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Abstract

Prediction problems vary in the extent to which accuracy is
rewarded and inaccuracy is penalized—i.e., in their loss func-
tions. Here, we focus on a particular feature of loss functions
that controls how much large errors are penalized relative to
how much precise correctness is rewarded: convexity. We
show that prediction problems with convex loss functions (i.e.,
those in which large errors are particularly harmful) favor sim-
pler models that tend to be biased, but exhibit low variability.
Conversely, problems with concave loss functions (in which
precise correctness is particularly rewarded) favor more com-
plex models that are less biased, but exhibit higher variabil-
ity. We discuss how this relationship between the bias-variance
trade-off and the shape of the loss function may help explain
features of human psychology, such as dual-process psychol-
ogy and fast versus slow learning strategies, and inform statis-
tical inference.

Keywords: judgment; decision-making; dual-process theory;
statistics

Introduction

”That’s the difference between us, Allison. You wanna
lose small; I wanna win big.” - Harvey Specter, Suits

You’re coaching a team in the “Bias-Variance Darts” cham-
pionship. In Round 1 of the competition the high-scoring re-
gions of the target are large, so anything close to the center of
the board tends to win a lot of points. In Round 2 the high-
scoring region is small, so unless you hit very close to the
center, you won’t get any points at all. You’ve got two play-
ers on your team. Lefty’s darts always hit in the same small
area just a few inches to the left of the center. Loosey’s darts
fall all over the place, in a wide scatter centered on the middle
of the board. Which player should play which round?

As Figure 1 shows, there is a pretty clear answer to this
problem. Lefty should play Round 1: because he’s only
a few inches off he’ll usually be “close enough” on a dart
board where close enough counts, and he’s never too far off.
(Loosey is a bad choice because she sometimes throws so far
off that she gets very bad scores.) Meanwhile, Loosey should
play round 2: although she’ll often get no points, at least it is
possible for her to hit the bulls eye and (occasionally) score
points. Since Lefty is almost always off by a few inches,
chances are far too small that he’ll ever score a point at all.

In other words, before choosing a dart throwing strategy,
we must first ask the following question: How close is “close
enough” to count?
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Figure 1: Suppose that a prediction problem is like a game
of darts, and an estimation strategy is like a dart-thrower.
A high-bias/low-variance strategy generates predictions (like
Lefty’s throws) with systematic errors that are small but con-
sistent. A low-bias/high-variance strategy generates predic-
tions (like Loosey’s throws) with unsystematic errors that
may be small or large. Now suppose that we apply a loss
function to these errors, specifying how costly they are to a
decision-maker (analogous to the points earned on the darts
board). We find that when loss is convex—that is, one’s
goal is to avoid being very wrong—this tends to favor a
high-bias/low-variance strategy. Conversely, when loss is
concave—that is, one’s goal is to be precisely right—this
tends to favor a low-bias/high variance strategy. In other
words, the structure of the loss function dictates the optimal
bias-variance trade-off.

Bias-variance Trade-off

Most of life isn’t a dart-throwing competition, but the trade-
off between the two strategies illustrated above is analogous
to a ubiquitous problem in learning, prediction and decision-
making. When making predictions based on a limited sample
of data, we face a dilemma about the optimal model to use to
make these predictions. Models that are good at finding true
regularities are also more likely to overfit noise in the training
data. Conversely, models that are less responsive to noise are
more likely to miss out on meaningful regularities (underfit).

This dilemma between underfitting and overfitting is often
referred to as the “bias-variance trade-off” (Geman, Bienen-
stock, & Doursat, 1992). A high-bias model systematically
misses the target of prediction, on average. However, because
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they are simpler, models with more bias tend to be more ro-
bust to fluctuations in the training data they receive. They are
systematically off-target, but consistent in how much they’re
off-target. In this sense they are like Lefty, whose throws are
biased on average (to the left), but are highly consistent in
their degree of error (slight—rarely egregious). In contrast,
the predictions of a high-variance model are highly variable,
based on the particular training data the model receives. This
variability can lead to large unsystematic errors, even if bias
(that is, systematic error) is low. In this sense they are like
Loosey, whose throws are unbiased (i.e., the spatial average
is the true center of the board), but exhibit large and incon-
sistent errors (i.e., often fall far from the center). Typically,
there’s some optimal level of model complexity that balances
the relative magnitudes of systematic and unsystematic pre-
diction errors.

Bias-variance tradeoffs are widely explored in statistics
and machine learning. For example, in a regression prob-
lem in which a model is trying to uncover some relationship
between known features and some real-valued output, there
is a trade-off between fitting a complex model that might in-
clude many features or complex functional relationships (e.g.,
higher-order polynomials) and fitting a sparser model. The
average prediction of the complex model is more likely to be
close to the target, but individual predictions fluctuate more
in response to noise in the training data. This overfitting prob-
lem has inspired techniques, like ridge and Lasso regression,
that penalize complexity.

More generally, an ideal model must balance how much it
pools information across times, categories, or contexts. In a
dynamic system like the stock market, older information will
generally be less relevant than newer information, but biasing
predictions with this older information may usefully reduce
the risk of detecting false patterns in recent data. In nested
data structures, in which observations are stratified by groups
or individuals, it can be useful to use information about one
group to learn about another, even if this biases inference. Of
course, too much of this sort of pooling may cause the model
to miss out on important differences between groups.

Bias-variance trade-offs in human psychology

Just like artificial systems, humans routinely encounter the
bias-variance trade-off. For instance, when making decisions,
we face the choice between using simple heuristics or relying
on complex models. Should we buy the most popular model
of car or consider all the variables that could determine which
specific model would be best for us? Should we take the route
that has usually been fastest in the past or consider all the
variables that might affect traffic patterns today? Should we
simply hire employees who come from our alma mater or
carefully consider all the information in their dossiers?

One dimension of this problem has been exhaustively ex-
plored elsewhere, and we set it aside here: heuristics are usu-
ally cognitively “cheap”, while reasoning over complex mod-
els can sometimes be cognitively demanding (Kahneman,
2011; Dolan & Dayan, 2013). This is true, but it is not our
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concern.

Rather, even setting aside computational demands, the
bias-variance trade-off may even help explain how—and
when—simple heuristics can sometimes outperform more
complex reasoning strategies (Brighton & Gigerenzer, 2015).
In other words, simple “biased” models may not just be more
efficient; they can actually be more accurate. Gigerenzer and
colleagues (1999; 2007) have documented several real-world
cases in which a trivial strategy, like investing one’s money
equally among several candidate funds, outperforms compli-
cated estimation procedures, like the mean-variance analy-
sis used in Modern Portfolio Theory. These biased heuris-
tics dominate other methods particularly when data is lim-
ited, which may happen for one of two reasons. First, data
is simply sparse in nature, and even if we wanted to acquire
it, we couldn’t. Second, data is, in principle, available, but
difficult to generate. This latter problem is particularly preva-
lent in human decision-making, which often relies on costly
sampling-based algorithms (Stewart, Chater, & Brown, 2006;
Vul, Goodman, Griffiths, & Tenenbaum, 2014). If samples
from a generative model take time to retrieve, the decider
must act with limited information.

We take up a key question: under what circumstances
should simpler models (e.g., estimating the value of a car
according to the single feature of its market share) outper-
form more complex models? As we describe below, an im-
portant part of the answer is the structure of the costs associ-
ated with error. If small errors are benign but large errors be-
come catastrophic (as in Dart Board 1), a simple model (high-
bias, low variance) is typically favored. When such a model
is employed, small errors will be frequent, but they cost little;
large errors will be rare. On the other hand, if exact preci-
sion is rewarded and all errors (large or small) are roughly
equal in value (as in Dart Board 2), a complex model (low-
bias, high variance) is typically favored. Like playing the
lottery, employing such a model makes it possible to at least
occasionally reap the rewards of an accurate prediction. As
we describe in the general discussion, this relationship pro-
vides new insight into when we should expect humans to rely
on heuristic-like versus deliberative forms of cognition. Our
next goal is to develop these ideas more precisely.

Convexity of Loss

Many methods in machine learning have been developed to
find the optimal balance between bias and variance. A clas-
sic paper provides a general formulation of the bias-variance
trade-off for all symmetric loss functions (James, 2003), in-
cluding those that we will discuss. Here, we aim to extend
this work—and apply it to cognitive science—by noting how
a particular structural feature of loss functions that arise in
decision-making influences the optimal allocation of bias ver-
sus variance. As the introductory example about darts illus-
trates, the ideal amount of systematic vs. unsystematic error
that a model should strive for will depend on the shape of
the reward function. The optimization problem in the simple



darts example can be characterized as a maximization of the
probability of hitting any of the five reward regions multiplied
by their point values. This is a very simple payoff scheme. In
the real world, however, payoffs can be arbitrarily complex.
Thus, we turn our attention to a property that we call “con-
vexity”.

(Although, strictly speaking, functions are defined categor-
ically as either convex or not, we treat convexity as a graded
property—similar to its use in some branches of finance. In
particular, for all the functions we will discuss except one,
we can simply characterize convexity as the magnitude of the
function’s second derivative for values of x > 0. Because
these functions are symmetric, we need only consider posi-
tive values.)

Keeping with the convention in statistics and machine
learning of characterizing payoffs in terms of loss functions
to be minimized, we consider several continuous, symmetric
functions that vary in their curvature. Convex loss functions,
such as the commonly used quadratic (L2) loss, penalize er-
rors at an accelerating rate. For example, supposing that Dart
Board 1 (convex loss) is 10cm in radius, the payoff difference
between being 1cm off and 4cm off is small, whereas the dif-
ference between being 6cm off and 9cm off is large. Concave
functions (like Board 2), on the other hand, have the opposite
property: errors near the target matter a lot, while errors far
from the target matter relatively less.

In the real world, most loss functions are neither com-
pletely convex nor completely concave. For example, if a
wealthy investor makes a risky leveraged bet on a speculative
stock, his losses may be initially convex if the stock begins
to fall and he loses more and more of his money at an ac-
celerating rate. At some point, though, the investor will go
broke, and thus, further losses will not hurt him as much. In
other words, the loss function has a sigmoidal shape, which
is initially convex and then becomes concave.

Nevertheless, for simplicity, we focus mostly on loss func-
tions that are globally convex or concave. These functions
can be used to approximate locally optimal model behavior.
Roughly speaking, in contexts with convex losses it is essen-
tial to avoid major errors, as the costs of major errors out-
weigh the gains from precise accuracy. In the limit, a loss
function of this sort turns into a version of the darts game in
which you only need to hit the dartboard to win the game.
With these types of payoffs, you want to avoid missing the
board, and therefore, limiting variance is crucial.

In contexts with concave losses it pays to focus on preci-
sion, as even minor deviations from the target matter a lot.
In the limit, the payoffs look similar to a version of the darts
game in which you need to hit the center of the board exactly
in order to get reward. In these cases, a model that is con-
sistently biased away from that target will incur heavy losses.
Meanwhile, occasional large unsystematic errors will not be
much costlier than small errors. Thus, unsystematic variance
may be relatively less harmful than systematic bias. In other
words, it is better to miss badly often but hit exactly some-
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times than to always miss by a small amount.

Simulation Results

To evaluate the trade-off between bias and variance, we con-
sider a simplified setup in which prediction error is Gaussian,
and the target y is deterministic. Let f denote a given model’s
prediction. Then we suppose that

f=y~ (B,

In this Gaussian formulation of prediction error,  denotes the
bias, and 62 denotes the variance. Since we stipulate that y is
deterministic, there is no irreducible error, and the combina-
tion of f and & fully determines prediction error.

We consider a few types of loss functions, which vary pro-
portional to the absolute magnitude of error. Let x = f —y.
We consider the following functional forms:

L(x;n) = |x]" (Power)
L(x;c) = clog|x] (Log)
L(x;c) = M (Exp)
L(xic) = —e (Mass)

The shapes of these functions, for select parameters, are
shown in Figure 2.

Power 2 Power 1 Power 2 Power 3

YV
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Figure 2: Example loss functions.

We focus primarily on the set of power functions, as the
exponent 7 in these functions most directly modulates con-
vexity. Loss is convex when n > 1 and concave when n < 1
(i.e., the second derivative is positive and negative for x > 0,
respectively). We also consider exponential and logarithmic
functions, which are well-known convex and concave func-
tions, respectively. Finally, we consider the local mass func-
tion (Brainard & Freeman, 1997), which is akin to an inverted
bell curve. This function has the interesting property that it
rewards some degree of precision near the target, but is also



almost completely insensitive to the relative magnitudes of
large errors. In mathematical terms, its second derivative is
positive for small values of x > 0 (indicating convexity), but
negative for larger values of x (indicating concavity). It per-
haps maps most closely to many real-world contexts in which
reasonable—though not perfect—precision near the target is
important, but losses are capped for larger errors (Vul et al.,
2014).

Now we consider how expected loss varies as a function of
B and 6. We use a Reimann approximation on the bounded
interval [-50, 50] to calculate the expected loss:

[ L0slp.oa

where f(x|B,6?) is the normal density. Standardized ex-
pected losses are plotted in contour plots, where color indi-
cates the magnitude of loss, as well as line plots, where these
losses are plotted as a function of & (square root of variance)
for different B values (Figures 3 and 4).

The green line in each of the contour plots displays the
optimal combination of B and ¢ that satisfy the constraint that
B+ o = C, where C is a constant ‘cost’ that is varied. This
line, which runs perpendicular to the contour lines, shows the
relative benefits of minimizing bias versus variance. A line
with a slope that’s shallower than 6 = 3 indicates that one unit
of bias is less costly than one unit of square-rooted variance,
and vice versa for lines steeper than 6 = 3. (Note that the y-
axis of the contour plots starts at ¢ = 1 while the x-axis starts
atf=0.)

Results from a set of power losses with different exponents
(n) are shown in Figure 3. As can be seen by the green lines,
the relative harm from  vs. © decreases with n. For n =
2, the green line is simply the identity line, B = o, which is
implied by the well-known bias-variance decomposition for
squared error, in which one unit of squared bias produces as
much expected loss as one unit of variance (James, Witten,
Hastie, & Tibshirani, 2013). However, the more convex loss
function with n = 3 is relatively more harmed by (square-root
of) variance, compared to bias. The opposite is true for n < 2.

Interestingly, when the loss function is concave (n =
.5), adding prediction variance can actually reduce expected
loss—if bias is high. This can be seen in the contour lines
for high levels of loss, which bend back along the x-axis. It
can also be seen in the non-monotonicity of the bluer (high )
lines in the line plot. This is in keeping with previous anal-
ysis of the bias-variance trade-off for general symmetric loss
functions (James, 2003) and has also been noted for 0/1-loss
functions used for classification (Friedman, 1997).

We see a similar trend in the other loss functions shown in
Figure 4. (We set the parameters c¢ for each function in such
a way to make the plots as readable as possible, but the key
qualitative results do not depend on particular values.) The
logarithmic and local mass functions favor variance over bias,
while the highly convex exponential function greatly favors
bias. And for the former two functions, we again see non-
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Figure 3: Standardized expected loss for power loss functions
(exponents of .5, 1, 2, and 3). Middle: Contour plot with
color indicating magnitude of expected loss (blue = low, red
= high). Green lines show the combination of § and ¢ that
minimize expected loss given the constraint that f + ¢ = C,
where C is a constant. Right: Line plot with different lines
for B, varying as a function of 6. Red dots indicate optimal 6
values for each .

monotonicity in the influence of ¢ on loss for high B values:
when bias is high, variance can actually reduce loss.

In short, we find that the structure of the loss function im-
portantly dictates the optimal balance between bias and vari-
ance. Loss functions with accelerating costs of errors favor
simple, biased strategies over less biased, but noisy ones.
Loss functions with decelerating costs of errors favor unsys-
tematic noise, since even small systematic deviations from
the correct answer incur large costs.

Discussion

The analysis presented here uncovers an important relation-
ship between a problem’s objective function and optimal
model complexity. Because of the bias-variance trade-off,
modelers are forced to navigate between underfitting data
with an overly biased model and overfitting data with an ex-
cessively sensitive model. But the costs of underfitting and
overfitting are not fixed in real environments. Although statis-
ticians often use mathematically convenient loss functions
like quadratic or absolute error, people face a wide array of
loss functions. Sometimes, approximate solutions are accept-
able, and agents must primarily avoid major errors. Other
times, extreme rewards can only be achieved (or extreme
costs can only be avoided) by being precisely correct. Our re-
sults suggest that relatively simpler models are favored in the
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Figure 4: Standardized expected loss for other (non-power)
loss functions, with ¢ = .5 for local mass loss, ¢ = 1 for log
loss, and ¢ = .2 for exponential loss. Middle: Contour plot
with color indicating magnitude of expected loss (blue = low,
red = high). Green lines show the combination of B and ¢
that minimize expected loss given the constraint that f+c =
C. Right: Line plot with different lines for B, varying as a
function of 6. Red dots indicate optimal ¢ values for each .

former kinds of cases and relatively more complicated mod-
els in the latter kinds. This relationship bears on key issues in
statistics, machine learning, and cognitive science. Here, we
focus on its implications for psychological research.

Application to human cognition

Much work in psychology has emphasized two broad types
of cognitive processing: one type that is fast and automatic,
and another type that is slow and deliberative (Evans, 2008;
Kahneman, 2011; Sloman, 1996; Dolan & Dayan, 2013).
A key question is how humans decide which type of pro-
cessing to deploy for any given task. Typically this is pre-
sumed to involve a trade-off between better decisions (given
by deliberation) and faster or less cognitively taxing deci-
sions (given by automatic processes) (Kool, Gershman, &
Cushman, 2017; Daw, Niv, & Dayan, 2005; Lee, Shimojo, &
O’Doherty, 2014; Keramati, Dezfouli, & Piray, 2011; Shen-
hav, Botvinick, & Cohen, 2013). Yet some work illustrates
contexts in which simple heuristics can in fact generate better
decisions than complex cognitive strategies even in the ab-
sence of cognitive constraints because of the bias-variance
trade-off (Brighton & Gigerenzer, 2015).

In order to view this issue in its most general form, it helps
to conceive of human decision-making as a series of prob-
lems that are never identical, but often similar. Take, for
example, your choice of what food to eat today. You have
made many choices like this before, but the circumstances
were not identical. One decision strategy is to choose the
thing that you have enjoyed the most in the past. This kind
of strategy—relying on historical average rewards in similar
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past circumstances—is characteristic of habitual (or “model-
free”) decision-making. It is a canonical example of auto-
matic cognition. It is likely to be a biased decision strategy
because the “average” situation you faced in the past almost
certainly deviates systematically from the exact situation you
face today. Thus, the optimal decision averaging across past
episodes is unlikely to be the exact optimal decision today.
But it is likely to be a low variance decision strategy because
you are averaging over a very large number of similar past
episodes, and what was best on average is unlikely to be far
from best today.

Alternatively, rather than simply averaging over all past
episodes of eating various foods, you could estimate a
high-dimensional function relating specific features of any
given day to the optimal food for that day—features such
as whether you’re hungry, whether you’re sick, how much
money you have, etc. For example, this might take the form
of inferring a generative causal model of the reward structure
of your environment. This kind of strategy is characteristic of
planning (or “model based” decision making). It is a canon-
ical example of controlled, deliberative cognition. The re-
sulting model may reduce systematic bias, reflecting the fact
that it attempts to derive the value of foods in this particu-
lar, unique circumstance (rather than on average). But it will
likely introduce unsystematic errors generated by over-fitting
a high-dimensional model to the limited training set of your
past data.

In sum, two forms of value-guided decision-making widely
regarded as canonical examples of an automatic process
(habit, or “model-free” choice) and a deliberative process
(planning, or “model-based” choice) may occupy distinct lo-
cations on a bias-variance trade-off. If so, then, according
to our results, decision problems characterized by concave
loss (“close doesn’t count”) should favor model-based delib-
eration while decision problems characterized by convex loss
(“close is good enough”) should favor relatively automatic,
model-free processes.

Similarly, one can make decisions by copying the behav-
ior of others on the assumption that their choices are adaptive
(Deutsch & Gerard, 1955; Richerson & Boyd, 2008). This
strategy introduces bias because other people do not face pre-
cisely the same decision that you do, and the “average” opti-
mal action for them is unlikely to be precisely the same as the
optimal action for you. But it may reduce variance because
you are able to average over a large population of similarly
situated people.

One can also make decisions by relying on an innate in-
stinct shaped by natural selection. Natural selection favors
instincts that worked well over many generations of ances-
tors who faced similar, but not identical, problems to the ones
we face today. These decision strategies occupy a position of
even greater bias than habit learning, since they average not
only across diverse situations but also across diverse individ-
uals. According to our results, policies derived from adaptive
processes such as cultural or biological selection might be



favored in decision problems characterized by extreme con-
vex loss, as compared to policies derived not only from com-
plex model-based reasoning, but potentially also from simple
model-free learning.

In other words, heuristics (including instinct, conformity,
or habit) may dominate when it is more essential to avoid big
mistakes than minimize small ones. In contrast, heuristics
should be less useful, or even harmful, in contexts in which
precision is essential—for example, in competitive winner-
takes-all dynamics. In these cases, even an approach that is
less accurate on average can be favored because it has the
potential to be perfectly accurate. Such approaches might
involve, for instance, sampling from a complex generative
model. (Here, decision error could arise either from over-
fitting in the model (Gaissmaier, Wilke, Scheibehenne, Mc-
Canney, & Barrett, 2016) or from the cognitive constraints
on the number of samples that can be drawn (Stewart et al.,
2006; Vul et al., 2014).)

Future work could explore whether people modulate their
prediction strategies based on the nature of the payoffs they
face. There are several broad ways in which this might hap-
pen. At one extreme, people might be highly sensitive to spe-
cific loss functions of particular problems and, in turn, flexi-
bly modulate their prediction strategies to optimally navigate
the bias-variance trade-off as they move from task to task. For
example, if people are asked to make online predictions with
real-time reward feedback, the nature of this feedback might
influence the ways in which people make their predictions.

At the other extreme, to the extent that the distribution of
resources or risks in one’s environment is stable across in-
tergenerational timescales, there might emerge a culturally
ingrained tendency towards working with either simpler or
more complex models—one that is not tailored to particular
contexts, but rather applies across the diverse contexts en-
countered in a lifespan.

Other possibilities fall between these extremes. Even if we
do not continuously monitor the shape of payoffs from mo-
ment to moment, we nevertheless approach different broad
classes of problems with prediction strategies tailored to their
typical objective functions. For problems with salient left-
tail risks, such as death or extreme harm, people may adopt
a more “high-bias” mindset than the “high-variance” mind-
set that they would adopt for problems with salient right-tail
benefits, such as great wealth or fame. These general strate-
gies could be learned individually, or inherited biologically or
culturally.

Application to statistics and machine learning

Apart from its psychological applications, the current work
may help inform the ways in which researchers select statis-
tical models based on their complexity. Of course, in many
contexts, there is little cost to optimizing out-of-sample pre-
diction using techniques like cross-validation. But when this
is not possible, it is important to keep in mind that rela-
tively more complex models may be most useful when the re-
searcher’s goal is precision, whereas relatively simpler mod-
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els may be most useful when the researcher’s goal is to make
consistent, safe predictions. Broadly speaking, if a researcher
is focused on exploring new patterns in the data that are worth
following up on, large mistaken inferences should be rela-
tively harmless, and thus a more complex model may be ad-
vised. On the other hand, it may be much riskier to employ
such a model when large errors are very costly. Indeed, we
hope to apply these ideas to medical contexts in which large
errors can result in serious injury or even death.

Finally, it is worth noting that the present work is limited
in its focus on Gaussian prediction error and neglect of other
irreducible factors besides bias and variance that contribute to
loss. Moreover, the simple approach we pursue here is quite
abstract and may not generalize to all applications of the bias-
variance dilemma. Future work should explore how much the
loss function impacts specific modeling choices, such as the
penalization terms in ridge or Lasso regression or the depth
of decision trees. Nevertheless, we hope that the analysis pre-
sented here calls attention to an important relationship be-
tween how one makes predictions and how close to the truth
one needs them to be.
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