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Abstract

From childhood, people routinely explain each other’s behav-
ior in terms of inferred mental states, like beliefs and desires.
In many cases, however, people can also infer the mental states
of agents whose behavior we cannot see, such as when we in-
fer that someone was anxious upon encountering a chewed-up
pencil, or that someone left in a hurry if they left the door open.
Here we present a computational model of mental-state attri-
bution that works by reconstructing the actions an agent took,
based on the indirect evidence that revealed their presence. Our
model quantitatively fits participant judgments, outperforming
a simple alternative cue-based account. Our results shed light
on how people infer mental states from minimal indirect evi-
dence, and provides further support to the idea that human The-
ory of Mind is instantiated as a probabilistic generative model
of how unobservable mental states produce observable action.
Keywords: Theory of Mind; Computational modeling; Social
cognition

Introduction
As social creatures, people have a natural capacity to detect
other agents (Neri et al., 1998; Scholl & Tremoulet, 2000;
Heider & Simmel, 1944), and infer their goals, beliefs, and
desires based on how they act (Woodward, 1998; Repacholi
& Gopnik, 1997; Aboody et al., 2018). In some cases, how-
ever, people can even infer the mental states of agents whose
behavior we did not get the opportunity to see. Imagine, for
instance, hiking through a national park and encountering a
stack of rocks, about two feet tall. Even if you had never seen
something like this before, you would quickly realize that
someone must have built it, you would have a sense of how
they achieved it (perhaps picking up rocks that they found
nearby and throwing them haphazardly onto a pile), and you
would even have a reasonable guess as to why they did so (to
help hikers know that they are on the right path).

Our ability to make inferences about others’ minds is sup-
ported by an abstract theory-like understanding of how unob-
servable mental states relate to observable behavior—a The-
ory of Mind (Gopnik et al., 1997; Wellman, 2014). Recent
work suggests that Theory of Mind is structured around an as-
sumption that agents act to maximize utilities. That is, we ex-
pect agents to maximize their subjective rewards while mini-
mizing the costs that they incur (Jara-Ettinger et al., 2016; Lu-
cas et al., 2014). Under this account, mental-state inference
is a process of identifying the costs (agents’ competence and
dispreferences) and rewards (agents’ desires) under which the
observed behavior maximizes the underlying utility function.

This approach thus formulates Theory of Mind as transform-
ing observable actions into unobservable mental states. Yet,
as the example above shows, we can often infer the mental
states of agents whose behavior we cannot see. What princi-
ples guide these types of inferences?

Computational theories of social cognition have often ar-
gued that Theory of Mind is instantiated as a generative
model that allows us to sample utility-maximizing action
plans as a function of different hypothetical mental states
(Jara-Ettinger et al., 2019, 2016; Baker et al., 2017, 2009;
Jern et al., 2017). Building on this work, we propose that in-
ferences about the mental states of unobservable agents are
supported by a type of event reconstruction, where, upon see-
ing indirect evidence of someone’s presence, we jointly infer
the mental states and corresponding actions that explain how
the observable evidence arose.

While related research has found that people can infer each
other’s personality based on indirect evidence (such as see-
ing someone’s bedroom; Gosling et al., 2002), to our knowl-
edge, no work has analyzed people’s capacity to infer mental
states from indirect evidence. In this paper we present a com-
putational model of mental-state attribution from agent-less
physical scenes. Given indirect evidence that someone was
present, our model infers what the agent was doing through
a generative model of how mental states produce actions and
how actions leave observable evidence. In Experiment 1, par-
ticipants saw a single pile of cookie crumbs left in a room
and were asked to infer the agent’s entry point and goal (see
Fig. 1). We show that our model predicts participant infer-
ences with quantitative accuracy. We contrast our model with
a simple cue-based account trained to fit participant judg-
ments through superficial features of the environment (such
as the relative distance between the indirect evidence and the
possible goals). We find that our model significantly outper-
forms the cue-based account, even though the latter is directly
trained on participant data. Our model predicts that people
should not only be able to infer the goals and actions of an ab-
sent agent, but also the number of agents that may have been
in a room, based on the indirect evidence. We test this predic-
tion in Experiment 2. Once again, we find that participant’s
confidence about the number of agents that were in a room is
quantitatively predicted by our model. Combined, our results
suggest that people can quickly reconstruct agents’ behavior
from minimal indirect evidence that reveals their presence.
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Computational Framework
To make our focus concrete, consider a situation like the ones
shown in Fig. 1a-b. Each of these displays represents a room
with three possible goals (A in blue, B in orange, and C in
green), two different doors (1 at the top in both rooms and 2
on the left and bottom, respectively), a set of walls (shown in
dark grey), and a small pile of cookie crumbs revealing that
someone was previously in this room. Although we cannot
see where this agent came from, what goal they were pursu-
ing, or the actions that they took, the cookie crumbs nonethe-
less contain information that we readily extract. In Fig. 1a, we
can infer that the agent was clearly pursuing goal C, despite
not being able to tell which door they came from. In Fig. 1b,
the cookie crumbs reveal that the agent entered through door
1, but is unclear whether they intended to pursue goal A or
goal C. Our computational model aims to explain how we
performed these inferences.

Our model builds on past work that formalizes mental-state
attribution as Bayesian inference over a generative model
of utility-maximizing action plans (Baker et al., 2017; Jara-
Ettinger et al., 2019). In our model, however, rather than eval-
uating unobservable mental states against observable actions,
we perform a joint inference over mental states and actions
that, combined, explains the visible indirect evidence.

Formally, we model the environment as a gridworld, where
the possible states of the world are given by the different po-
sitions in space that an agent can occupy. At each time step,
we assume that the agent can move in any of the four cardinal
directions, and that these actions successfully move the agent
in their intended direction (except when the agent attempts
to cross a wall). We further assume that all actions incur a
cost of 1, and that reaching each reward location yields an
unknown reward (set as a uniform distribution over the range
0−100).

Given a static scene s (a gridworld with a set of goals,
doors, walls, and a pile of cookie crumbs), the posterior prob-
ability that an agent entered through door d and took trajec-
tory t = (~s,~a) (a sequence of pairs of states and actions that
the agent took) to complete goal g is given by

p(t,g,d|s) ∝ `(s|t,g,d)p(t|g,d)p(g)p(d) (1)

obtained by combining Bayes’ theorem with the chain rule.
Here, `(s|g, t,d) is the likelihood of observing scene s if the
agent indeed completed g by taking trajectory t, defined as
1
|t| if the pile cookie crumbs lie within the trajectory (to ac-
count for the uniform probability of the agent dropping them
anywhere along the path), and 0 otherwise.

p(t|g,d) is the probability that the agent would take tra-
jectory t if they entered from door d with the intention to
fulfill goal g. This probability was set to 0 if the trajectory
did not begin at door d. To implement the expectation that
agents are more likely to complete their goals efficiently (and
hence maximize their utilities; Csibra et al., 2003), we used
a Markov Decision Process (MDP)—a planning framework
that makes it possible to compute the exact action plan or

policy that maximizes an agent’s utility function (Bellman,
1957). Classical MDPs produce a single utility-maximizing
policy. In our model, we instead used a probabilistic MDP
that creates a probability distribution over all possible action
plans, obtained by softmaxing the value function (see Jara-
Ettinger et al., 2019, for implementation details). Here we
used the softmax parameter τaction = 0.15, which was set prior
to data collection. The probability of a trajectory, given a goal
and a door, is thus given by

p(t|g,d) =
N

∏
i=1

p(ai|si,g) (2)

where N is the length of the action plan and p(ai|si,g) is the
probability of taking action ai in state si, where the state se-
quence is derived from trajectory t.

Next, p(g) is the prior distribution over goals. This proba-
bility depends both on the costs and rewards associated with
the goal. To compute this term, we softmaxed the expected
utility associated with each goal, given by the expected re-
ward minus the expected navigation cost (using softmax pa-
rameter τgoal = 0.10; also set prior to data collection). Fi-
nally, p(d) is the prior distribution over which door the agent
entered through, which we set as a uniform distribution.

We implemented this inference procedure through Monte
Carlo sampling, where we sequentially sampled entrance
points, goals, and trajectories. Each model prediction was
obtained by sampling 1000 combinations of entrance points
and goals, and 1000 trajectories conditioned on the selected
entrance and destination. Fig. 1c-d visualize model posterior
inferences. Each line corresponds to a sample from the pos-
terior distribution, color coded to indicate time. This shows
how our model reconstructs the agents’ probable behavior to
determine where they came from and what goal they were
pursuing.

Experiment 1
In Experiment 1 we tested our model in a task where people
had to infer which goal an agent was pursuing and where they
came from, all from a single piece of indirect evidence about
their presence.

Participants
40 U.S. participants (as determined by their IP address) were
recruited using Amazon Mechanical Turk (M = 37.03 years,
SD = 11.20 years).

Stimuli
Stimuli consisted of 23 gridworld images, like those in
Fig. 1a-b (see https://tinyurl.com/syt4q5h for full
stimuli). Each gridworld was 7-by-7 squares in size and rep-
resented a room that contains three goal squares (A in blue,
B in orange, and C in green), up to three doors (labeled 1, 2,
and 3), and a pile of cookie crumbs. The goals were always
in the same corners, but the position of the doors and the pile
of cookie crumbs varied between gridworlds. In addition to
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Figure 1: (a-b) Example stimuli from Experiment 1. Poten-
tial goals are positioned in the corners, labeled alphabetically,
and color coded. Doors are shown in yellow and coded nu-
merically. Walls are shown in dark grey. Each trial included
a set of cookie crumbs positioned in a part of the room. (c-
d) Visualization of the underlying event reconstruction per-
formed by our computational model for (a) and (b), respec-
tively. Each line represents an inferred possible path, color
coded in time, moving from cool to warm. For visibility
purposes, only paths with probability greater than 0.001 are
shown (although our model is probabilistic, inefficient paths
do not appear here because their probability did not surpass
the visualization threshold).

these three features, a subset of trials included walls (shown
by the dark grey squares in Fig. 1a-b) that agents could not
walk through.

Our stimuli set was designed to capture different types
of inferences while also controlling for features that simple
heuristics could exploit (i.e., ensuring that the target goal was
not always the one closest to the cookie crumbs, and that it
could not be determined by projecting a straight line that in-
tersected the entrance and cookie crumb location). We began
by considering four different possible inference patterns: full
certainty (assigning probability close to 1 to a hypothesis; D
trials), full negative certainty (assigning probability close to 0
to a hypothesis, while also not having full certainty over two
remaining hypotheses; N trials), partial certainty (assigning a
higher probability to one of the hypotheses; P trials), and no
certainty (assigning a uniform distribution to the hypothesis
space; U trials).

We first designed seven single-door trials that captured
each of these inference patterns in goal inference (two D, N,
and P trials, and one U trial; Fig. 3a). We then built 16 ad-
ditional trials by combining every possible inference pattern
for the goal the agent was pursing and the entrance that they
took (Fig. 3b).

r = 0.94 (95% CI: 0.91 − 0.96)
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Figure 2: Experiment 1 results. Each point corresponds to a
judgment, with model predictions on the x-axis and average
participant judgments on the y-axis. Color indicates inference
type and the dotted line shows the best linear fit with 95%
confidence bands (in light grey).

Procedure
Participants read a brief tutorial that explained the logic of the
task. After learning how to interpret the images, participants
were told that agents were equally likely to enter from any the
possible doors (to prevent people from assuming that agents
intentionally pick doors that are closest to their desired goal)
with the aim of going directly to one of the three goals (to
remove the possibility that the agent pursued multiple goals,
or wandered aimlessly before selecting one). After the intro-
duction, participants completed a questionnaire that verified
that they had read the instructions. Participants that failed at
least one question were redirected to the beginning of the in-
structions and those that failed the questionnaire twice were
not permitted to participate in the study.

Participants completed all 23 trials in a random order.
In each trial, participants had to answer a multiple-choice
attention-check question (“Which corner is farthest from
Door 1 (there may be more than one)?”) and infer the agent’s
goal (“Which corner is the person going for?”) using three
continuous sliders, one for each goal (each ranging from 0,
labeled as “definitely no”, to 1, labelled as “definitely”). Tri-
als with at least two doors included a third question asking
participants to infer the agent’s entrance point (“Which door
did they come from?”) using one slider per door. Partici-
pants were allowed to submit their responses for each trial
only when they correctly answered the attention-check ques-
tion. Otherwise, participants were told to “please pay atten-
tion and try again.”

Results
Participant judgments were first normalized within each trial
(such that every distribution over goals or doors added up
to 1) and then averaged across participants. Fig. 2 shows
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Figure 3: Detailed results for Experiment 1. From top to bottom, each row corresponds to the D, N, P, and U trials for goal
inferences. (a) Results for trials that only had one door. (b) Results for trials that had more than one door. From left to right,
each column of plots corresponds to the D, N, P, and U trials for door inferences. The goals A, B, and C are indicated by the
blue, orange, and green squares, respectively. The doors are sequentially numbered in a clockwise fashion, with door 1 starting
from the top (or from the right if there is no door there). Red lines represent average participant judgments and blue lines show
our model’s predictions. All participant judgments have 95% bootstrapped confidence intervals.

the results from Experiment 1. Overall, our model showed
a correlation of r = 0.94 with participant judgments (95%
CI: 0.91− 0.96), and the strength of the model fit was sim-
ilar when looking only at goal inferences (r = 0.95, 95%
CI: 0.93− 0.97) and door inferences (r = 0.92, 95% CI:
0.86−0.95). Fig. 3a-b shows our model results split by trial,
showing the tight correspondence between our model’s pre-
dictions and participant judgments.

One alternative possibility is that participants judgments
were driven by superficial features of the stimuli, rather than
by performing Bayesian inference over a generative model
of event reconstruction. We tested this possibility through a
multinomial logistic regression that predicts participants’ dis-
tribution over goals as a function of the distance between the
pile of cookie crumbs and each goal, the average distance be-
tween the pile of cookie crumbs and each door (as opposed to
using the distance to each door, allowing us to use the data
from all trials since our stimuli varies on door count), the

number of doors, and all of their interactions. To train this
regression, we transformed participant judgments into a one-
hot vector, marking 1 for the goal with the highest probabil-
ity and 0 for the rest, and implemented LASSO regularization
(Tibshirani, 1996) to avoid overfitting. To test this regression,
we performed leave-one-out cross-validation (LOOCV).

Even though this alternative model had access to the qual-
itative structure of participant judgments, it nonetheless pro-
duced a correlation of r = 0.48 (95% CI: 0.29−0.63), which
was substantially lower than the one of our model (∆r = 0.46;
95% CI: 0.33− 0.66). These results show that, while super-
ficial features can capture the broad structure of participant
judgments, they fail to do so at our model’s level of granular-
ity.

Experiment 2
Experiment 1 shows that people can infer an agent’s goal and
entrance from a single piece of indirect evidence about their
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Figure 4: (a-d) Example stimuli from Experiment 2 for D1,
P1, P2, and D2 trials, respectively. Potential goals are posi-
tioned in the corners, labeled alphabetically, and color coded.
Doors are shown in yellow and coded numerically. Walls are
shown in dark grey. Each trial included two piles of cookie
crumbs positioned in various parts of the room.

presence. In Experiment 2, we test a further prediction of our
account. If our model of event reconstruction is correct, then
people should not only be able to infer an agent’s probable
actions, but also infer the number of agents that may have
been in a given scene.

Participants

40 U.S. participants (as determined by their IP address) were
recruited using Amazon Mechanical Turk (M = 37.63 years,
SD = 11.94 years).

Stimuli

Our stimuli consisted of 15 gridworld images that were iden-
tical to those in Experiment 1 with the difference that each
trial has two piles of cookie crumbs (see Fig. 4 for examples;
https://tinyurl.com/syt4q5h for full stimuli). As in Ex-
periment 1, our stimuli set was designed to capture different
types of inferences that our model supports. We considered
five different possible inference patterns: full certainty that
one agent was in the room (assigning probability close to 1 to
a hypothesis; D1 trials), partial certainty that one agent was
in the room (assigning probability between 0.5 and 1 to a hy-
pothesis; P1 trials), full uncertainty whether it was one or two
agents in the room (assigning probability close to 0.5 to a hy-
pothesis; UN trials), partial certainty that two agents were in
the room (assigning probability between 0 and 0.5 to a hy-
pothesis; P2 trials), and full certainty that two agents were
in the room (assigning probability close to 1 to a hypothesis;
D2 trials). We built three different stimuli for each inference
pattern.

Procedure
The procedure was nearly identical to Experiment 1. After
reading a cover story that explained that their task was to infer
if one or two agents had been in the room, participants com-
pleted a questionnaire to ensure they read the instructions.
As in Experiment 1, only participants that answered all of the
questions correctly were given access to the experiment. Par-
ticipants that got at least one question wrong were re-directed
to the beginning of the tutorial and given a second chance to
complete the inclusion questionnaire.

Participants completed all 15 trials in a random order. In
each trial, participants answered a multiple-choice attention-
check question (“Which corner is the farthest walk from Door
1? If there is more than one correct answer, just choose one of
them.”) and our key question (“How many people were in the
room?”) using a continuous slider (ranging from 0, labelled
as “definitely one”, to 1, labelled as “definitely two”). As
in Experiment 1, participants were allowed to submit their
responses for each trial only when they correctly answered
the attention-check question. Otherwise, participants were
told to “please pay attention and try again.”

Results
Participant judgments were averaged across trials and com-
pared against our model’s predictions. To obtain these pre-
dictions, we computed the probability that two agents were in
the room by first computing (1) the likelihood that two trajec-
tories explain the scene (`(s|t1, t2,g1,g2,d1,d2)) and (2) the
likelihood that one trajectory explains the scene (`(s|t,g,d);
from Eq. 1) and then normalizing the first likelihood using
both terms.

We computed the likelihood that two trajectories explain
the scene by modifying our generative model to sample two
sets of entrance points, goals, and trajectories at a time instead
of one. Similar to the likelihood term in Eq. 1, this likelihood
is defined as 1

|t| if both piles of cookie crumbs lie within both
trajectories—specifically, the set union of the set of states that
define each trajectory—and 0 otherwise.

Fig. 5 shows the results from Experiment 2. Participant’s
relative confidence about the number of agents in the scene
was quantitatively similar to our model’s predictions, yielding
a correlation of r = 0.78 (95% CI: 0.45−0.92). Like in Ex-
periment 1, we proposed the alternative possibility that par-
ticipant judgments were driven by superficial features of the
stimuli rather than invoking Bayesian inference over a gener-
ative model of event reconstruction. We tested this possibility
through a linear regression that predicts participants’ distribu-
tion over the number of agents they thought were in the room
as a function of the distance between each goal and each pile
of cookie crumbs, the average distance between each pile of
cookie crumbs and the doors, the number of doors, and all
their interactions. We trained and tested this regression us-
ing LOOCV and implemented LASSO regularization to avoid
overfitting.

Even though this alternative model had access to the qual-
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itative structure of participant judgments, it nonetheless pro-
duced a correlation of r = −0.06 (95% CI: −0.47− 0.61),
which was substantially lower than the one of our model
(∆r = 0.83; 95% CI: −0.13−1.34). These results extend our
findings in Experiment 1, suggesting that people can not only
infer what an agent may have done from indirect evidence,
but also the number of agents that may have been present in
the area.

Discussion
Research on human action understanding has historically fo-
cused on how we infer the goals and mental states of agents
whose behavior we are observing. Our results show that our
capacity to reason about others goes beyond face-to-face in-
teractions. In Experiment 1, we showed that people can infer
an agent’s desires (where an agent was going) and past ac-
tions (where an agent came from) from just a single piece of
indirect evidence about their presence. In Experiment 2, we
showed that people can even infer the number of agents that
were in a room, all from indirect patterns that reveal what
may have happened.

Here we focused on inferences we make upon recognizing
that an agent was present. Thus, our work does not speak to
how we recognize this evidence in the first place. We do not
know whether our ability to identify evidence that reveals the
presence of an agent is guided by similar inferences to those
from our model, or by more superficial visual features (such
as structure or statistical rarity). We are currently investigat-
ing this question.

Our computational model formalized these inferences as
the process of reconstructing the goals and behavior that can
explain the indirect observable evidence. Our model’s quan-
titative fit with participant judgments, as well the failure of
our alternative models in both experiments (despite being
trained on participant judgments), suggests that people were
performing similar computations. Nonetheless, neither of our
experiments directly tested participants’ ability to explicitly
reconstruct an agents’ path. We are currently testing this abil-
ity to see if participants do so in a way similar to our model.

While our model was able to quantitatively predict partic-
ipant judgments in both experiments, the model fit was no-
tably higher in Experiment 1 (Fig. 2) relative to Experiment 2
(Fig. 5). Interestingly, the amount of computation necessary
for Experiment 2 is substantially larger than the one neces-
sary for Experiment 1, as it requires reconstructing multiple
possible paths that combined explained the observed scene.
In this sense, the lower fit in Experiment 2 may be additional
evidence that participant inferences are indeed supported by
some form of event reconstruction. In current work, we are
testing if participant errors are predicted by the number of
Monte Carlo samples necessary to approximate our model’s
normative inference.

While our focus here was on human adults, one open ques-
tion is when and how this ability develops. Related research
has shown that even infants can reason about other agents’
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Figure 5: Experiment 2 results. Each point corresponds to a
trial, with model predictions on the x-axis and average par-
ticipant judgments on the y-axis. Color indicates inference
type and the dotted line shows the best linear fit with 95%
confidence bands (in light grey).

goals, preferences, and desires (Wellman, 2014), and that
they can even infer the presence of an agent from indirect
evidence (Saxe et al., 2005; Newman et al., 2010). Nonethe-
less, it is unknown if infants can combine these abilities to
simultaneously detect the presence of an agent from indirect
environmental evidence, and infer the corresponding mental
states that explain how this evidence arose.

Overall, our results show the sophistication of human so-
cial intelligence. Beyond being able to read the mental states
of agents that we are interacting with, we can also infer the
mental states of agents we have never encountered, just from
minimal indirect evidence that reveals their presence. Re-
searchers have long argued that humans are unique in their
ability to reason about and navigate the social world (Her-
rmann et al., 2007). Our work shows that this ability is not
confined to social interactions, but fundamentally affects how
we reason about the physical world, allowing us to see mean-
ing embedded in physical structures, like a pile of rocks,
where other animals see merely just that: a pile of rocks.

Acknowledgments
We thank Alan Jern for useful comments. This work was
supported by a Google Faculty Research award. This mate-
rial is based upon work supported by the Center for Brains,
Minds, and Machines (CBMM), funded by NSF-STC award
CCF1231216.

References
Aboody, R., Huey, H., & Jara-Ettinger, J. (2018). Success

does not imply knowledge: Preschoolers believe that ac-
curate predictions reveal prior knowledge, but accurate ob-
servations do not. In Cogsci.

472



Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B.
(2017). Rational quantitative attribution of beliefs, desires
and percepts in human mentalizing. Nature Human Be-
haviour.

Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action
understanding as inverse planning. Cognition.

Bellman, R. (1957). A markovian decision process. Journal
of mathematics and mechanics, 679–684.
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