback was provided at the end of each trial. 
Letters/problems were presented in sets that ranged from 3-7 
with each set size presented three times. A participant’s score 
on the task is the number of letters recalled correctly, ranging 
from 0-75. A performance criterion of 80% correct was 
applied to the math portion of the OSPAN to ensure 
compliance with the task and 7 participants failed to meet this 
criterion. The OSPAN was used to measure working memory 
and yielded 139 valid responses. Scores ranged from 13 to 74 
(out of 75), with a mean of 57.2 and a standard deviation of 
12.2. 

Analyses 
Data were analyzed in linear mixed effects models to 
determine if response accuracy and response time were 
predicted by the testing condition (blocked or random), the 
set size of the initial stimulus presentation during learning (3 
or 6), and working memory capacity. An additional set of 
analyses was performed using only data from the random 
condition to replicate the original study design (Collins, 
2018). Accuracy was modeled using a logistic general linear 
mixed effects model to predict individual responses and 
change in accuracy from learning to test. All models 
contained random intercepts for participants and items as 
well as random slopes for all within-participant or within-
item effects. Degrees of freedom were estimated using 
Satterwaite’s method as implemented in the lmerTest R 
package. 

Results 

Accuracy 
Mean response accuracy over the course of the 13 

presentations of a stimulus is shown in Figure 3. Mean 
accuracy on small set size blocks was higher than large set 
sizes. The slope of the accuracy curve leveled out earlier in 
the small set size blocks, however both slopes approached 0 
by the end of the block. These qualitative learning results 
replicate the same pattern of results observed in the original 
study (Collins, 2018). Analysis of the learning phase yields 
similar results as the original study. Given the focus of the 
current study is on the testing phase, we report analyses on 

the testing phase only. Mean accuracy at the end of learning 
and at test is shown in Figure 4. 
 
Replication of Prior Study First we focus on the random 
testing condition and assess to what degree the results 
replicate those of the original study. One result from the prior 
study is that asymptotic learning performance in set size 6 
was a significant predictor of performance at test for both set 
sizes and that asymptotic set size 3 performance was not a 
significant predictor of test performance. We found similar 
results with asymptotic set size 6 performance predicting 
both set size 6 test performance (z = 5.56, p < .001) and set 
size 3 test performance (z = 2.10, p = .04). However, set size 
3 was not a significant predictor of test performance in either 
set size (z < 1). 
 

 
Figure 3: Mean accuracy across learning phase for set size 3 
and set size 6.  

 
Figure 4: Mean accuracy at the end of the learning phase and 
during the test phase. 

 
Next, the original study found that at test, items learned in 

set size 6 were recalled better than set size 3, but this effect 
was not replicated in our data using a simple model with only 
set size predicting test performance, z = -0.39, p = .7. 
However, a model with set size, asymptotic learning 
performance, and learning block showed two interactions: a 
set size by learning block interaction, z = 3.33, p < .001 and 
a set size by asymptotic learning accuracy interaction, z = 
5.31, p < .001. The block by set size interaction was due to 
block recency having a greater impact on set size 6 accuracy 
than set size 3. The learning accuracy by set size interaction 
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was due to set size 3 having higher testing accuracy at lower 
levels of learning while set size 6 had slightly higher accuracy 
at the highest levels of learning accuracy. 

The learning accuracy by set size interaction suggests that 
the failure to replicate the set size difference may be due to 
variability in learning accuracy. When the simpler model 
predicting test accuracy from set size during learning is 
restricted to items with perfect asymptotic learning accuracy, 
the set size effect is significant, z = 3.26, p = .001 with set 
size 6 having higher accuracy (M = .89, SE = .01) than set 
size 3 (M = .85, SE = .01). In comparison to Figure 4, it can 
be seen that the set size 6 mean shifts to a greater degree when 
restricting the stimuli to only those well learned. Most of the 
results from the original study were replicated with the 
exception that the set size effect was dependent on learning 
accuracy, which was not observed in the original study. 
 

Comparison of Blocked and Random Conditions Under 
the skill acquisition framework, performance for set size 3 
should be greater than set size 6 in the blocked condition. 
First, we examined whether asymptotic learning performance 
was a predictor of test performance in the blocked condition. 
Asymptotic performance during the learning phase was used 
as a covariate to determine if reward history was predictive 
of performance at test. Results showed that asymptotic 
performance in the learning phase for set size 6 is predictive 
of performance in set size 6 at test, z = 5.79, p < .001, but not 
set size 3 associations. Asymptotic performance for set size 3 
associations was not predictive of performance for set size 3 
or set size 6 associations at test, z < 1. 

Mean accuracy at the end of the learning phase was also 
compared to accuracy in the test phase by including phase 
(learning or test), set size, and condition as predictors of 
accuracy. The decrease in accuracy from learning to test was 
greater in the random condition than in the blocked condition, 
t(137) = -6.49, p < .001. The larger set size also dropped less 
than the smaller set size from learning to test in both 
conditions, t(137) = 4.19, p < .001. The three-way interaction 
between phase, set size, and condition was not significant. 
The steeper slope for the smaller set size is consistent with 
the original study, but given that the smaller set size was also 
recalled better than the larger, this result seems inconsistent 
with interference between working memory and 
reinforcement learning. 

Contrary to our predictions for the blocked condition, 
associations learned in the larger set size showed a shallower 
decline in accuracy when compared to the smaller  set size. 
In other words, there was not a three-way interaction with 
condition. The blocked condition decreased much less than 
the random condition, providing partial support for 
proceduralization of both set sizes. However, it is possible 
that the additional category cue in the blocked condition 
benefitted the retrieval strategy as well as the proceduralized 
rules. 

Higher working memory scores were associated with 
higher accuracy during both phases, t(136) = 3.82, p < .001). 
However, higher working memory also interacted with set 

size and phase such that higher working memory was 
associated with increased set size 6 accuracy more than set 
size 3, t(137) = 2.65, p = .009, and increased accuracy more 
in the testing phase than the learning phase, t(137) = 2.87, p 
= .005. This result seems inconsistent with the theory that 
working memory is interfering with reinforcement learning. 

Because the delay from learning to test did vary across 
participants depending on OSPAN completion time, it may 
be possible to discriminate between the retrieval strategy and 
a proceduralization strategy by examining the effect of delay 
between learning and test. The time between the last 
presentation of the stimulus in the learning phase and the time 
it was presented during the testing phase was included in a 
model predicting testing accuracy. Delay should impact 
retrieval but not execution of a proceduralized rule. Also, 
from the interfering reinforcement learning and working 
memory theory, delay is not explicitly theorized to have any 
impact on associations learned via reinforcement learning. 

In a model examining end of learning and test performance, 
delay was included along with phase, condition, set size, and 
working memory. In this case, the model was a logistic mixed 
effects model predicting the binary outcomes for individual 
stimuli because delays were stimulus specific. The model 
revealed that in both conditions, associations learned in set 
size 3 were affected less by the duration of the interval 
between the last stimulus presentation at learning and the first 
presentation at test, z = 5.44, p < .001. The mediating effect 
of stimulus presentation delay further suggests that 
associations learned in large set sizes are more of a function 
of memory retrieval while associations encountered in 
smaller sets are retrieved using a more robust proceduralized 
rule. 

Response Time 
Mean correct response time during learning is shown in 
Figure 5. The initial couple of presentations are faster likely 
due to a “guessing” stage until the correct response is learned. 
After that, response time was decreased slightly as the correct 
response became more practiced.   

 
Figure 5: Mean correct response time in seconds across the 
learning phase for set size 3 and 6.  
 

The primary effect of an item-specific proceduralized rule 
for responding would be to significantly increase the speed of 
response. For example, in ACT-R a production rule is 
executed in 50 ms, while retrieval from declarative memory 
would take about an order of magnitude longer (Anderson, 
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2004).  It was hypothesized that a behavior produced by a rule 
would operate much more quickly than memory, given that 
declarative memory retrieval is not necessary. In the present 
study this translates into the prediction that response times 
would be substantially faster in the blocked testing condition, 
where a production rule might be utilized, than for the 
random condition. Similarly, it follows that associations 
learned in the smaller set size condition would result in a 
faster response than those learned in a larger set in the 
blocked condition, because it is more likely that a production 
rule would be compiled for the smaller set size than for the 
larger set size. In the random condition, we would not expect 
to see any significant differences between small and large set 
sizes, since the task demands are identical for the small and 
large set sizes and both would require retrieval from 
declarative memory. 

Mean response time at the end of learning and at test was 
examined with a model including phase (learning or test), 
condition (random or blocked), and set size. Mean correct 
response time for correct responses once asymptotic 
performance was reached in the learning phase and correct 
responses in the test phase is shown in Figure 6. Consistent 
with the hypothesized results, response times increased more 
in the random than in the blocked testing condition from 
learning to test but the lower set size was affected the most as 
shown by an interaction between condition, phase, and set 
size, t(135) = -7.62, p < .001. 
 

 
Figure 6: Mean correct response times in seconds at the 

end of learning as during the test phase. 
 

An analysis similar to that done for accuracy was also 
carried out by predicting testing response time with 
asymptotic learning accuracy, set size, and block. In this 
model, higher learning accuracy led to faster response times, 
t(187) = -6.76, p < .001. The larger set size was associated 
with slower response times, t(193) = 12.39, p < .001. Stimuli 
learned in more recent blocks were responded to faster, t(128) 
= -4.67, p < .001. Stimuli in the random testing condition 
were also responded to slower, t(172) = 9.49, p < .001. 
However, again there was a larger effect of set size in the 
blocked condition than in the random condition, t(162) = -
13.1, p < .001. 

Working memory had a greater impact on response time in 
the random condition than the blocked condition (t(126.5) = 
-2.70, p = .008), however the interaction of working memory 
and set size was not significant. This finding is potentially 
consistent with a retrieval-based strategy being utilized more 
in the random condition as discussed below. 

Discussion 
The current study has significant implications for how we 
conceptualize the interaction between working memory, 
reinforcement learning, and skill acquisition. In the random 
testing condition, the current study replicated many of the 
findings from prior research (Collins, 2018) which posited 
that reinforcement learning and working memory are 
separate, competing processes. The main difference is that 
the lower set size only led to better test performance if the 
analysis was restricted to stimuli that were at ceiling at the 
end of learning. It is likely that there was simply higher 
variability in learning accuracy in our data than in the original 
study even though all participants met the performance 
criteria of 75% mean accuracy at the end of learning. 

For accuracy, the results are largely consistent with the 
predictions from the skill acquisition framework. In the 
blocked condition, participants should be both faster and 
more accurate than in the random condition due to the use of 
proceduralized rules. In the random condition, participants 
should be relying more on a retrieval-based strategy and 
therefore take longer and be more sensitive to the delay 
between the last presentation of the stimulus during learning 
and test. Furthermore, the opposite effect of set size was 
observed in this study as in the original study (Collins, 2018) 
even when controlling for asymptotic learning accuracy. As 
noted, the original set size effect is only found when limiting 
analyses to stimuli learned perfectly. One possible 
interpretation of this set size effect is that these are exactly 
the stimuli that are well proceduralized at the end of learning. 
When stimuli are still being learned, they are still reliant on a 
retrieval-based strategy; therefore the larger set size lags 
behind due to the increased delay between stimuli [Figure 
1b].   

Particularly compelling are the differences in response 
times between set sizes in the blocked and random 
conditions, which may imply that smaller set sizes are being 
executed via a proceduralized rule rather than retrieved from 
declarative memory. At the very least, the response times 
suggest that the blocked testing condition is similar enough 
to learning to yield little difference in response times. 
Whether that is a function of proceduralization or an 
alternative theoretical explanation is still unclear. 

Working memory, as measured by the OSPAN, had an 
overall effect on accuracy across all conditions and set sizes. 
In addition, working memory had a stronger relationship with 
response time in the random condition than in the blocked 
condition. Working memory as measured by the OSPAN is 
likely composed of multiple cognitive processes including 
attentional control and ability to more easily access long-term 
memories to bring them into working memory (Unsworth, 
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2016). It could be that the working memory relationships 
observed here are due more to the ability to access long-term 
memories. Some models of working memory have modeled 
individual differences as increased activation to spread in 
long-term memory to improve the accessibility of memories 
(Lovett et al., 2001). This kind of working memory 
mechanism would be consistent with the improved ability to 
retrieve the correct associations from declarative memory 
that was observed here in both learning and test behavior. 

The proposed theoretical explanation for differences 
between the two conditions is informed by the ACT-R 
cognitive architecture. Parameters obtained from these 
behavioral data will be used to create an ACT-R model of the 
association learning task, allowing us to further explore 
whether differences in performance at test can be attributed 
to procedural knowledge. At the moment, results seem to 
indicate that when the context is similar enough, a 
proceduralized and reinforced rule is learned and used at test. 
However, it will be important to verify that the proposed 
mechanism actually accounts for the data. 

In addition to developing a cognitive model of the task, 
future work will attempt to further examine the reinforcement 
learning process by introducing probabilistic reinforcement 
to the learning phase. It is hypothesized that associations with 
a higher value assigned in the learning phase will be retrieved 
more quickly in the test phase. If reinforcement prediction 
error is indeed present in associations learned in smaller set 
sizes, it would suggest that the association learning task is 
performed using reinforcement learning. Additionally, a 
repeated measures modification of the design might be used 
to address relatively unexplored issues such as skill decay. 
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