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Abstract 

   A classic issue in the cognitive-science of human category 
learning has involved the contrast between exemplar and prototype 
models.  However, experimental tests to distinguish the models have 
relied almost solely on use of artificial categories composed of 
simplified stimuli.  Here we contrast the predictions from the models 
in a real-world natural-science category domain – geologic rock 
types. Previous work in this domain used a set of complementary 
methods, including multidimensional scaling and direct dimension 
ratings, to derive a high-dimensional feature space in which the rock 
stimuli are embedded.  The present work compares the category-
learning predictions of exemplar and prototype models that make 
reference to this derived feature space.  The experiments include 
conditions that should be favorable to prototype abstraction, 
including use of large-size categories, delayed transfer testing, and 
real-world natural category structures. Nevertheless, the results of 
the qualitative and quantitative model comparisons point toward the 
exemplar model as providing a better account of the observed 
results.  Limitations and directions of future work are discussed. 

Keywords: categorization; exemplar models; prototype models; 
high-dimensional similarity spaces 

Introduction 
A classic issue in cognitive science concerns the manner in 
which people represent categories in memory and make 
decisions about category membership.  Two of the major 
models of human categorization are exemplar and prototype 
models.  According to exemplar models, people represent 
categories by storing numerous individual examples of the 
categories in memory and classify objects on the basis of their 
similarity to the stored examples (Medin & Schaffer, 1978; 
Nosofsky, 1986).  By contrast, according to prototype models 
(Reed, 1972; Minda & Smith, 2001), people form summary 
representations, usually formalized as the central tendencies 
of the category distributions, and classify objects on the basis 
of their similarity to the prototypes. 

There is an enormous past literature that has contrasted the 
predictions from exemplar and prototype models.  However, 
to achieve needed controls, virtually all the research has 
contrasted the models in experiments using highly simplified 
perceptual stimuli and artificially designed category 
structures.  The key idea in the present work was to contrast 

the models in a domain involving real-world natural-science 
categories involving complex, high-dimensional stimuli.   

Our example target domain is rock classification in the 
geologic sciences.  Recent research suggests that the same 
principles govern the structure of rock categories as govern 
the structure of numerous other categories in the natural 
world (Nosofsky, Sanders, et al., 2018a,b).  For example, 
rock categories exhibit graded structures, with prototypical 
instances at their centers, but numerous less typical instances 
as well (cf. Rosch & Mervis, 1975).  Also, as is the case with 
other natural categories, the boundaries separating different 
rock categories from one another are often fuzzy, and the 
category distributions can sometimes even overlap (cf. 
McCloskey & Glucksberg, 1978).  Finally, we think rock 
classification is an intriguing domain to study because, 
despite people’s general familiarity with rocks, a relatively 
small percentage of people arrives to the lab with very much 
prior knowledge of their detailed category structures.  Thus, 
one can maintain careful control of people’s learning 
histories in laboratory settings. 

In recent work, Nosofsky and colleagues demonstrated 
success in using an exemplar model to account for 
classification learning and generalization in the rocks domain 
(Nosofsky et al., 2018a, 2019).  However, most of the 
experiments involved cases in which there were only three 
training exemplars per category and in which transfer tests 
took place immediately after initial training.  In the present 
work we conducted a rock-category learning experiment that 
we thought would be quite challenging to the predictions 
from exemplar models.  First, participants learned to classify 
rock images into 10 igneous-rock categories defined by 9 
training examples each (90 total).  Past research has 
characterized size-9 categories as large in size and conducive 
to prototype abstraction (Homa et al., 1981).  Second, our 
experiment included a delayed testing phase, with a one-week 
interval between initial training and subsequent test.  Classic 
work argues that any exemplar-based category knowledge 
tends to be short-lived, but that the representation of the 
prototype is durable over time (Homa et al., 1981; Posner & 
Keele, 1970).  Third, as we have already emphasized, the 
rocks domain is a real-world natural-category domain 
involving complex high-dimensional stimuli.  If natural 
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categories are organized around prototypes, as theorized in 
classic work, then testing the models in this natural domain 
might also confer advantages to prototype models. 

 Our model comparisons will involve both qualitative and 
quantitative contrasts between the competing models.  Initial 
qualitative contrasts will examine overall performance 
patterns during a test phase that includes old training 
examples from the categories and novel transfer items of 
varying degrees of similarity to the original training 
examples.  Included among the novel transfer items are a set 
of photoshopped rock images that we explicitly constructed 
to be highly similar to specific training items from each 
category, yet clearly discriminable from the parent rocks 
from which they were created. We will refer to these 
photoshopped transfer stimuli as the high-similarity 
neighbors (HSNs): An example is shown in Figure 1.  The 
intuition is that if the training examples of the categories are 
really stored in memory, then when tested with a HSN, 
people may be reminded of the specific parent training rock 
from which it was created, thereby enhancing their 
classification performance (Ross et al., 1990).  In addition to 
assessing overall qualitative performance patterns across 
different item types of the categories, we also conduct 
detailed quantitative fitting of the models to classification-
probability data observed at the individual-item level.  As 
explained below, the models are fitted to the data by making 
reference to a high-dimensional feature-space representation 
for the rock stimuli that has been derived using a variety of 
complementary methods.  The goal is to evaluate the ability 
of the competing models to account for extremely rich sets of 
classification data: namely, the probability with which 
participants classify each individual rock image into each of 
the 10 candidate categories during both immediate and 
delayed test phases. 

 
Figure 1. Example HSN transfer item and its parent rock.  

Method 

Participants 
There were 67 participants from the Indiana University 
community.  The participants all had normal or corrected-to-
normal vision and all reported having normal color vision.  
All reported that they had little or no previous experience in 
rock classification.  Each participant received $40 in 
compensation, $15 for an initial session involving a training 
phase and an immediate-test phase, and $25 for completing a 
one-week-delayed test phase.  Nine participants did not return 

for the one-week-delayed test phase; we do not include these 
participants’ data in the analyses. 

Stimuli and Apparatus 
The stimuli were 120 rock images from the igneous-rock 
image set described in previous articles (Nosofsky et al., 
2018a,b).  In addition, we created 30 photoshopped rock 
images (the high-similarity neighbors; HSNs), with each 
HSN highly similar to a specific “parent rock” image used 
during the training phase.  The HSNs were either slightly 
lighter or darker than the corresponding parent image and 
were rotated a variable number of degrees from the original 
orientation of the parent rock. In addition, the edge of the 
parent rock was manually cropped to change the parent rock’s 
shape outline.  As a manipulation check, we conducted 
similarity-scaling work involving the HSNs (a detailed report 
goes beyond the scope of this article) to confirm that they 
were judged to have a relatively high degree of similarity to 
their parent rocks but were clearly discriminable from them. 
  The experiment was run on PCs and each participant was 
tested individually in a private, sound-attenuated booth. 

Procedure 
Each of the 10 rock categories comprised 15 members:  9 
randomly selected training items, 3 standard transfer items, 
and 3 HSN transfer items. The experiment started with a 
training phase: each of the 90 total training examples was 
shown once per block in a random order across 6 blocks for 
a total of 540 training trials.  On each trial of the training 
phase, a rock image was presented on the screen and the 
participant attempted to classify it into one of the 10 
categories.  Immediate feedback was provided on each trial 
informing the participant of the correct category response.   

Following training there was an immediate test phase.  For 
each category, in addition to the 9 old training examples, 
participants were presented with the 3 novel standard transfer 
items and the 3 HSN transfer items.  The test phase was 
organized into 6 blocks of 75 trials each, with each item 
presented 3 times in a balanced random order across blocks.  
To keep participants engaged in the task, corrective feedback 
was provided on one-third of the trials in which old training 
examples were presented; no feedback was provided on trials 
in which new transfer items were presented.  Following an 
approximately one-week delay, participants were tested in a 
delayed test phase.  The procedure for the delayed test phase 
was the same in all respects as the immediate one, except no 
corrective feedback was provided on any trials. 

Results 
In Figure 2 we plot mean proportion correct in both test 
phases, averaged across all 10 categories, for the three main 
item types: the old training examples, the standard transfer 
items, and the HSN transfer items.  As is clear from 
inspection, in both test phases, performance was best on the 
old training examples, intermediate on the HSN transfer 
items, and worst on the standard transfer items.  The finding 
that performance was better on the old training examples than 
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on the novel transfer items is consistent with the view that 
classification decision making was based, at least in part, on 
memories for the individual training examples themselves.  
The pattern of results challenges the predictions from pure 
prototype models, because each of the item types has roughly 
equal distance to the category prototypes. 
 

 
Figure 2: Mean proportions of correct responses for the 

item types in the immediate and delayed conditions.  Error 
bars are within-subject standard errors. 

 
  A more nuanced version of the prototype model that has 
been proposed in the literature is a mixed prototype-plus-
rote-memory (PRM) model (e.g., Medin & Schaffer, 1978; 
Minda & Smith, 2001). According to this model, the 
prototype plays the dominant role in the category 
representation.  However, the model makes allowance for the 
possibility that learners also form all-or-none rote memories 
for some of the examples.  If an old example is tested, and the 
rote memory for that example has been formed, then people 
can use the rote memory to correctly classify the item; 
otherwise they rely on the prototype.  Clearly, the PRM 
model blurs the distinction between exemplar and prototype 
models.  In addition, unlike the pure prototype model, the 
PRM model can predict a performance advantage for the old 
training examples.  However, as formalized in the literature, 
the PRM model fails to predict any difference in performance 
between the standard transfer items and the HSN transfer 
items -- both tend to be the same distance from their category 
prototypes.  By contrast, the exemplar model predicts an 
advantage for the HSN transfer items, because it explicitly 
assumes that people can make use of their specific exemplar-
based memories to generalize to novel items.  As is seen in 
Figure 2, in both the immediate and delayed tests, overall 
performance was higher for the HSN transfer items than for 
the standard transfer items – again strongly suggesting the 
operation of exemplar-based generalization processes. 

Figure 3 shows the results broken down by the individual 
10 categories in the immediate test (the results from the 
delayed test were extremely similar).  Overall, most of the 
individual categories show the same pattern of results as for 
the grand-averaged data, so the effects are reasonably 
general. However, there are a couple of exceptions (basalt 
and diorite); we consider these in more detail below. 

 
Figure 3: Immediate Test.  Observed (red=training, 
green=standard transfer, blue=HSN) and predicted 

proportion correct by individual rock category. Dots= 
exemplar predictions, x’s=prototype predictions, squares= 

PRM predictions. 

Formal Modeling Analyses 
Although the qualitative comparisons described above 
provide initial evidence pointing in the direction of exemplar-
based generalization processes, the central goal of the work 
involves quantitative model-fitting comparisons between the 
competing models.  As representatives from the classes of 
exemplar and prototype models we use Nosofsky’s (1986) 
generalized context model (GCM) and its prototype analogue 
(Nosofsky, 1987, p. 102).  The steps in the model-fitting are 
as follows:  First, one derives a high-dimensional feature-
space representation in which the rock stimuli are embedded; 
second, one computes similarity relations between test items 
and the individual rock exemplars and category prototypes by 
making reference to this feature space; and third, one 
substitutes the computed similarities into well-known choice 
rules that predict the probability with which each individual 
test item is classified into each of the alternative categories. 

Feature-Space Representation 
Using a variety of methods, Nosofsky et al. (2018b, 2019; 
Sanders & Nosofsky, 2018, 2020) have devoted extensive 
work to building a high-dimensional feature-space 
representation for a set of 360 rock-image samples, including 
the 120 igneous-rock samples tested in the present 
experiment.  In some studies, they conducted 
multidimensional-scaling (MDS) analyses (Lee, 2001; 
Shepard, 1980) of matrices of pairwise similarity-judgment 
data for the rock images. Based on a combination of overall 
fit and interpretability of the resulting dimensions, the 
researchers initially settled on an 8-dimensional scaling 
solution, in which the dimensions could be easily interpreted 
in terms of:  lightness vs. darkness, average grain size, 
smoothness vs. roughness, shininess, organization, 
chromaticity, red-green hue, and shape-related components 
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(for interactive displays of the MDS solution, see 
https://osf.io/w64fv/). Although these dimensions provided 
an excellent account of the similarity-judgment data, 
subsequent research made clear that, in the context of 
independent classification-learning experiments, observers 
also made use of more subtle emergent dimensions that were 
highly diagnostic of category membership (Nosofsky et al., 
2019; Sanders & Nosofsky, 2020).  Nosofsky et al. (2019) 
supplemented the original MDS space with these “missing” 
dimensions by having independent groups of participants 
provide direct dimension ratings for them.  The 
supplementary dimensions included:  porphyritic texture, 
presence of holes, pegmatitic texture, greenness of hue, and 
conchoidal fracture (see Nosofsky et al., 2019, for details).  
In addition, for purposes of the present study, we also 
collected additional similarity-judgment data (analyzed 
through MDS) and ratings on the supplementary dimensions 
in order to embed the 30 HSN items in the same feature-space 
representation as the original 120 igneous rock images.  A 
detailed description of these MDS analyses for the HSN 
stimuli goes beyond the scope of this brief report. 

Similarity Computation 
As in past work, we assume that the original eight MDS 
dimensions and the supplementary ones lie in a common 
Euclidean space.  The distance between test item i and 
exemplar j is given by 
 
    dij =  [  ∑|xim- xjm|2  +  ∑wm|x’im- x’jm|2 ]1/2,               (1) 
 
where xim is the value of item i on dimension m in the MDS 
space; x’im is the value of item i on supplementary-dimension 
m; and wm is the weight given to supplementary-dimension 
m. Here, we have assumed for simplicity that the observers 
give equal attention-weight to the original 8 MDS 
dimensions; for scaling convenience, these weights are set at 
one.  However, weights on each of the supplementary 
dimensions need to be estimated because the manner in which 
the psychological scales of the directly rated supplementary 
dimensions relate to one another and to the initial MDS 
dimensions is unknown – see Nosofsky et al,. 2019 for 
extensive discussion. 
   Following Shepard (1987), the similarity between item i 
and exemplar j is an exponential decay function of their 
distance, 
                      sij  = exp(-c·dij),                                      (2) 
 
where c is an overall sensitivity parameter that measures the 
rate at which similarity declines with distance in the space. 
   The values of the prototypes on each dimension are 
computed by averaging across the dimension values 
associated with each of the individual training examples of 
each category.  The similarities of any given test item to the 
prototypes are then computed by using equations analogous 
to Equations 1 and 2 above. 

Classification Decision Rules 
According to the GCM, the probability with which item i is 
classified in Cat J is found by summing the similarity of i to 
all the training examples of Cat J and dividing by the summed 
similarity of i to all training examples of all categories: 
 

                  ܲሺܬ|݅ሻ ൌ 	
൫∑ ௦೔ೕೕ∈಻ ൯

ം

∑ ሺ∑ ௦೔ೖೖ∈಼ ሻം಼
                                   (3) 

 
where γ is a response-scaling parameter.  As γ grows larger 
in magnitude, observers respond more deterministically with 
the category that yields the largest summed similarity. 
   According to the prototype-plus-rote-memory (PRM) 
model, if test-item i is a member of Cat J, then the probability 
that it is correctly classified into Cat J is given by 
 
       P(J|i)  =  pmem + (1-pmem)· [ (siJ)γ / ∑( siK)γ],                (4a) 
 
where siJ is the similarity of item i to the prototype of Cat J 
(computed using equations analogous to Eqs. 1 and 2 above); 
and pmem is the probability that the observer uses a rote 
memory for test-item i to correctly classify it into Cat J. If 
test-item i is not a member of Cat J, then the probability that 
the observer classifies it into Cat J is given by 
 
       P(J|i)  =  (1-pmem)· [ (siJ)γ / ∑ (siK)γ].                           (4b) 
 
The pure-prototype model is a special case of (4a) and (4b) 
in which pmem = 0. 
     The present version of the GCM makes use of 7 free 
parameters: the sensitivity parameter c, response-scaling 
parameter γ, and 5 weights (wm) associated with each of the 
5 supplementary dimensions.  As explained in previous 
articles (e.g., Nosofsky & Zaki., 2002, p. 926), the parameters 
c and γ are mathematically non-identifiable within the 
prototype model (one can estimate only their product), so we 
arbitrarily set γ=1 in the prototype models.  Thus, the PRM 
model uses 7 free parameters (c, pmem, 5 wm’s); and the pure-
prototype model uses 6 free parameters (with pmem=0).  The 
model fits are evaluated by using the Bayesian Information 
Criterion, BIC = -2ln(L) + Pln(N), where L is the maximum-
likelihood of the data given the model, P is the number of free 
parameters in the model, and N is the number of observations 
in the data set.  The model that minimizes BIC is viewed as 
providing the best fit.  Using multiple random starting 
configurations, we used the Hooke and Jeeves (1961) search 
algorithm to locate the best-fitting parameters. 

Model-Fitting Results 
In Figure 4 we provide scatterplots of the maximum-
likelihood fits from the GCM and pure-prototype model to 
the data from the immediate test phase.  (The scatterplots for 
the delayed test phase showed extremely similar patterns, but 
space limitations prevent us from displaying them in this brief 
report.) Recall that in each test phase, observers classified 
150 rock items into 10 different categories.  Each point in 
each scatterplot indicates the probability that a particular item 
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was classified into a particular category; thus, there are 1500 
points in each plot.  For each item, the probability of correct 
classification is indicated using a geometric symbol (decoded 
in the figure caption).  In addition, for each item, the 
probabilities of the remaining nine incorrect classifications 
are indicated with small dots.  The y-axis shows the observed 
probabilities, whereas the x-axis shows the predicted ones. 

 

 
Fig 4. Item-level predictions from the models. 1=andesite, 

2=basalt, 3=diorite, 4=gabbro, 5-granite, 6=obsidian, 
7=pegmatite, 8=peridotite, 9=pumice, 10=rhyolite. 

    
  Comparing the results of the GCM (top panel) to those of 
the prototype model (bottom panel), it is clear that the GCM 
provides a far superior fit to the data.  The conclusion drawn 
from visual comparisons of the Figure 4 scatter plots is 
confirmed by the BIC fits of the models to the data, which are 
reported in Table 1: In both the immediate and delayed test 
phases, the BIC is dramatically smaller for the GCM than for 
the prototype model.  To gain deeper insights into these 
results, in Figure 3 we show the averaged predictions from 
the models for each of the individual item types in each 
category – the predictions from the GCM are shown as black 
dots and those of the prototype model as x’s.  In general, the 
GCM predicts well the results for the old training items and 
for the HSN transfer items; however, it tends to under-predict 
the accuracies associated with the standard transfer items.  

We consider likely reasons for the latter result below.  By 
contrast, the prototype model under-predicts the accuracies 
associated with all three item types in most of the categories.  
Thus, the model-fitting results converge strongly with the 
qualitative patterns described earlier in suggesting a strong 
role of exemplar-based classification processes. 
 
 

Table 1: BIC Fits of Models 
 

It was more difficult to tell apart the quantitative 
predictions of the exemplar model and the PRM model (full- 
prediction scatterplot not shown in this brief report).  This is 
not surprising, because the rote memory model’s assumption 
that numerous individual exemplars are stored blends 
together the assumptions from the two classes of models.  
Nevertheless, the BIC fit achieved by the exemplar model is 
still far better than that achieved by the PRM model in both 
the immediate and delayed conditions (see Table 1).  More 
importantly, focused qualitative comparisons continue to 
favor the predictions from the exemplar model.  The 
predictions from the PRM model for the individual item types 
in each category are depicted as open squares in Figure 3.  
Although this version of the prototype model predicts 
correctly the accuracies for the old training examples 
(because it allows rote memory for those items), it still under-
predicts the accuracies for the HSN items because it makes 
no allowance for generalization from the stored examples. 

Earlier in our article, we noted that for a couple of 
categories (basalt and diorite), participants did not classify 
the HSN transfer items with higher accuracy than the 
standard transfer items.  Interestingly, as can be seen in 
Figure 3, the models provide a partial account of this finding.  
Recall that the specific stimuli that served as HSN-transfer 
items versus standard-transfer items were selected randomly 
for each category.  Apparently, by chance, the particular 
stimuli chosen to serve as HSN-transfer items in the basalt 
and diorite categories were located in difficult-to-classify 
regions of the rock-feature space.  For example, they may 
have been located near the boundaries that separated basalt 
and diorite from contrasting categories in the space.  The 
more important result is that, considered across all categories, 
the HSN-transfer stimuli were classified with higher 
accuracy than the standard ones, providing clear evidence for 
exemplar-generalization processes. 

Earlier in our article, we also acknowledged a tendency for 
the exemplar model to underestimate accuracies associated 
with the standard transfer stimuli.  One possibility is that the 
result may be pointing in the direction of a high-parameter 
mixed model that allows generalization to both exemplar and 

Model Condition BIC 
GCM Immediate 39,952 
Prototype Immediate 45,304 
PRM 
 

Immediate 41,090 

GCM Delayed 46,921 
Prototype Delayed 49,461 
PRM Delayed 47,350 
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prototype representations. Although a detailed report goes 
beyond the scope of this article, we formalized such a model 
and fitted it to the data: In brief, the high-parameter mixed 
model yielded slightly improved BIC fits to the data, but still 
systematically under-estimated the accuracies associated 
with the standard transfer stimuli. 

We believe that a more likely reason for the under-
estimation is that more work remains to develop a fully 
comprehensive feature space for the rock stimuli.  As 
documented by Nosofsky et al. (2019), participants in these 
experiments appear to be highly adept at discovering features 
that are useful for purposes of classification and that tie 
categories together (cf. Austerweil & Griffiths, 2013; Schyns 
et al., 1998).  Although Nosofsky et al. made progress in 
identifying such supplementary dimensions for the present 
domain, more work along these lines is undoubtedly needed. 

Discussion 

Summary 
This study is among the first to have conducted rigorous 
comparisons between predictions of exemplar and prototype 
models in a high-dimensional natural-category domain in 
which the history of training examples experienced by the 
learners was placed under careful experimental control.  In 
addition, the design had attributes that theorists have argued 
should be conducive to prototype abstraction, including 
reasonably large category sizes, large numbers of distinct 
training examples, delayed testing, and use of naturally-
occurring category structures.  Nevertheless, the patterns of 
qualitative results and quantitative modeling comparisons 
provided compelling evidence for a role of exemplar-based 
classification and generalization processes.  

Relations to Other Recent Work 
A line of closely related recent work is the interesting and 
ambitious study reported by Battleday, Peterson, and 
Griffiths (2019).  These researchers collected classification 
choice data for 10,000 images from 10 real-world categories 
(Krizhevsky & Hinton, 2009).  In apparent contrast to the 
results reported in the present study, these researchers found 
that prototype models yielded quantitative fits to the data that 
were as good as or better than the exemplar model.  However, 
there are numerous differences between the studies that make 
comparisons of the results difficult.  First, rather than using 
MDS-based approaches, Battleday et al. obtained feature 
representations for the images by extracting activations from 
the final pooling layer of deep-learning networks that had 
been trained to classify the images. It is an open question 
whether these highly derived pooling-layer activations 
should be regarded as fundamental “building-block” features 
composing objects.  Second, the good-fitting prototype 
models used complex Mahalanobis-distance functions, with 
ten times as many free parameters as the distance function 
used for the good-fitting exemplar model.  Third, because the 
researchers tested categories for which the observers had a 
lifetime of prior knowledge, the training examples that 

guided the development of the category representations were 
unspecified.  To fit the data, the researchers therefore 
randomly sampled training items from the complete category 
distributions across different runs of the models. By contrast, 
in the present study, the learning histories of the participants 
were placed under strict experimental control and the specific 
training exemplars were known.  Any one of these major 
differences in approach across our studies would likely have 
an enormous impact on the results and conclusions. 

Limitations and Future Research Directions 
We made efforts in this research to test conditions that 
previous work suggested should be challenging to exemplar 
models.  Nevertheless, it may be that more extreme 
manipulations are needed to provide compelling evidence for 
a role of prototype abstraction.  Thus, future research might 
test even larger-size categories or greater delays between 
initial study and subsequent test than were used here. 
   In addition, the present research considered models at only 
two endpoints of a continuum between specific exemplar 
storage and prototype abstraction.  Important models have 
been developed that lie intermediate along this continuum, 
such as models that allow for formation of multiple 
prototypes or clusters (Anderson, 1991; Love, Medin, & 
Gureckis, 2004; Sanborn, Griffiths, & Navarro, 2010; 
Vanpaemel & Storms, 2008).  The extent to which the rock 
categories examined here may be well characterized in terms 
of multiple distinct clusters remains unknown.  Thus, future 
research should examine whether the multiple-prototype 
models might yield improved accounts of the present data. 
   Finally, within the framework of the exemplar model, more 
work is needed to flesh out the detailed cognitive processes 
involved in learning, forgetting, and selectively attending to 
diagnostic information.  In the present work, for simplicity, 
we assumed that the complete set of presented exemplars was 
stored, and with each exemplar stored at full strength. More 
general versions of the model allow for probabilistic 
exemplar storage and with individual examples stored with 
differential memory strengths.  Likewise, any forgetting that 
occurred across immediate and delayed testing was modeled 
primarily in terms of decreases in the overall memory 
sensitivity parameter (c in Equation 2).  However, a fuller 
account of forgetting would make allowance for processes 
such as probabilistic loss of stored examples from memory, 
decreases in memory strength, and loss of memory for the 
category labels attached to the stored examples.  Finally, a 
core assumption of exemplar models has always been that 
observers selectively attend to those dimensions of items that 
are most diagnostic for purposes of categorization.  However, 
in cases in which observers are attempting to discriminate 
simultaneously among members of 10 categories, as in the 
present experiment, the relevant directions in the space will 
vary dramatically depending on which particular category 
contrasts the observer is considering at any point in time.  
Future work is needed to flesh out the kinds of dynamic 
changes in selective attention that likely operate during the 
time course of categorization decision making.   
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