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Abstract

We present a neural dynamic architecture that grounds sen-
tences in perception which combine multiple concepts through
nested spatial relations. Grounding entails that the model gets
features and relations as categorical inputs and matches them
to objects in space-continuous neural maps which represent vi-
sual input. The architecture is based on the neural principles
of dynamic field theory. It autonomously generates sequences
of processing steps in continuous time, based solely on highly
recurrent connectivity. Simulations of the architecture show
that it can ground sentences of varying complexity. We thus
address two major challenges in dealing with nested relations:
how concepts may appear in multiple different relational roles
within the same sentence, and how in such a scenario various
grounding outcomes may be “tried out” in a form of hypothesis
testing. We close by discussing empirical evidence for crucial
assumptions and choices made when developing the architec-
ture.
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Introduction

Human cognitive competences depend critically on the ca-
pacity to combine concepts through relations. Humans are
capable of generating complex trains of thought to reach a
conclusion. Humans understand and generate propositions
that range in complexity from single words to deeply nested
sentences. This competence is critical to establish joint atten-
tion to specific objects or events when humans communicate.
Imagine you and your friend are standing on the top of a hill at
night with a view of the city (Figure 1). To point your friend
to your house, you say: “I live in the house to the right of
the large house that is next to the big tree and below a star.”
You are using the complex combination of multiple spatial
relations because the objects in the scene are relatively poor
in visual features in this nightly scene. Your friend may per-
ceptually ground your utterance by directing her attention to
different objects in the sentence, until settling on the location
of your house.

Through what kind of neural processes may the brain bring
about the perceptual grounding of sets of phrases that invoke
concepts and relations? Earlier modeling work proposed the
component processes that enable the grounding of an indi-
vidual relation between a pair of objects (e.g., “A above B”,
where “A” is the target and “B” the reference object; Lipin-
ski, Schneegans, Sandamirskaya, Spencer, & Schoner, 2012;
Richter, Lins, Schneegans, Sandamirskaya, & Schéner, 2014;

Figure 1: A scene for which multiple spatial relations may
naturally be used to refer to an object.

Richter, Lins, & Schoner, 2017). In this paper, we extend that
work to provide a neural process account for the perceptual
grounding of sets of relations with varying degrees of com-
plexity (e.g., “A above B and below C” or “A above the B
that is below C”). The account is aligned with the notion of
grounded cognition (Barsalou, 2008) in that the higher cog-
nitive processes responsible for such grounding overlap with
neural processes responsible for perception and visual cogni-
tion.

Rather than describing the outcome of the neural process
in abstract computational terms such as symbol manipula-
tion (Fodor & Pylyshyn, 1988), we take principles of neu-
ral processing seriously. As a result, we face challenges that
are not visible at the abstract computational level. Princi-
pal among those is the fact that neural networks are not free
to pass just any “information” from one processing step to
another. The activation that synaptic connections pass from
one population of neurons to the next does not include infor-
mation about from where activation originated or what it is
about. In neural networks, such information is instead im-
plicit in the pattern of connectivity. For activation patterns
to play different roles in a subsequent processing step, the
patterns must actually reside in distinct neural populations
with different sets of connections. For instance, activation
patterns representing target objects reside in different sub-
networks than activation patterns representing reference ob-
jects, so that the two sets of activation patterns play different
roles in grounding a relation.

While grounding sequences of relations, neural process ac-
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counts then face the problem that the role of an object may
change along the way. In the example of Figure 1, the large
house is the reference object in “the house to the right of the
large house”, while it is the target object in “the large house
that is next to the big tree”. In the course of processing these
phrases sequentially, different activation patterns must repre-
sent the large house in these two different roles so that dif-
ferent paths of neural connectivity guide the next processing
step.

A second challenge arises when different possible ground-
ing outcomes must be “tried out” in a form of hypothesis test-
ing. For example, if there are multiple large houses in the
scene, the model may select one candidate as reference object
and then try to ground the rest of the description. If the wrong
large house was initially selected, that choice must be rejected
and a new candidate selected, a process easily conceived of in
terms of algorithms that manipulate symbols (as suggested in
the verbal description we give here), but challenging to con-
ceive of in terms of activation patterns in neural networks.
Here we extend an earlier proposal for such hypothesis test-
ing to sequences of relations (Richter et al., 2014).

Our neural process account is based on dynamic field the-
ory (DFT; Schoner, Spencer, & the DFT Research Group,
2015), a framework for using strongly recurrent neural net-
works to understand embodied cognition. Grounding hap-
pens by generating activation patterns in neural fields, popu-
lations of neurons that receive input from the visual surface.
The interface to language is a set of neural nodes that repre-
sent feature concepts like RED, relation concepts like TO THE
LEFT OF, and grounding instructions that correspond to dif-
ferent grammatical roles. We begin by introducing the rele-
vant concepts of DFT, then provide an overview over the pro-
posed neural architecture, and finally demonstrate the com-
petence of the model in a few exemplary simulations.

Methods: DFT

In DFT, the activity of populations of neurons is captured by
dynamic neural fields (or maps), whose activation, u(x,t), is
defined over continuous feature dimensions, x, and evolves in
continuous time, ¢, according to:

Ti(x,1) = —u(x, 1) +h—|—/g(u(x’,t))k(x—x’)dx’+s(x,t)

7T is the time scale and & < O is the resting level. The integral
captures interaction within the field, excitatory (k(x —x’) > 0)
over short distances, x —x’, and inhibitory (k(x —x") < 0) over
large distances. The sigmoid transfer function, g(u(x,t)),
makes this a nonlinear integro-differential equation. Input,
s(x,t), from the sensory surface reflects the forward connec-
tivity that makes that the field is sensitive to dimensions, x.
Input may also come from other fields within an architec-
ture. Zero-dimensional fields are dynamic neural nodes that
respond categorically to input.

At small levels of input, the sub-threshold state, u(x,) =
h+s(x,t) < 0, is stable until it reaches the detection insta-
bility when interaction engages. The activation then switches
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to supra-threshold peak solutions that are self-stabilized by
interaction. A single peak may result for selective fields, a
small number of peaks may co-exist for different parameter
settings. Peaks may remain stable when inducing input is re-
moved, a simple model of working memory.

Peaks are the units of representation in DFT. This is be-
cause only supra-threshold activation is passed on to down-
stream neural processes as all connections entail the sigmoid
threshold function, and the only supra-threshold patterns of
activation are peaks. The stability of peaks makes that when
multiple fields and nodes are coupled in a neural dynamic ar-
chitecture, the dynamics remains largely invariant.

Higher-dimensional fields afford additional functions such
as biased competition (when a top-down input is localized
along one and constant along other dimensions, peaks pop
up where bottom-up inputs overlap with top-down inputs),
binding, and coordinate transforms (see chapters 5, 7, 8, and 9
of Schoner et al. (2015)).

Architecture

The neural dynamic architecture is depicted in Figure 2. We
provide a survey over the functions of its components.

Object representation: perception and mental map

The model receives sensory input from a vision sensor (cam-
era) or an image. Visual pre-processing extracts feature
values that provide input to three three-dimensional fields
(bottom right in Figure 2), the color/space perception field,
orientation/space perception field, and shape/space percep-
tion field. They all share the two spatial dimensions of the
visual surface. The third dimension reflects the extracted fea-
ture, where shape is computed as similarity to a template. The
three fields can be regarded as representing the population ac-
tivation of retinotopic maps in the visual cortex. As such, they
comprise a simplified model of perception.

Paired with each perception field is a mental map field, de-
fined over the same dimensions but tuned to support sustained
activation. These fields keep previously grounded object rep-
resentations in working memory in order to allow referring to
them in later processing steps.

The activation in the perceptual fields have an impact on
the attentional system that can be gated (depicted as “gates”
in Figure 2). Every perceptual field gives input to a respective
perceptual gating field, defined over the same dimensions.
These gating fields receive additional inhibitory input from
the from mental map node, such that they only pass activation
on to the attentional system if that node is inactive. Analo-
gously, every mental map field gives input to a mental map
gating field that also receives excitatory input from the from
mental map node, allowing the mental map fields to pass ac-
tivation on to the attentional system if the from mental map
node is active. This way, the attentional system is flexible to
operate on input from either the perceptual system or from
working memory representations of objects attended to in the
past.
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Figure 2: The architecture for grounding combinations of concepts. Only the main structure is visualized.
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Attentional selection of objects occurs through feature atten-
tion fields (top right box in Figure 2), defined over the fea-
tures shape, orientation, and color. These fields are coupled to
feature/space attention fields, which combine the respective
feature dimension with two visual spatial dimensions. These
fields are also coupled to the space attention field, which is
defined over visual space only.

When a particular feature value is attended, a peak in
the corresponding feature field provides slice input into the
matching feature/space attention field, highlighting attended
features. Additional input reflecting object representations
may enter these fields either from perceptual fields or the
mental map fields (see above). When that input matches the
location of the slice input along the feature dimension, peaks
may form. This is how objects with particular features are
brought into the attentional foreground.

This part of the architecture models covert attention in the
visual cortex. It is a placeholder for a more comprehensive
model of visual search (Grieben et al., 2020) that can also
accommodate gaze shifts (Schneegans, Spencer, Schoner,
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Hwang, & Hollingworth, 2014).

Concepts

Feature concepts (e.g., the color concept RED) are repre-
sented by neural nodes (top left in Figure 2). The perceptual
meaning of a concept is instantiated in the pattern of synap-
tic connections between its node and a feature attention field
(Richter et al., 2014). Concepts of spatial relations (e.g., LEFT
OF) are represented by neural nodes and their synaptic con-
nections to the spatial relation field.

In the simulations reported in this paper, the synaptic
weights are fixed. For features, the synaptic weight pattern
is modeled as a Gaussian centered on a prototypical feature
value. For spatial relations, the synaptic weight pattern is
modeled based on empirical data (Logan & Sadler, 1996)
through a Gaussian in polar coordinates, centered on the an-
gle of the direction of that relation. The synaptic nature of
the coupling between concept nodes and sensorimotor fields
enables learning concepts by repeatedly presenting examples
and altering the synaptic weights with Hebb’s rule (Hebb,
1949).



Target search

The fields depicted in the central box of Figure 2 enable
the system to hold possible candidates for the target object
in working memory and refine the selection of candidates
through a sequence of processing steps.

The target candidates field holds peaks at the spatial lo-
cations of all objects that, at the current stage of processing,
are still viable candidates for the target object. Input from
the space attention field determines where peaks may arise.
The target candidates field is in the dynamic regime in which
peaks can be self-sustained in the absence of localized input,
so that it acts as a working memory of candidate objects.

The reduction field holds peaks at the locations of all target
candidates that presently receive spatial attention. It forms
peaks at locations at which inputs from the space attention
field and from the target candidates field overlap. Unless
supported through input from the reduction field, peaks in
the target candidates field may decay due to inhibitory in-
put. This enables the model to iteratively eliminate all target
candidates that do not receive spatial attention.

The target selection field receives input from the target
candidates field. It operates in the selective dynamic regime
in which only a single localized peak may form. Excitatory
input into this field controls when such a peak is formed and
selection thus takes place. Whenever a selection is made, the
representation of the selected object is kept in memory in the
mental map fields as well as in the inhibition of return field.

Relations

When grounding a target object that stands in a given relation
to a reference object, the target candidates have to be reduced
to those consistent with that relation (bottom middle box in
Figure 2). For example, to ground “a house below the star”,
the candidate houses have to be reduced to those that are be-
low the star.

The spatial location of the reference object is represented
by a peak in the reference field that receives input from the
space attention field, is in the self-sustained dynamic regime,
and can be brought into the selective regime by excitatory
input.

To apply a spatial relational concept to a reference object,
the spatial locations of target candidates are transformed (de-
picted by a diamond shape in Figure 2) into a reference frame
that is centered on the location of the reference object (see
Schneegans and Schoner (2012) for the neural dynamics of
coordinate transforms). The result feeds into the spatial re-
lation field, forming sub-threshold bumps of activation there.
That field receives additional sub-threshold input from any
activated spatial relation concept node with its characteristic
spatial pattern. Only where that pattern overlaps with input
from target candidates does the spatial relation field form a
peak. The reverse coordinate transform converts the peaks’
locations back into the reference frame of the visual array
and projects them onto the space attention field, effectively
enabling the model to eliminate all target candidates incon-
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sistent with the relation.

The architecture described here implements the spatial re-
lations TO THE LEFT OF, TO THE RIGHT OF, ABOVE, and
BELOW, all in the viewer centered reference frame. Previ-
ous work has presented similar architectures implementing
an object-centered reference frame, as well as movement re-
lations, such as TOWARD (Richter et al., 2017).

Generating sequences of processing steps

The interface between language and perceptual grounding is
a neural dynamical system that generates sequences of pro-
cessing steps. We assume here, for now, that the language
pre-processing system, which we do not model, specifies the
serial order of processing steps required to ground the lan-
guage input. Our architecture activates these processing steps
in a sequence that unfolds autonomously in time. Each step in
a sequence is represented by an ordinal node, whose connec-
tivity to other ordinal nodes enables their sequential activa-
tion (not shown in Figure 2; see Sandamirskaya & Schoner,
2010). Each ordinal node projects onto a processing step
(bottom left box in Figure 2), represented by an intention
node (labeled “i”’) that activates the step and a Condition-of-
Satisfaction (CoS) node (labeled “c”) that signals the comple-
tion of the step (Richter, Sandamirskaya, & Schoner, 2012).
Activation of the CoS nodes also triggers the transition to the
next ordinal node and, hence, the next processing step.

We propose four processing steps that together enable
the grounding of sentences comprising multiple concepts in
nested relations.

The select target candidates intention node is activated in
conjunction with a feature concept node that represents a cued
feature value of the target. It initiates the grounding of a
new target by boosting the target candidates field such that
it forms peaks at locations at which objects with matching
feature values receive spatial attention. When peaks have
formed, the CoS node is activated.

The reduce target candidates intention node is activated in
conjunction with a feature concept node or, in case a refer-
ence object has previously been selected, a spatial relation
concept node. It inhibits the farget candidates field, causing
all target candidate peaks to decay that do not receive excita-
tory support from the reduction field, i.e., that do not receive
spatial attention. The CoS node associated with this intention
node becomes active by default after a fixed time determined
by its time constant.

The select target intention node boosts the target selection
field, bringing it into a dynamic regime in which it can form
a single peak based on input from the farget candidates field.
When a peak has formed, the CoS node is activated.

The select reference intention node boosts the reference
field, bringing it into a dynamic regime in which it can form a
single peak, which then activates the CoS node. The selection
of where in the field a peak arises is guided by input from the
space attention field. When activated in conjunction with the
from mental map node, an object from the mental map instead



of the perceptual input is attended to and selected as reference
object.

We will demonstrate in the results section how activating
these four processing steps sequentially enables grounding
sentences of varying complexity.

Hypothesis testing Grounding combinations of relations
may require a form of hypothesis testing: The selection of
the target of one relation may depend on the outcome of the
grounding of another relation, which cannot be stated without
selecting the first target. Initial selection decisions must then
be made, but potentially also be reversed later. Reversing a
decision requires a neural representation of the failure to find
a suitable target or reference object. This is achieved through
the no target candidates node (labeled “ntc” in Figure 2). It is
excited by the reduce target candidates intention node and in-
hibited by the target candidates field. The node becomes ac-
tive if and only if the reduce target candidates intention node
is active while there is no peak in the target candidates field,
reflecting that all target candidates have been eliminated.

When the no target candidates node becomes active, its
global inhibitory projection onto the mental maps resets ac-
tivation in these, and the sequence generation mechanism is
re-initiated. The inhibition of return field retains a memory
of all objects previously selected as targets. It is defined over
visual space and is in the dynamic regime of self-sustained
peaks. By providing localized inhibitory input to the target
selection field, it biases the competition in favor of objects
that have not previously been selected.

Results

The architecture was implemented and simulated in the
graphical programming framework cedar (Lomp, Zibner,
Richter, Rané, & Schoner, 2013), which solves what is es-
sentially one large integro-differential equation numerically.
Simulation runs differ only in perceptual input and linguistic
description. The latter is supplied by the user by setting con-
nections between the ordinal nodes of the sequence genera-
tion system and the process and concept nodes. Parameters
of the model remained unchanged across simulations.

Table 1: Exemplary simulation results.

Linguistic description Image Target

the red horizontal rectangle

the red below a green

the red below the green and above the blue

the blue below the red below the green

We tested scenarios of varying complexity that differ in the
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number of features per object, the pattern of relations between
objects, and the number of distractors (Table 1). The model
handles the grounding of phrases about a single object with
multiple features, phrases with a relation between two ob-
jects, phrases with multiple relations, as well as phrases with
nested relations. In all cases, the model successfully finds an
object matching the linguistic description.

Figure 3 shows detailed activation time courses of rele-
vant nodes and fields generated while grounding the linguis-
tic description “There is a cactus below the tent and above
the camel. Find the blue object above that cactus.” in the
presence of the visual input depicted in the upper left of that
figure.

At 11, the sequence generation system has activated the
select target candidates intention node and the cactus node,
causing the locations of the three cacti to be memorized in
the target candidates field. At tp, the sequence generation
system has activated the select reference intention node and
the tent node, causing the location of the tent to be memo-
rized in the reference field. It has also activated the below
node, causing the spatial relation field to form peaks on the
relative positions of the two target candidates that are below
the tent. At #3, the sequence generation system has activated
the reduce target candidates intention node, which by t4 has
caused the target candidates to be reduced to those cacti that
receive spatial attention (reflected in the space attention field
and the reduction field), i.e., the cacti below the tent. Atzs, the
sequence generation mechanism has activated the select ref-
erence intention node and the camel node, causing the camel
to be stored in the reference field. It has also activated the
above node, causing the spatial relation field to form peaks at
the relative position of the target candidate that is above the
camel. At 76, the sequence generation mechanism has acti-
vated the reduce target candidates intention node, which by
t7 has caused the target candidates to be reduced to the cactus
above the camel. At rg, the sequence generation mechanism
has activated the select target intention node, causing the cac-
tus to be selected in the target selection field and to be stored
in the mental map. At t9, the sequence generation mecha-
nism has activated the select target candidates intention node
and the blue node, causing the three blue objects to be stored
in the target candidates field. At t1y, the sequence genera-
tion mechanism has activated the select reference intention
node in conjunction with the from mental map node (not in
Figure 3), as well as the cactus node. This causes the pre-
viously grounded cactus from the mental map to be attended
to, and to be stored in the reference field, effectively allowing
the grounding of the blue target object to refer to the refer-
ence cactus that was the target of a previous grounding step.
It has also activated the above node, causing the spatial rela-
tion field to form peaks on the relative position of the target
candidate that is above the reference cactus. At 11, the se-
quence generation mechanism has activated the reduce target
candidates intention node, which by t1, has caused the target
candidates to be reduced to the blue object which is above
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the cactus. At #13, the sequence generation mechanism has
activated the select target intention node, causing the target
object to be selected in the farget selection field.

Discussion

We have presented a neural dynamic architecture that grounds
spatial language in perception by sequentially combining
concepts. The model is a single dynamical system that
evolves in continuous time, and therefore solves the ground-
ing task without algorithmic control. We addressed the two
major challenges that this entails: First, the model allows
for a single word to appear in different grammatical roles by
coactivating its concept node with different process and pa-
rameter nodes, it allows the corresponding object represen-
tations to appear in different relational roles by representing
them in distinct neural populations, and it allows to establish
reference to previously grounded objects by directing atten-
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tion to the mental map instead of the perceptual input. Sec-
ond, the model allows for hypothesis testing by deactivating
prior choices when no match is detected and using inhibition
of return to avoid activation of the same hypothesis again.
Beyond the simulations reported, the model can ground more
complex constructions that are combinations of the phrases
listed in Table 1.

The assumption that the grounding of the individual ob-
jects proceeds sequentially, one object at a time, is supported
by empirical evidence. Logan (1994) found that the time
it takes to ground a relation between two objects increases
proportionally with the number of distractors that are distin-
guished from the two objects only by their spatial relation.
This suggests that discriminating object pairs based on their
spatial relation requires selective spatial attention, and that
the consideration of different candidate pairs proceeds se-
quentially. Franconeri, Scimeca, Roth, Helseth, and Kahn



(2012) review further evidence that objects are attended to
individually and sequentially in search tasks involving spa-
tial relations. Additionally, Holcombe, Linares, and Vaziri-
Pashkam (2011) found that applying spatial relations requires
selective attention to the objects, which can only happen se-
quentially. Further support comes from the fact that language
grounding usually proceeds in real time as a sequential lin-
guistic representation is processed, i.e., people raise attention
to the objects one by one as they are mentioned in a discourse
(Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995).

The assumption that the grounding proceeds by selecting a
set of target candidates through bottom-up attention and sub-
sequently iteratively eliminating them is also supported by
empirical evidence. In a series of experiments on the con-
current discrimination of different features (color, shape, and
motion) reported by Lee, Koch, and Braun (1999), it was
found that different discriminations draw on the same lim-
ited attentional capacities. Thus, attending to one feature
value comes at the expense of not being able to attend to
another feature value, even across modalities. This makes
it plausible that attention to the feature values proceeds se-
quentially. Moreover, Burigo and Knoeferle (2015) review at-
tentional studies during spoken language comprehension. In
these studies, it is found that upon processing a noun phrase,
the words in that phrase are processed in an incremental fash-
ion and constrain spatial attention to relevant target candi-
dates: Initially, spatial attention is not directed. Upon hear-
ing the first word specifying a feature value, spatial attention
is divided between all objects with that feature value. Sub-
sequently, upon hearing each new word denoting a feature
value, attention narrows down to all objects that have all fea-
ture values mentioned so far.

Our current research examines the limits of the complexity
the model can handle and asks if those limits may be reflected
in human performance. Furthermore, we examine the inter-
face between the model and language input.
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