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Abstract 

Previous research has demonstrated that Distributional 
Semantic Models (DSMs) are capable of reconstructing maps 
from news corpora (Louwerse & Zwaan, 2009) and novels 
(Louwerse & Benesh, 2012). The capacity for reproducing 
maps is surprising since DSMs notoriously lack perceptual 
grounding (De Vega et al., 2012). In this paper we investigate 
the statistical sources required in language to infer maps, and 
resulting constraints placed on mechanisms of semantic 
representation. Study 1 brings word co-occurrence under 
experimental control to demonstrate that direct co-occurrence 
in language is necessary for traditional DSMs to successfully 
reproduce maps. Study 2 presents an instance-based  DSM that 
is capable of reconstructing maps independent of the frequency 
of co-occurrence of city names.  
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Introduction 

Distributional Semantic Models (DSMs) posit cognitive 

mechanisms to explain how humans construct semantic 

representations for words from statistical regularities in 

natural language. Typically, these models represent words as 

points in a high-dimensional vector space, and similarity 

between words is measured as the proximity in this semantic 

space. Latent Semantic Analysis (LSA; Landauer & Dumais, 

1997) is the classic example of a DSM, but more modern 

versions span theoretically diverse learning mechanisms (see 

Jones et al., 2015 for a review). In general, DSMs have shown 

remarkable success at accounting for a broad range of 

semantic phenomena from relatively simple mechanisms.  

One major criticism of DSMs is that their representations 

are amodal and are not grounded in perception or action (De 

Vega et al., 2012). Without perceptual grounding, DSMs may 

lack a necessary source of statistical information to fully 

represent semantic relationships between words. However, 

there is often strong alignment between the statistical 

distributions of words in a corpus and perceptual data 

(Riordan & Jones, 2011; Roads & Love, 2020).  

A surprising early demonstration of the capacities of DSMs 

was presented by Louwerse & Zwaan (2009) where they 

reproduced the map of the USA by applying LSA to various 

large news corpora. Louwerse and Benesh (2012) followed 

up this study by demonstrating that even on the relatively 

small corpus of The Lord of the Rings trilogy, LSA was able 

to closely reproduce a map of Middle Earth. Contrary to the 

assumption that spatial representations are fundamentally 

perceptual and necessarily grounded in sensory modalities, 

the reproduction of maps demonstrates that spatial 

distributions are encoded in language, and that semantic 

processes are able to elicit these spatial distributions 

independent of perceptual grounding.  

While recreating the map of Middle Earth is entertaining 

as a demonstration, it opens up more questions regarding the 

source of its success than it answers. Specifically, it is unclear 

what the statistical properties of the corpus are that enable 

external spatial distributions to be reconstructed from the 

text. It may be the case that the additional words that occur in 

the same context as the cities serve as additional dimensions 

along which the relationships between cities may be 

differentiated. Alternatively, cities which are near each other 

may be discussed in the same contexts more frequently. In 

this paper, we examine the hypothesis that cities that are near 

one another are discussed in the same context with greater 

frequency than cities that are separated by greater distances.  

We generate artificial corpora describing randomly 

generated maps to compare whether DSMs are able to elicit 

spatial distributions independently of frequency of sampling. 

Specifically, we bring sampling under experimental control 

by manipulating whether a statement relating a pair of cities 

has a uniform probability of ending up in the final corpus. 

Uniform sampling is compared to distance-based sampling, 

where a statement relating a pair of cities has a higher 

probability of showing up in the final corpus based on their 

relative distance, such that nearby cities are likely to be in the 

corpus whereas distant cities are not. Study 1 found that no 

standard DSM was able to reproduce spatial locations 

independent of sampling.  

The unexpected lack of success for DSMs to reproduce 

spatial distributions is likely because they represent an 

‘abstraction at learning’ class of models (Jones, 2019) that 

mirrors the ‘prototype-vs-exemplar’ debate in the 

categorization literature. Many researchers have noted that 

the static word meanings produced by DSMs are ineffective 

at modeling the way word meanings change as a function of 

learning or retrieval processes. Hence, Study 2 uses a recently 

proposed ‘abstraction at retrieval’ DSM, based on the idea 

that semantic relationships are produced on the fly (Instance 

Theory of Semantics; ITS; Jamieson et al., 2018). Using ITS 

we demonstrate that a retrieval-based DSM is capable of 

accurately reconstructing spatial representations from 

corpora given uniformly sampled descriptions of cities. 

Methods 

Our goal is to determine whether a DSM is able to 

reproduce a map from systematically constructed linguistic 

descriptions of the relationships between cities. Here, we 

briefly describe our steps for evaluating DSM performance, 

with a more in-depth description to follow. We start by 
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generating a corpus of descriptions of a map. First, we 

randomly generate a set of maps of varying distributions of 

cities. Next, for every pair of cities, we generate statements 

that describe the relationship between the two cities. In 

particular, we use two sets of relationships: North, South, 

East, and West; and near and far. We sample the sets of 

descriptions either uniformly or based on distance in order to 

yield multiple corpora. Once we have the corpora, we test a 

set of DSMs for their ability to reproduce the original maps 

based on the linguistic descriptions of the relationships 

between cities. We follow an outline of the steps used in 

Louwerse and Zwaan (2009) and Louwerse and Benesh 

(2012) in order to move from a corpus of text to a two-

dimensional map, with minor modifications to their process. 

In particular, we start by training a model on a given corpus. 

We then find the cosine similarity between the vectors 

representing each city, and convert the similarity into 

distance using Shepard’s (1987) exponential law of 

generalization. We convert the distance matrix into a two-

dimensional plot using multidimensional scaling. Finally, we 

compare the two-dimensional plot yielded by the DSM to the 

original map using bidimensional regression (Friedman & 

 
 

Figure 1. A representative sample of the performance of models at reconstructing the original map given the 

North/South/East/West relationship set with uniform sampling. From left to right, the columns present 1) the original maps, 

2) the maps produced by GloVe (Study 1), and 3) the maps produced by ITS (Study 2). Each row shows one of the three 

distributions tested. The r coefficient and significance is noted below each map. 
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Kohler, 2003). Bidimensional regression is a special measure 

designed to compare two-dimensional plots that yields a 

measure of goodness of fit. Study 1 evaluates the 

performance of standard DSMs at reproducing maps given 

corpora where statements relating cities are sampled either 

uniformly or based on distance. Study 2 implements ITS 

coupled with a context retrieval mechanism, and evaluates 

this model’s performance at reproducing maps as a function 

of sampling. 

Generate Maps 

We generated three maps with different distributions of 

‘cities’: random, clustered, and circular. The maps are 

displayed in the first column of Figure 1. There are 20 cities 

on each map, labelled with the letters ‘A’ through ‘T’. We 

chose these three distributions of cities to vary the amount of 

external distribution information available to disambiguate 

the cities, and cover a range of challenges.  

Generate Corpora 

We generated multiple sets of corpora for each 

combination of conditions. The conditions include the 

distribution of cities (random, clustered, shape), the 

description set (either North/South/East/West, or near/far), 

and the type of sampling (uniform or distance-based). In total, 

there were 12 corpora. 

In order to generate the corpora, we created statements 

about each pair of cities on a given map. The statements took 

the form: [city] [relationship to] [city]. We used two sets of 

relationships: near/far, and North/South/East/West. 

Near/Far. For each map, we found the average distance 

between cities. Subsequently, when generating a statement 

relating two cities (e.g. cities ‘A’ and ‘B’), if the distance 

between the two cities was above the average distance we 

would label the relationship between the two cities as ‘far’ 

(e.g. ‘A is far from B’). Conversely, if the distance between 

the two cities was lower than the average distance between 

all cities, we would label the relationship between the two 

cities as ‘near’ (e.g. ‘A is near to B’). 

North/South/East/West. In order to formalize the 

directional relationship between cities, we divided the area 

surrounding a city into four quadrants such that a quadrant 

was 90 degrees, offset by 45 degrees. If some city ‘B’ 

appeared in the quadrant above a city ‘A’, it would be labeled 

as ‘north of’ city ‘A’ (e.g. ‘B is North of A’).  

Generating the statements. We compared each city to every 

other city in order to generate a sentence regarding the two 

cities’ relationships. Therefore, there are two sentences 

relating any two cities – with the relationship reversed. If the 

relationship between cities A and B is that ‘A is North of B’, 

then there will necessarily be a converse statement in the 

corpus that ‘B is South of A’. There are no statements relating 

a city to itself (e.g. ‘A is South of A’).  

A total of 20*19 = 380 possible unique statements relating 

all the cities to one another were generated. In the statements, 

the phrases were condensed such that the relationship was 

just one word (e.g. ‘is North of’ was reduced to ‘north_of’). 

Sampling the statements. A corpus was generated by 

sampling the statements either uniformly or based on 

distance. Each corpus totaled 10,000 statements. If the set of 

statements was sampled uniformly, then each statement 

occurred an equal number of times in the final corpus. If the 

set of statements was sampled based on distance, statements 

relating cities that were closer together were sampled more 

frequently than statements relating cities that were farther. 

The probability of sampling a statement t based on distance 

between two cities i and j is given by 

                                𝑃(𝑡𝑖𝑗) =
𝑑𝑖𝑗

∑ ∑ 𝑑𝑖𝑗
𝐽
𝑗

𝐼
𝑖

  (1) 

where dij is the distance between cities i and j. 

Vector Spaces Produced by DSMs 

We trained a set of models on each corpus. The set of 

models includes LSA (Landauer et al., 1998), Positive 

Pointwise Mutual Information (PPMI; Bullinaria & Levy, 

2007), Continuous Bag Of Words (CBOW; Mikolov et al., 

2013), and Global Vectors for word representation (GloVe; 

Pennington et al., 2014) – to be described in further detail in 

Study 1 – and the exemplar model, ITS (Jamieson et al., 

2018) – to be described in further detail in Study 2.  

Each of these models – with the exception of PPMI – 

operates by building a vector space, where words are placed 

in an arbitrary high-dimensional space. Their location in that 

space determines their similarity to the other words in that 

space, such that words that are near to each other are similar, 

while distant words are dissimilar. The cosine between two 

vectors is a commonly used metric to compute word 

similarities (Bullinaria & Levy, 2007).  

Rather than working with similarities, the steps that follow 

require distances. We transform the cosine similarity matrix 

into a distance matrix using Shepard’s (1987) universal law 

of generalization, such that the distance d between two word 

vectors i and j is given by  

𝑑𝑖𝑗 = 𝑒−𝛾 𝑠𝑖𝑚(𝑖,𝑗) 

where sim(i, j) is the similarity between two word vectors i 

and j, and γ is a monotonic scaling factor. 

The cosine similarities were computed between each city, 

and the similarity matrix was transformed into a distance 

matrix. Our processes yielded a distance matrix for each 

model, for each sampling method, for each description set, 

for each map, for a total of 60 distances matrices for 

evaluation. 

Generating and Evaluating the Map 

We used multidimensional scaling (MDS) to generate a 2-

dimensional map from the distance matrix. We then used 

bidimensional regression to evaluate the map produced by the 

model against the original map. 

MDS. MDS is a well-established technique to transform a 

distance matrix into a plot of some arbitrary dimensionality 

(Kruskal & Wish, 1978). We used Kruskal’s non-metric 

MDS as implemented in R (MASS; Venables & Ripley, 
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2002). Non-metric MDS produces a solution that matches the 

ordinal ranking of the distances provided in the distance 

matrix. The solutions produced by non-metric MDS are 

subject to rotations, shifts, scaling, and flips. 

Bidimensional Regression. We used bidimensional 

regression to evaluate how well each MDS solution recreated 

the map from which it was derived (Friedman & Kohler, 

2003; Louwerse & Zwaan, 2009). Bidimensional Regression 

is a measure of how well two maps align. The measure of 

interest for this study is the r coefficient. The r coefficient 

indicates how well two spatial distributions of points match 

each other. We generated our r coefficient using the affine 

bidimensional regression in R (BiDimRegression; Carbon, 

2013).  

Study 1 – Standard DSMs 

The purpose of Study 1 is to establish the source of success 

for DSMs in producing maps as demonstrated by Louwerse 

and Zwaan (2009) and Louwerse and Benesh (2012). We 

aimed to test the hypothesis that the first order co-occurrence 

of words drives the performance of modern DSMs. We 

manipulated the frequency by which statements are sampled. 

DSMs for evaluation 

We first evaluate the ability of four state-of-the-art DSMs to 

produce spatial distributions from linguistic descriptions of 

maps1. While the set of models used here is not exhaustive, it 

is representative of the range of techniques of the best-

performing models used in the field of semantic memory. 

 

LSA. LSA is a well-established method of creating a 

semantic space by applying a combination of tf-idf and 

singular value decomposition (SVD) to a word-by-document 

frequency count of words in a text corpus (Landauer et al., 

1998). SVD is a linear algebra technique that smooths a given 

matrix on the basis of its eigenvalues, or principle sources of 

                                                           
1Code for the analyses presented here available at: 

https://github.com/masterccioli/reconstructing-space-from-text 

variance. We used the python package, gensim (Řehůřek & 

Sojka, 2010), to implement LSA. 

 

CBOW. CBOW is a neural network implementation of a 

DSM (Mikolov et al., 2013), where the localist input layer is 

a given word, and the output layer is the set of words in whose 

context the input word is found, with a single hidden layer. 

The algorithm finds the appropriate weights between nodes 

by minimizing the error between the context that the model 

predicts and the actual context in which a word occurs. The 

weights between nodes are treated as word embeddings in a 

high dimensional vector space. We used the CBOW 

implementation provided by the Python gensim package, 

with 50 training iterations, and the standard 300 nodes in the 

hidden layer. 

 

GloVe. GloVe generates word vector representations using a 

gradient descent technique (Pennington et al., 2014). The 

technique minimizes the spatial distributions between the co-

occurrence matrix and the vector space of arbitrarily high 

dimensionality. We used the GloVe implementation provided 

by Pennington et al., with 50 dimensions and a maximum 15 

iterations to convergence. 

 

PPMI. PMI is a log transform of the conditional probabilities 

of the co-occurrence of words (Bullinaria & Levy, 2007). 

Positive PMI sets negative PMI values to zero. PPMI is 

distinct from the other DSMs, as it produces a value relating 

two words based on their conditional probability, skipping 

the step in vector space models in which a word is placed in 

a high dimensional space and the relationship between words 

is derived from their cosine similarity. We used the PPMI 

implementation provided in the Python gensim package. 

Results 

Table 1 presents the performance of each model at 

reproducing the original map given the different corpus 

Table 1. Presents the r coefficients for each model at reproducing a map distribution given a particular sampling 

procedure and relationship set. The Near/Far relationship set is denoted ‘N/F’, while the North/South/East/West 

relationship set is denoted ‘N/S/E/W’. 

                Uniform                 Distance 

Model Map Distribution N/F N/S/E/W N/F N/S/E/W 

LSA Random 0.23 0.20 0.87*** 0.86*** 

 Clustered 0.41 0.25 0.69*** 0.76*** 

 Circular 0.34 0.21 0.09 0.76*** 

CBOW Random 0.21 0.17 0.67*** 0.72*** 

 Clustered 0.11 0.77*** 0.97*** 0.85*** 

 Circular 0.45 0.23 0.99*** 0.76*** 

GloVe Random 0.13 0.06 0.88*** 0.88** 

 Clustered 0.36 0.77*** 0.97*** 0.97*** 

 Cicular 0.37 0.15 1.00*** 1.00*** 

PPMI Random 0.40 0.11 0.96*** 0.96*** 

 Clustered 0.29 0.12 0.97*** 0.97*** 

 Circular 0.47 0.43 1.00*** 1.00*** 
p < 0.05 - *; p < 0.01 - **; p < 0.001 - *** 
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sampling conditions for each relationship set. The 

significance of how well the map is reconstructed is indicated 

with asterisks. When the corpus is generated using uniform 

sampling, only a few models produced maps that 

significantly reproduced the original map. In contrast, when 

a corpus is generated with distance-based sampling, all 

models produce significant reproductions of the maps. 

The center column in Figure 1 provides a visual 

demonstration of the performance of GloVe at reproducing 

the maps given the North/South/East/West relationship set 

with uniform sampling. Notably, the reproduction of the two 

clusters by GloVe demonstrates that though the reproduction 

is significant, a value of r = 0.77 corresponds to only a rough 

approximation of the original space. Note how in this 

example, the two clusters are not well separated. Overall, 

models using corpora generated by uniform sampling are 

mediocre at best at reconstructing the maps. 

Discussion 

The manipulation of the frequency by which statements are 

sampled illuminates the source of success demonstrated by 

Louwerse and Zwaan (2009) and in Louwerse and Benesh 

(2012). Namely, DSMs require frequency of co-occurrence 

to encode geographical relations. Generally, objects that are 

highly related to one another are more likely to be discussed 

in the same context. This principle extends to the spatial 

locations of cities, such that cities that are spatially co-located 

are discussed in the same context more frequently. When we 

control for the frequency of co-occurrence, modern DSMs are 

not able to accurately co-locate cities in semantic space.  

Study 2 – A Retrieval-Based DSM 

Study 1 demonstrates that standard DSMs depend on 

frequency of co-occurrence to reconstruct accurate spatial 

relationships. Specifically, modern DSMs treat frequently co-

occurring words as more similar to one another.   

Study 2 starts from the premise that humans may create 

semantic abstractions as a by-product of an episodic retrieval 

mechanism, and that word meanings depend on the context 

of retrieval. We use ITS (Jamieson et al., 2018) to 

demonstrate that a model with a sufficiently complex 

learning, storage, and retrieval process is capable of learning 

the spatial distributions of the three maps from linguistic 

descriptions independent of sampling procedure in corpus 

generation. 

Model 

ITS uses a multiple-trace episodic memory store. Each 

instance is a set of words that co-occur in the same context, 

and is uniquely stored as a trace in memory. Memory may 

then be probed in order to get the vector representation of the 

word. When memory is probed, traces that contain the probe 

are recalled and combined into an echo. The echo is the 

normalized sum of all the contexts in which the probe word 

occurred (cf. Hintzman, 1986). When the probe is composed 

of multiple words, the echo is composed only of contexts 

where both words occur. 

An advantage of using an abstraction-at-retrieval model 

lies in the flexibility of the retrieval process. Specifically, ITS 

can take context of retrieval into account, a key drawback of 

DSMs pointed out by numerous researchers (Jamieson et al., 

2018; Jones, 2019; Kintsch, 2000). We modify the retrieval 

process in two ways in order to maximize ITS ability to vary 

word meanings based on context. First, we modify the echo 

to yield simply the context of the probe without the probe 

itself. Second, we modify the process by which similarity is 

evaluated. 

 

Context of Probe. In ITS, the retrieved echo is composed of 

the vectors representing the set of words that co-occur with 

the probe, as well as the probe itself. Here, we are interested 

in comparing the context in which a word occurs. Since the 

echo contains both the probe and the context of the probe, we 

must separate the context from the probe. Specifically, we 

define the context of a probe as the echo of a probe without 

the probe itself. Formally, 

𝑐𝑜𝑛𝑡(𝑝𝑟𝑜𝑏𝑒) = 𝑒𝑐ℎ𝑜(𝑝𝑟𝑜𝑏𝑒) − 𝑝𝑟𝑜𝑏𝑒  (2) 

where cont denotes the context, and echo(probe) yields the 

echo given a probe as defined by ITS. 

 

Retrieval Process. Ubiquitously, the similarity between 

words is treated as a direct cosine comparison between the 

vectors representing two words. Here, we deviate from 

convention by treating similarity as the comparison between 

the two words and some set of tertiary words. That is, the 

similarity between two words A and B can be approximated 

as what is shared between the context of word A and some 

other word C and the context of word B and that same word 

C. Words A and B are similar to the extent that the features 

that constitute the context of words A and C are shared with 

the features that constitute the context of words B and C. This 

definition of similarity does not deviate from the 

distributional hypothesis, but rather serves as an alternate 

formalization. 

We define the similarity sim between two words a and b as 

𝑠𝑖𝑚(𝑎, 𝑏) = ∑ 𝑐𝑜𝑠𝑖𝑛𝑒(𝑐𝑜𝑛𝑡(𝑎, 𝑖), 𝑐𝑜𝑛𝑡(𝑏, 𝑖))𝐼
𝑖  (3) 

where I is the set of all unique words used in the corpus, 

cosine is the cosine similarity. 

Here we present a concrete example of how such a retrieval 

process in ITS might elicit a spatial distribution of cities from 

Table 2. Presents the r coefficients for ITS at 

reproducing a map distribution given a particular 

sampling procedure and relationship set. 

Relationship Distribution Uniform Distance 

Near/Far Random 0.83*** 0.84*** 

 Clustered 0.97*** 0.97*** 

 Shape 1.00*** 1.00*** 

North/S/E/W Random 0.85*** 0.98*** 

 Clustered 0.84*** 0.85*** 

 Shape 1.00*** 0.99*** 
p < 0.05 - *; p < 0.01 - **; p < 0.001 - *** 
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a linguistic description of their relationships. Consider three 

cities A, B, and C, such that A and B are near each other and 

are both far from C. When comparing A and B, we use all the 

words in the corpus except A and B. For instance, we want to 

compare the cont(A, C) with cont(B, C). The cont(A, C) yields 

‘far_from’, likewise the cont(B, C) also yields ‘far_from’. 

Therefore, when evaluating cosine(cont(A, C), cont(B, C)), 

the yielded value is high because the context for both pairs is 

identical.  

In contrast, if we want to compare cities A and C, we would 

use B as a tertiary word of comparison. In this case, 

cosine(cont(A, B), cont(C, B)) would yield a low similarity 

because the cont(A, B) yields ‘near_to’ while the cont(C, B) 

yields ‘far_from’. Thusly, the process of eliciting the 

similarity between two words via the shared contexts with 

tertiary words can accurately elicit spatial locations from 

linguistic descriptions. 

Results 

Table 2 presents the performance of ITS at reproducing the 

original map given the different corpus sampling conditions 

for each relationship set. The significance of how well the 

map is reconstructed is indicate with asterisks. Independent 

of sampling condition, ITS is able to produce significant 

reconstruction of all original maps. Notably, the lowest 

performing reconstruction has an r = 0.80, well above the 

highest performing model in Study 1 in the uniform sampling 

condition. 

The right column in Figure 1 provides a visual 

demonstration of the performance of ITS at reproducing the 

maps given the North/South/East/West relationship set with 

uniform sampling. The ITS reconstruction of the shape 

provides compelling visual evidence that DSMs are capable 

of reproducing maps given different model assumptions. 

General Discussion 

Demonstrations by Louwerse and Zwaan (2009) and 

Louwerse and Benesh (2012) show that spatial distributions 

can be elicited from text. Given that amodal DSMs are not 

grounded by any perceptual input, it is surprising that DSMs 

can reproduce spatial distributions whatsoever. Here we 

bring sampling frequency under experimental control to 

demonstrate that frequency of co-occurrence provides the 

statistical redundancy that enable standard DSMs to 

reproduce spatial distributions. 

Study 1 demonstrates that standard “absraction-at-

learning” DSMs are only able to elicit spatial distributions 

from linguistic descriptions given appropriate frequency of 

sampling. When cities that are near each other are discussed 

more frequently than cities that are far from each other, 

modern DSMs are able to reproduce their spatial 

distributions. When cities are discussed with uniform 

frequency, standard DSMs are not able to reproduce spatial 

distributions. 

Study 2 explores a cognitively inspired ‘abstraction-at-

retrieval’ DSM, where the semantic relationship between two 

words is dependent on the context in which the words co-

occur, unlike ‘abstraction-at-learning’ DSMs. In an instance-

based DSM, there is no stored semantic memory, only 

episodic memory. Semantic representations are constructed 

on-the-fly as an artifact of the episodic retrieval mechanism 

in response to an environmental probe.  The model presented 

in Study 2 demonstrates that an instance-based DSM is 

capable of reproducing spatial distributions given uniformly 

sampled descriptions of cities. 

Both Studies 1 and 2 demonstrate that spatial information 

can be elicited by DSMs independent of any grounding in the 

external world. While modern DSMs are capable of 

producing spatial distributions with distance-based sampling, 

it is insufficient to posit that humans are only capable of 

producing spatial distributions given linguistic descriptions 

based on frequency alone. Study 2 extends the representation 

of space toward a comprehension process, whereby spatial 

distributions can be elicited by DSMs independent of the first 

order co-occurrence of cities.   
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