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Abstract 
Successful cooperative activities rely on the efficient distribu-
tion of sub-tasks between co-actors. Previous research has 
found that people often forgo individual efficiency in favor of 
group-level efficiency (i.e., joint cost minimization) when 
planning a joint action. The present study investigated the cost 
computations underlying such "co-efficient" decisions: We 
tested the hypothesis that people compute the joint costs of a 
shared action sequence by summing the individual costs of 
their own and their co-actor's actions. We independently ma-
nipulated the parameters quantifying individual and joint ac-
tion costs and tested their effects on decision-making. Partici-
pants weighed their own and their partner’s costs equally to es-
timate the joint action costs as the sum of the two individual 
parameters. The results provide empirical support for compu-
tational approaches that formalize cooperation as joint utility 
maximization based on a sum of individual action costs.  

Keywords: cooperation; joint action; efficiency; decision-
making; cost computation 

Introduction 
Humans cooperate: in joint actions, they share goals with oth-
ers, and plan and coordinate actions with their partners to 
achieve these goals (Butterfill, 2017; Sebanz, Bekkering, & 
Knoblich, 2006). Often, multiple sub-tasks contribute to an 
overarching joint goal, and the corresponding actions may be 
distributed among co-actors in many different ways with var-
ying degrees of efficiency. Planning cooperative activities 
can be regarded as making a series of decisions about the ac-
tions to be performed. What principles guide people’s deci-
sion-making in joint action contexts?  

Do actors plan their actions to optimize efficient perfor-
mance as individuals, or do they plan them with their partners 
in mind, to be maximally efficient as a group? Previous stud-
ies suggest that co-actors tend to maximize the joint effi-
ciency of an action sequence by minimizing the total costs of 
movements when they work towards a shared goal (Kleiman-
Weiner, Ho, Austerweil, Littman, & Tenenbaum, 2016; 
Török, Pomiechowska, Csibra, & Sebanz, 2019).  

In an experimental joint action task without monetary pay-
offs, Török and colleagues (2019) recently observed collec-
tive utility-maximizing decisions, which they termed co-effi-
cient. In their task, participants made binary decisions be-
tween two action plans to coordinate the transfer of an object 
with a partner. Costs in that context were operationalized as 
the length of movement paths to be covered on a touchscreen. 
One of the action options was more efficient for the decision-
making actor (i.e., the initiator of the action sequence), while 
the other option was more efficient for her partner; the co-
efficient option coincided with either. The study tested 
whether the participants maximized their own efficiency, and 
when they did not, whether the decisions followed a co-effi-
ciency maximizing strategy or an altruistic strategy to in-
crease the partner’s individual utility (cf. Trivers, 1971). The 
results supported the co-efficiency hypothesis: Participants 
made decisions that minimized the joint, rather than the indi-
vidual, action costs – even if the co-efficient solution required 
additional individual effort from either member of the dyad 
(Török et al., 2019).  

The present study focuses on the computations that under-
lie co-efficient decisions. To minimize a dyad’s costs in ac-
tion planning, a decision-maker first needs to reliably esti-
mate them (Körding & Wolpert, 2006). In joint actions, be-
yond their own individual action costs, people are sensitive 
to their partner’s efforts, needs, and task difficulty (Ray, de 
Grosbois, & Welsh, 2017). This sensitivity is reflected in par-
ticipants’ increased willingness to invest effort in the joint ac-
tion (Chennells & Michael, 2018), and in adjusting their ac-
tions to facilitate the partner’s task (Ray et al., 2017). We hy-
pothesize that, whenever the summed total of individual costs 
is calculable, it is taken as the estimate of the cost of a joint 
action. This proposal gains support from computational work 
that has formulated cooperative planning as maximizing the 
utility of a collective agent, in which joint utility is computa-
tionally represented as the weighted sum of the individual 
utilities of each agent (Kleiman-Weiner et al., 2016). 
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While assessing and summing individual costs may be the 
generic process to calculate joint costs to be minimized, de-
pending on the context, shortcuts may also be available. For 
example, the task employed by Török and colleagues (2019) 
required actors to move an object along one of two paths to a 
target location. Although the movement along these paths 
was divided between the participants, the decision-making 
actor could have just planned the joint action sequence as if 
she had intended to complete the task alone, and then per-
formed only the first section of the plan. Such a planning pro-
cess would choose the co-efficient action option from the al-
ternatives without requiring the planner to sum individual 
costs. 

In the present study, we employed a novel task in which 
joint action costs cannot be computed without representing 
and summing two individual action costs. As in Török et al. 
(2019), action costs were estimated to be proportional to the 
path length of movements. However, the physical separation 
of paths to be taken by co-actors (see Figure 1) made it im-
possible to plan a single action that incorporated both paths. 
This feature of the task enabled us to generate, and paramet-
rically vary, individual action costs that were statistically in-
dependent from each other. If people represent the joint costs 
of an action sequence as a sum of individual costs, choices 
between action plans should be consistent with a co-effi-
ciency maximizing strategy that minimizes this sum. We hy-
pothesized that, in the absence of asymmetries in cost-related 
uncertainty or in social hierarchy, which could potentially 
justify an unequal weighting of costs (Kleiman-Weiner et al., 
2016), the individual costs of the actors would be weighed 
equally in the sum.  

Our task also allowed us to investigate an alternative hy-
pothesis related to fairness. People are often motivated to re-
duce payoff inequality in economic games (Dawes, Fowler, 
Johnson, McElreath, & Smirnov, 2007). Similarly, actors in 
the present study might choose action plans to minimize the 
difference in the action costs distributed across co-actors, 
even at the expense of individual or group efficiency.  

Methods 

Participants 
Forty-eight participants (24 dyads) took part in the experi-
ment. We analyzed the data of 40 participants (15 males, 24 
females, 1 preferred not to disclose, age M = 24.21 years, SD 
= 4.09) after the exclusion of three dyads whose data were 
partially (2 dyads) or wholly (1 dyad) missing due to equip-
ment failure. In addition, we excluded and subsequently re-
placed one dyad because the sampled Self and Other action 
costs were statistically significantly correlated in their data 
(see below).  

Apparatus 
The task was performed on a touchscreen monitor (Iiyama 
PROLITE 46”, resolution 1920 X 1080 pixels, horizontal 

sync: 31.47 – 67.5 KHz, vertical sync: 47 – 63 Hz) lying flat 
on a table between two participants facing each other, con-
nected to an Apple MacBook Air computer. Stimulus presen-
tation and data recording were controlled by a script using the 
Psychophysics Toolbox (Kleiner et al., 2007) in MATLAB®. 
Two response boxes (Black Box Toolkit Ltd.) were used to 
control trial onset. 

Stimuli and Task 
On each trial, a layout displaying the following elements was 
presented to the participants: (1) a thin black wall dividing 
the screen into two halves, corresponding to the two partici-
pants’ task areas, (2) two pairs of black target objects (two 
circles and two squares, 30 pixels [px] diameter) distributed 
between the two task areas (one of each), and (3) two black-
bordered octagonal starting locations (96x96 px) with two 
smaller octagons inside (60x60 px, see Figure 1). The starting 
locations were always displayed at mid-position along the 
longer sides of the screen, aligned with the response box keys. 
At the beginning of each trial, one of the smaller octagons 
was orange-colored to signal which participant would initiate 
the joint action (playing the role of Actor 1). After 3 seconds, 
the color switched to green, which served as a cue for Actor 
1 to start to move.  

 

 
 

Figure 1. An example of the trials in the task. The starting 
locations were indicated by the octagons, and the locations 
for the two pairs of black target objects were generated by 
stochastic selection processes. The arrows and labels indicate 
the distances that provided the basis for cost calculations 
comparing the two target options, and were not visible to the 
participants. 
 

In each trial, Actor 1 had to choose between the two target 
objects on her side and drag the chosen target back to her 
starting location using the green octagon. Having completed 
this, her partner (Actor 2) had to pick up the corresponding 
object from his task area and drag it back to his starting loca-
tion. Thus, while both participants acted in each trial, only 
one of them (Actor 1) made the decision that determined the 
individual and joint costs incurred in a trial. 
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Design  
Cost Disparities The cost of an action was considered to be 
a monotonic function of the path length that the object cov-
ered on the touchscreen when being dragged. For the sake of 
simplicity, here we treat the path length as the absolute cost 
paid for its transport. For example, in Figure 1, the cost of 
choosing object A1 (the square) is the distance between Actor 
1’s starting location and this square: a1. If Actor 1 makes her 
decision based on her expected cost, she should compare this 
cost to the cost of moving object B1: b1. The cost disparity 
between these actions is expressed by the difference between 
a1 and b1. We will call this value Self Cost Disparity, or 
simply Self Disparity.  

If Actor 1 intends to make individually efficient decisions, 
she should choose A1 when the Self Cost Disparity is nega-
tive, and B1 when this value is positive. The matching indi-
vidual cost disparity for Actor 2 (Other Disparity, a2 - b2) in 
this example is negative. Thus, picking up object B1 would 
be individually optimal for Actor 1, as it minimizes her Self 
Disparity, whereas it is the less efficient option for Actor 2. 

The joint cost of an action is taken to be the summed costs 
of the actors. If Actor 1 chooses A1, the joint cost is a1 + a2; 
if she chooses B1, the joint cost is b1 + b2. Thus, the Joint 
Cost Disparity (or Joint Disparity) is (a1 + a2) - (b1 + b2), 
which is the sum of the two individual disparities (Self Dis-
parity and Other Disparity). In the example in Figure 1, the 
Joint Disparity is negative, suggesting that from the dyad’s 
perspective, picking up the square objects (A1 and A2) was 
associated with the shorter total path length, and as such, was 
the co-efficient choice. At the same time, picking up the 
square object pair was also individually efficient for Actor 2, 
but not for Actor 1. This illustrates the fact that depending on 
the spatial configuration of the objects in a trial, the cost-min-
imizing interests of each individual actor may or may not 
align with the interest of the dyad they are part of. 

We assume that the likelihood of choosing object A1 para-
metrically depends on the magnitude of one or more of these 
disparities through a logistic link function. For example, if 
Actor 1 optimizes her own cost, the more negative the value 
of Self Disparity, the more likely it is that she will choose A1, 
thereby forcing Actor 2 to act on A2. 
 
Parameter sampling Our primary aim was to investigate the 
independent contributions of Self Disparity and Other Dis-
parity to the actors’ decisions. To make this possible, we kept 
the distributions of these two factors uncorrelated across tri-
als. To generate the locations of the target objects, we sam-
pled Self Disparity and Other Disparity for each trial inde-
pendently from the same uniform distribution (between -265 
and 265 px). We then randomly selected the positions of all 
objects in such a way as to match these disparities. For each 
dyad, we generated 100 different spatial arrangements. This 
list was repeated twice, once per each participant acting as 

Actor 1, totaling 200 trials per dyad presented in pseudo-ran-
dom order, with the constraint that neither of the participants 
be assigned the role of Actor 1 more than 3 times in a row. 

The sampling process that generated object arrangements 
guaranteed that Self Disparity and Other Disparity were un-
correlated. As a direct consequence, Joint Disparity (the sum 
of the two individual disparities) had a triangular distribution 
and was positively correlated with both terms. 

To address the alternative hypothesis regarding Fairness, 
we operationalized it as the difference between the asymme-
tries in individual paths related to object pair A and object 
pair B, distributed between co-actors in each trial, that is, as 
the difference between [abs(a1-a2)] and [abs(b1-b2)] (see 
Figure 1). De-correlating Self and Other Disparities from one 
another also de-correlates Joint Disparity from Fairness, 
which allowed us to estimate a model that included both of 
these predictors and to compare it to a single-predictor Fair-
ness model.  

Procedure  
The participants were instructed to collect matching object 
pairs by cooperating with their partner without communi-
cating with one another, and to complete each trial as quickly 
as possible. No feedback was provided about performance. 
Participants took on average M = 34.95 minutes (SD = 5.06 
minutes) to finish the task. 

To trigger the start of each trial, the participants were in-
structed to keep their dominant index finger on the key of 
their response box. First, an orange-colored octagon appeared 
inside one of the starting locations, which identified the par-
ticipant who was required to start the trial (Actor 1). Partici-
pants were instructed to inspect the layout while the octagon 
was orange-colored, and to decide which target object they 
would pick up when prompted to move. 

The octagon turned green after three seconds, signaling that 
Actor 1 could start to move the octagon to one of the objects. 
By dragging the green octagon over a black object with her 
index finger, the participant picked up the object and col-
lected it by dragging it back to her starting location. Once 
Actor 1 collected an object, she pressed the key on her re-
sponse box again to make the white octagon in front of her 
partner turn green. The appearance of this second green octa-
gon cued Actor 2 to start moving to collect the matching ob-
ject on their side of the screen. The trial was over when Actor 
2 collected the object with the shape corresponding to the one 
chosen by Actor 1 (non-matching objects did not respond to 
dragging). 

Data Analysis 
To test the hypothesis that object choices would be influenced 
primarily by the difference between aggregate joint action 
costs, we used hierarchical logistic regression models in a 
Bayesian parameter estimation framework (Kruschke, 2015). 
We fitted and contrasted three models in which the probabil-
ity of Actor 1 choosing object A1 was predicted in turn, by 
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(1) Self Disparity, (2) Other Disparity, and (3) a weighted 
linear combination of the Self and Other Disparities. In addi-
tion, we also fitted and contrasted models that attempted to 
predict choices by (4) Fairness or by (5) the linear combina-
tion of Fairness and Joint Disparity. 

We assumed that the trial-by-trial probability of choosing 
A1 was Bernoulli distributed with parameter μi|s, where i in-
dexes the trial and s indexes the participant. The value of this 
parameter depended on a logistic function of the focal cost 
parameter of the model weighted by the participant’s beta 
coefficient β1,s (for the combination models, by β1,s and β2,s). 
We fixed the value of the intercept in the logistic equation to 
0 in all models, equivalent to assuming random decisions in 
the absence of any action cost disparities. 

The individual β coefficients were assumed to be normally 
distributed at the group level. We set the uninformed priors 
for this group-level distribution by vague hyperparameters (µ 
~ 𝒩(0, 2), σ ~ 𝒰(0.0, 0.5)), a wide distribution around a zero 
effect of cost disparity. The same uninformed hyperprior was 
used for all cost disparities, expressing our prior expectation 
that participants would weigh the minimization of all costs 
equally. The individual and group-level posterior distribu-
tions of the beta coefficients were estimated via Markov 
Chain Monte Carlo simulation in JAGS, following Kruschke 
(2015).  

 

 
 

Figure 2. (a-c) Predictions for optimal responses according to 
Self, Other, and Joint cost-minimizing strategies (calculated 
assuming a Boltzmann policy with the temperature parameter 
fixed to k = 50). (d) Observed object A1 choices for all trials. 
Each dot in the scatter plot corresponds to the cost parameters 
of a trial, presented twice to a dyad (once to each participant 
as Actor 1). Red dots indicate that neither participant in a 
dyad chose object A1 in the trial; white dots: one of them 
chose object A1; and blue dots: both of them chose A1.  

Results 
Overall, the participants chose object A1 1981 times out of a 
total of 4000 trials. Further, at the individual level, most par-
ticipants’ object choices were not different from chance, sug-
gesting that they were not biased to pick up objects based on 
their shape (one-sample t-test comparing the group to chance: 
t(39) = 0.61,  p = .542, Cohen’s d = 0.10, 95% confidence 
interval for proportion .50 = [.48, .51]). 

Descriptive Statistics 
Cost-minimization Cost disparities strongly influenced ob-
ject choices, and the effects observed were a close qualitative 
match with the predictions of the Joint Cost-minimizing strat-
egy (see Figure 2). Overall, participants chose the object re-
sulting in a co-efficient action sequence 3235 times out of a 
total of 4000 trials (80.9%). The proportion of co-efficient 
choices was significantly higher than chance (.5) for each 
participant as well as in the whole sample (t(39) = 33.23,  p < 
.001, Cohen’s d = 5.26, 95% CI for proportion .81 = [.79, 
.83]).  
 
Fairness We found that participants made fair choices 2071 
times in the 4000 trials (51.8%). On the group level, the pro-
portion of fair choices was statistically significantly above 
the chance level (one-sample t-test of individual proportions 
to .5: t(39) = 2.62, p = .013, Cohen’s d = 0.41, 95% CI for 
proportion .52 = [.50, .53]). However, the choices were much 
more strongly influenced by Joint Cost-Minimizing concerns 
than by Fairness (see Figure 3). 
 

 
 

Figure 3. (a) Predictions for optimal responses according to a 
strategy that minimizes the unfairness of task distribution be-
tween co-actors (calculated assuming a Boltzmann policy 
with the temperature parameter fixed to k = 50). (b) Observed 
object A1 choices for all trials as a function of Fairness and 
Joint Cost Disparity.  

Parameter Estimations 
Models 1 and 2: Self Disparity, Other Disparity On their 
own, Actor 1’s individual cost disparities had a significant 
effect on the probability of their choosing object A1. The es-
timated mode of the posterior for μβ, the parameter denoting 
the group level weight for the cost disparity, was -.013, and 
its 95% highest density interval (HDI) was [-.016, -.010], 
which, crucially, excludes zero (Figure 4a). This means that  
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Figure 4. Posterior probability distributions of the μβ parameters (a-b) for Self and Other Disparities in the single predictor 
models (Models 1 & 2) and in the (c) combination model (Model 3), and (d) for Joint Disparity + Fairness (Model 5). Dashed 
vertical lines indicate the Mode μβ, the black horizontal lines represent the 95% highest density intervals of each distribution. 
 
a one px increase in the cost disparity for Actor 1 is expected 
to result in the odds of an A1 choice over a B1 choice de-
creasing by exp(Mode μβ) = .987. That is, for every 100 px 
(approx. 5.3 cm distance on the screen) increase in Self Dis-
parity, a 73% decrease in the odds is expected. 

The estimation of the μβ parameter’s posterior distribution 
for the Other Disparity model revealed that Actor 2’s cost dis-
parities also had a statistically significant effect on the odds 
of Actor 1’s object A1 choices, when considered on their own. 
The 95% HDI did not include zero ([-.010, -.005]), with the 
most credible value for μβ being -.008 (Figure 4b). Given the 
most credible estimates, the odds of choosing A1 over B1 
were estimated to decrease by exp(Mode μβ) = .993 for a one 
px increase in the Other’s cost disparity. This translates to a 
55% estimated decrease in the odds for every 100 px increase 
in Other Disparity. 

The results of these two single-predictor models suggest 
that both individual cost disparities influenced the probability 
of Actor 1 choosing object A1. 
 
Model 3: Self and Other Disparities Estimated μβ posterior 
distributions for the model containing both Self and Other 
Disparities were similar to the two single-predictor models’ 
(Figure 4c). The group-level means (μβ1 and μβ2) of the β1 and 
β2 coefficients for both Self and Other Disparities, respec-
tively, were distributed below zero (Self: 95% HDI for μβ1: [-
0.022, -0.016], Mode μβ1 = -0.019; Other: 95% HDI for μβ2: 
[-0.016, -0.010], Mode μβ2 = -0.013). Therefore, the odds of 

choosing A1 decreased when Self and Other Disparities in-
creased (odds ratio for a one px increase: exp(Mode μβ1) = 
0.982; exp(Mode μβ2) = 0.987). Increasing Self and Other dis-
parities by 100 px is expected to lead to an 85% and 73% 
decrease in the odds of picking A1 over B1, respectively. 

The 95% HDIs of the combination weights of the two cost 
disparities (at the group level) overlapped with one another, 
suggesting no difference between the magnitudes of the ef-
fects of the two parameters on decision-making. The esti-
mated standard deviations of the two group-level posterior 
distributions were not different from one another, or from the 
standard deviations of the single-predictor models. 

 
Models 4 & 5: “Minimizing unfairness” The 95% HDI of 
the posterior distribution of group-level μβ of the single-pre-
dictor Fairness model did not include zero ([-0.002, -
0.0004]), and the most credible β coefficient was Mode μβ = 
-0.001. These results suggest that Fairness weakly influenced 
the probability of Actor 1 choosing A1. In the combination 
model, we found a similar effect (Figure 4d), but with a much 
larger effect of co-efficiency (Joint Disparity: 95% HDI for 
μβ1: [-0.014, -0.011], Mode μβ1 = -0.013; Fairness: 95% HDI 
for μβ2: [-0.004, -0.001], Mode μβ2 = -0.002). The odds of 
choosing A1 over B1 decreased by exp(Mode μβ1) = 0.987 
with every one px increase of the Joint Disparity, whereas the 
odds decreased by exp(Mode μβ2) = 0.998 with a one px in-
crease in unfairness of the cost distribution. Increasing Joint 
Disparity and the Fairness asymmetries by 100 px is expected 
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to lead to a 73% and 18% decrease in the odds of picking A1 
over B1, respectively. The estimated standard deviations for 
the two parameters’ posterior distributions were not different 
from one another.  

Model Comparison 
To compare model fits to the data, we extracted Deviance In-
formation Criterion (DIC) for each model. We found that the 
Self + Other Disparities (i.e., Joint Disparity) model (Model 
3) fit the choices the best (DIC = 2467), while the separate 
Self (DIC = 3810) and Other Disparities (DIC = 4575) mod-
els (Models 1 & 2) fit them less well. The Fairness (Model 4) 
was a particularly ill-fitting model (DIC = 5539). A combi-
nation model of Joint Disparity + Fairness (Model 5) pre-
dicted the data second-best (DIC = 3205). 

Exploratory Analyses 
We conducted explorative analyses to see if participants 
learned to be co-efficient over time. The task was divided into 
eight blocks of 25 trials, between which participants were of-
fered the chance to take short breaks. To investigate a learn-
ing effect, we calculated the block-wise ratios of co-efficient 
object choices for each participant. We found no effect of 
time: the ratios of co-efficient choices were significantly 
higher than chance from Block 1, and we observed no statis-
tically significant changes over time (Kruskal-Wallis test: χ2 
= 8.11, df = 7, p = .323). 

The overall ratio of co-efficient choices we found suggests 
that in about 1 out of 5 trials, the decisions did not minimize 
the joint action costs. To examine the factors driving deci-
sion-making in these cases, we analyzed the subset of trials 
with jointly sub-efficient decisions (765 trials, Mdn = 19.5 
trials per participant, SD = 5.88). We found that in total, 
23.5% of the participants’ jointly sub-efficient choices mini-
mized Self costs only, while 15.3% of them minimized Other 
costs only, and 9% of the choices only ensured Fairness. The 
remaining trials were, by design, characterized by overlaps 
between predicted optimal solutions for Self cost minimiza-
tion, Other cost minimization and Fairness maximization: 
Choices in 30.6% of the jointly sub-efficient trials minimized 
both Self costs and unfairness, whereas in 16.2% of the trials, 
they minimized Other costs and unfairness. Due to the over-
laps in predictions, we cannot conclude which factors deter-
mined these choices. Finally, in 5.4% of the jointly sub-effi-
cient trials, participants’ choices were inefficient and unfair 
to everyone (1% of the full sample). To sum up, the pattern 
of non-co-efficient choices suggests that minimizing Self 
costs was a strong secondary decision strategy, followed by 
some considerations for ensuring Fairness.   

Additional Experiments 
In two further experiments, we tested if either self- or other-
cost minimization had an additional effect on choices beyond 
joint cost minimization. Joint Disparity was de-correlated 
from Self Disparity (Experiment 2) and from Other Disparity 

(Experiment 3). Both additional experiments adopted the 
same task as Experiment 1 and were indistinguishable from 
participants’ perspective.  

In the Self Disparity-only model in Experiment 2, the beta 
parameter did not differ from zero, indicating no effect of 
self-cost minimization. However, Joint Disparity as the pre-
dictor resulted in a non-zero modal beta value, comparable in 
magnitude to that of Experiment 1. Adding both predictors to 
the model did not change the results: Joint Disparity alone or 
with Self Disparity had a similar fit to the data.  

In Experiment 3, the Other Disparity model’s estimates 
were slightly above zero, indicating Actor 1’s tendency to de-
cide against minimizing Actor 2’s costs. However, Joint Dis-
parity as the sole predictor resulted in estimates that were 
similar to Experiments 1 and 2. Combining the two predictors 
revealed the same pattern of results as the single-predictor 
models: negative weighting for Joint Disparity, a positive one 
for Other Disparity. The combined model fit the data best. 

Discussion 
The current study addressed the computations that underlie 
joint cost-minimizing decisions in joint action planning. We 
tested the hypothesis that co-actors represent the dyad’s joint 
costs as a sum of the members’ individual costs.  

In a joint object matching task, participants made binary 
decisions between action plans with different associated 
costs. Costs were operationalized as the length of paths to be 
taken to collect objects on a touchscreen, and the disparities 
between the costs of the two action options available to each 
actor were hypothesized to play causal roles in the decision-
making process.  

We independently manipulated Self and Other Cost Dis-
parities on a trial-by-trial basis, and tested three logistic re-
gression models that included each cost parameter and their 
combination. The results of the parameter estimations sug-
gested that both individual cost disparities influenced the par-
ticipants’ decisions. We found the predicted negative rela-
tionship between an increase in the costs related to picking 
up an object and the probability of choosing it. The overlap 
for Self and Other Disparities and the parameter estimates of 
the combination model suggested that, while Self Disparity 
has a numerically larger effect, the size of this effect hardly 
differed between the two individual costs. This supports the 
hypothesis that on the group level, an additive combination 
of the two individual costs was minimized by the first actor’s 
decisions. This result was confirmed by two additional exper-
iments. 

We also tested an alternative hypothesis according to 
which action decisions are determined by the minimization 
of unfairness in the distribution of individual action costs. We 
found that although fairness did have an effect on decisions 
(~52% of choices were “fair”), this effect was much smaller 
than that of the joint costs (~81% of choices were co-effi-
cient). Joint cost minimization was a better predictor of deci-
sion-making than minimizing unfairness in task distribution. 
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It is worth noting, too, that in the minority of trials where the 
participants’ decisions were guided by strategies other than 
joint cost minimization (~19%), they primarily tended to 
minimize their own individual action costs. 

Regardless of the particular statistical dependencies be-
tween the cost parameters in the three experiments, models 
that predicted object choices based on the equally weighted 
sum of the co-actors’ individual action costs predicted deci-
sions with the highest accuracy. This is consistent with the 
way Kleiman-Weiner et al. (2016) operationalized coopera-
tive planning, and confirms that, as long as the individual 
costs can be estimated on the same scale (i.e., as proportional 
to distance in our case), joint costs are calculated as the sum 
of the individual costs in joint action planning.  

Future research should address the generalizability of this 
cost computation mechanism to different types of effort and 
different forms of joint action. Here, costs were operational-
ized such that they strongly correlated with the time required 
to complete a movement (path lengths). Time may serve as a 
common currency for comparing costs like physical and men-
tal effort (Potts, Pastel, & Rosenbaum, 2018), but we propose 
that the additive cost estimation mechanism should also be 
applicable in cases where time is not strongly correlated with 
costs. This proposal could be explored by operationalizing ef-
fort as fixed-duration movement in a viscous force field. 

Since our task consisted of many repeated interactions, we 
cannot make strong claims about the scope of the cost esti-
mation. The participants could have estimated costs locally in 
each trial, or over the whole experimental session, as trial-by-
trial joint cost minimization also minimized the total time 
spent in the lab. These hypotheses could be tested by fixing 
the total duration of an experimental session. Similarly, ma-
nipulating the payoff structure of the task could reveal the 
boundary conditions of joint cost minimization. Asymmetries 
in co-actors’ benefits from the task would influence the extent 
to which they prioritize joint over individual action costs. 

Investigating the factors that might modulate how individ-
ual costs are weighed in decision-making (e.g., social hierar-
chies, motor skill differences) will help us achieve a fuller 
understanding of the computations that people employ in co-
operative action planning. As a first step toward this goal, the 
present study provides clear evidence for an additive cost 
computation that enables efficient coordination in joint ac-
tion. 
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