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Abstract

Probability matching—where subjects given probabilistic in-
put respond in a way that is proportional to those input
probabilities—has long been thought to be characteristic of
primate performance in probability learning tasks in a vari-
ety of contexts, from decision making to the learning of lin-
guistic variation in humans. However, such behaviour is puz-
zling because it is not optimal in a decision theoretic sense;
the optimal strategy is to always select the alternative with the
highest positive-outcome probability, known as maximising
(in decision making) or regularising (in linguistic tasks). While
the tendency to probability match seems to depend somewhat
on the participants and the task (i.e., infants are less likely
to probability match than adults, monkeys probability match
less than humans, and probability matching is less likely in
linguistic tasks), existing studies suffer from a range of defi-
ciencies which make it difficult to robustly assess these dif-
ferences. In this paper we present three experiments which
systematically test the development of probability matching
behaviour over time in simple decision making tasks, across
species (humans and Guinea baboons), task complexity, and
task domain (linguistic vs non-linguistic). In Experiments 1
and 2 we show that adult humans and Guinea baboons exhibit
similar behaviour in a non-linguistic decision-making task and,
contrary to the prevailing view, a tendency to maximise (ba-
boons) or significantly over-match (humans) rather than prob-
ability match, which strengthens over time and more so with
greater task complexity; our non-human sample size (N = 20
baboons) is unprecedented in the probability-matching litera-
ture. Experiment 3 provides evidence against domain-specific
probability learning mechanisms, showing that human subjects
over-match high positive-outcome probabilities to a similar de-
gree across linguistic and non-linguistic tasks. Our results sug-
gest that previous studies may simply have insufficient trials to
show maximising, or be too short to show maximising strate-
gies which unfold over time. We thus provide evidence of
shared probability learning mechanisms not only across lin-
guistic and non-linguistic tasks but also across primate species.
Keywords: probability matching; comparative psychology;
domain-general; decision making; language variation

Introduction
Probability matching strategies have long been thought to be
characteristic of primate performance in probability learn-
ing tasks in a variety of contexts, from decision making
across species to the learning of linguistic variation in hu-
mans. Probability matching occurs when subjects given
probabilistic input respond in a way that is proportional to the

input probabilities. However, such behaviour is not optimal
in a decision theoretic sense; the optimal decision strategy
is to always select the alternative with the highest positive-
outcome probability, known as maximising (or regularising,
in linguistic tasks). For instance, suppose one has to choose
between two sources with different positive-outcome proba-
bilities, one with positive outcomes on 70% of trials and an-
other with positive outcomes on 30% of trials. While (full)
maximising would secure positive outcomes 70% of the time,
probability matching behaviour (where responses are selected
in a 70-30 ratio) would lead to positive outcomes only 58%
of the time ((0.7×0.7)+(0.3×0.3) = 0.58). Behaviour that
does not reflect full maximising but still increases the proba-
bility of positive outcomes over probability matching is often
referred to as over-matching—i.e., subjects over-match high
positive-outcome probabilities (although not categorically).

Despite its suboptimality, probability matching behaviour
has been extensively reported in decision making experiments
in humans (e.g., Neimark & Shuford, 1959; Hudson Kam &
Newport, 2005; Erev & Barron, 2005; however, cf. Vulkan,
2000), non-human primates (e.g., Wilson, Oscar, & Bitter-
man, 1964; Lau & Glimcher, 2005, 2005), and in the animal
world more broadly (e.g., Bullock & Bitterman, 1962). While
very few studies have directly compared behavioural dif-
ferences between primate species, propensity to probability
match may nevertheless differ across species: existing stud-
ies suggest that monkeys (N = 2 to 8) can adopt maximising
strategies more readily than humans (Parrish, Brosnan, Wil-
son, & Beran, 2014; Brosnan, Wilson, & Beran, 2012). More-
over, there is evidence of a difference across ages in humans:
while adult humans probability match in probability learn-
ing tasks, children tend to use maximising strategies instead
(Derks & Paclisanu, 1967). However, this difference seems
to only hold for simple binary prediction tasks: increasing the
complexity of the task by introducing three or four alterna-
tives is more likely to lead to maximising or at least increased
over-matching behaviour (Gardner, 1957; Weir, 1972). Al-
together, these results suggest that readily-available probabil-
ity matching behaviour might be restricted to adult humans
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and simple binary decision making tasks (see, e.g., Koehler
& James, 2010; Vulkan, 2000).

Recent studies further suggests that the propensity to prob-
ability match might differ across domains: work compar-
ing probability matching behaviour across linguistic and non-
linguistic domains suggests that adult humans are less likely
to probability match in linguistic tasks (Ferdinand, Kirby,
& Smith, 2019). Nonetheless, asymmetries across ages and
complexity degree remain the same in the linguistic domain:
adults are more likely to probability match than children
(Hudson Kam & Newport, 2005) and in tasks with fewer al-
ternatives (Ferdinand et al., 2019). These differences across
species, age groups and domains have been taken to suggest
that the regularisation of linguistic variation over time might
be driven by domain-specific biases as well as by domain-
general and species-general biases.

In sum, despite substantial evidence on probability match-
ing behaviour in the animal world, there are questions over
the generalisability of probability matching behaviour across
species, age groups, domains, and degrees of complexity
(amongst other factors, see, e.g., Vulkan, 2000). However,
we hitherto lack the required comparative work to robustly
assess these asymmetries. In this paper we present a series
of three experiments which aim to systematically test differ-
ences in behaviour in simple decision making tasks across
primate species, degrees of complexity and domains. Ex-
periments 1 and 2 compare probability matching behaviour
over time in adult humans and Guinea baboons (Papio pa-
pio) with a hitherto unmatched sample size (N = 20 baboons),
with tasks including different degrees of complexity (two or
three alternatives). Using a similar methodology, Experiment
3 compares probability matching across domains (linguistic
and non-linguistic) and degrees of complexity in humans.

Experiment 1: Maximising in Guinea baboons
Materials and Methods
We ran an experiment where, on each trial, participants were
presented with geometric shapes and had to select one; dif-
ferent shapes had different probabilities of reward. We ma-
nipulated two factors: the number of shapes (two or three)
and the reward ratios (skewed or uniform). The four con-
ditions product of these two manipulations had the following
reward ratios: 70:30 (skewed, two shapes), 70:15:15 (skewed,
three shapes), 50:50 (uniform, two shapes) or 33:33:33 (uni-
form, three shapes). All factors were manipulated within-
participant; the order of the conditions was assigned ran-
domly per participant. All shapes were different across con-
ditions. The preregistered design and analysis plan for this
experiment is accessible at osf.io/evxk4.

Participants Guinea baboons (Papio papio) belonging to a
large social group (of 25) from the CNRS Primate Center in
Rousset-sur-Arc (France) participated in this study. Progress
through training onto testing was conditioned on performing
at criterion: participants were required to complete a condi-
tion in no more than a week. Following this criterion, we

excluded the data from five baboons across conditions (final
N = 20). Participants were 4 males (median age 4 years, min
= 3, max = 12) and 16 females (median age 9 years, min =
1.5, max = 24).

The study was conducted in a facility developed by J.F. (for
further information, see Fagot & Paleressompoulle, 2009;
Fagot & Bonté, 2010). The baboons live in an outdoor en-
closure (700m2) connected to 10 computerised testing booths
to which baboons have free access. Identification of the sub-
jects within each testing booth is made possible thanks to two
bio-compatible 1.2 by 0.2 cm RFID microchips implanted in
each baboon’s forearm. The baboons can thus participate in
an experiment whenever they choose, and do not need to be
captured to participate. The test program allows an indepen-
dent test regime for each baboon, irrespective of the test booth
it is using. Puffed rice grains are used as reward. Baboons
were neither water- nor food-deprived during the research.

Procedure On each trial, participants saw a set of coloured
shapes (two or three shapes, randomly positioned on a touch
screen) and were prompted to select one. Each shape lead to
a reward according to the ratio specified by the condition—
70:30 (Skewed 2), 70:15:15 (Skewed 3), 50:50 (Uniform 2)
or 33:33:33 (Uniform 3). If the participant selected the target
shape for a given trial, they were rewarded (with a rice puff).
If the target shape was not selected, the participant proceeded
to the next trial without reward after a short delay (where a
green screen signalling failure was shown). Participants com-
pleted 10 blocks of 240 trials; the reward ratios were constant
across blocks within a given condition.

Analysis Our main hypotheses are that (1) subjects will
maximise in the presence of a skewed reward distribution i.e.
where one shape provides reward with a higher probability
than the others, and (2) will do so more in the presence of
three rather than two shapes as the number of probabilities to
track increases and the difference between the probability of
high-reward and low-reward shapes is greater.

As per the preregistered analyses, and following Ferdinand
et al., 2019, we analysed the entropy drop of the set of re-
sponses (the output entropy minus the input entropy). If par-
ticipants select the higher-rewarding shape more often, the
variability of the set of responses will decrease thus lower-
ing its entropy. For conditions with skewed distributions of
reward we additionally analysed the choice of the optimal re-
sponse (whether or not subjects choose the shape with the
highest reward probability), which will confirm whether the
entropy drop we observe is indeed driven by the maximisa-
tion of the number of correct predictions.

We analysed entropy drop using a linear mixed-effects
model, with probability distribution of reward (skewed vs.
uniform), number of shapes (three vs. two) and block as
fixed effects. We included random intercepts for participant
and by-participant random slopes for all fixed effects. The
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Figure 1: Summary of results for Experiments 1 (baboons, a-b) and 2 (humans, c-d). Top row: entropy drop across all four conditions in
baboons (a) and humans (c). Bottom row: proportion of optimal responses in conditions with a higher-rewarding alternative (Skewed) in
baboons (b) and humans (d). We show the means and standard errors as well as the individual data points (colour-faded). The grey dashed
lines represent the input entropy (a–c) and the input reward probability of the higher-rewarding alternative (b–d). Coloured dashed lines in
a–c represent the maximum entropy drop in Skewed 2 (orange) and Skewed 3 (blue).

proportion of optimal responses was analysed using a logis-
tic mixed-effects model with number of shapes and block
as fixed effects, by-participant random intercepts and by-
participant slopes for all fixed effects. Categorical effects
were simple coded so levels are compared to each other di-
rectly but the intercept is the grand mean across levels.

Results
Entropy drop A visual inspection of the results (Figure 1a)
suggests that, in conditions with skewed reward distributions,
the entropy of the response system decreases by block and
approaches the maximum entropy drop. In contrast, entropy
drop in conditions with uniform reward distributions stays
around 0 throughout blocks. The results from the linear re-
gression model confirm these observations. The model’s in-
tercept suggests a significant drop in entropy already in the
first block of trials (β=−0.405, se= 0.027, p< 0.001); how-
ever, this drop is less pronounced in conditions with uniform
reward distributions (β= 0.244, se= 0.028, p< 0.001)—and
even less so in Uniform 3 (β = 0.070, se = 0.011, p < 0.001).
We also found a significant decrease in entropy by block
(β = −0.028, se = 0.004, p < 0.001), however, this de-
crease was not as pronounced across conditions: it is signifi-
cantly flatter in uniform conditions (β = 0.014, se = 0.002,

p < 0.001). The model further suggests that entropy de-
creases by block more with three shapes (β = −0.007, se =
0.002, p = 0.001). However, this difference is not necessar-
ily indicative of stronger maximising behaviour with three
shapes and can be explained by the differences in the max-
imum entropy drop across conditions (see Figure 1a).

Proportion of optimal responses Figure 1b shows the pro-
portion of optimal responses in Skewed conditions. A visual
inspection of the results suggests that the proportion of op-
timal responses is higher than in the input ratio of reward
(70%) from the first block of responses, and that it increases
with block to reach ceiling across conditions by the fourth
block. The results from the logistic regression model con-
firm these observations. The model’s intercept coefficients
(β = 2.231, se = 0.141) suggest that participants choose the
optimal responses significantly above 70% in block 1 (z =
9.823, p < 0.001), thus confirming that participants signifi-
cantly over-match from very early on. The significant effect
of block (β = 0.451, se = 0.049, p < 0.001) shows that the
proportion of optimal responses increases further by block.
We did not find a significant effect of the number of shapes
(β = −0.096, se = 0.101, p = 0.342) or its interaction with
block (β = 0.015, se = 0.008, p = 0.083), confirming thus
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that the difference we found with entropy drop between num-
ber of alternatives was not driven by differences in maximis-
ing behaviour.

Experiment 2: Maximising in adult humans
Materials and methods
Experiment 2 adapted Experiment 1 to adult human partici-
pants. The design was as per Experiment 1 modulo the im-
plementation of a between-participants design and the reduc-
tion of the total number of trials to 240 (to better suit the
time constraints of a web experiment). The preregistered de-
sign and analysis plan for this experiment is accessible at
osf.io/b3nke.

Participants We recruited 80 participants (N=20 per condi-
tion) through Amazon Mechanical Turk for a ten-minute long
session. Participants were all over 18 years old, based in the
US and had approval ratings of > 95%. There were no further
requirements aside from successfully completing a series of
bot-screening questions to start the experiment, and finishing
it in less than 50 min; no participants were excluded based on
these criteria. Participants were paid a base rate of $2 plus
they received a bonus of $0.02 (rather than a rice puff) for
each correct image chosen.

Procedure The design for humans was as similar as pos-
sible to the baboons’ in Experiment 1. For each trial, sub-
jects saw two or three coloured shapes and were instructed
to select one (by key press). Feedback was provided after
each selection; if they selected the target image, they also
received $0.02 in bonuses. For each condition, participants
went through four blocks of 60 trials each; reward ratios were
constant across blocks.

Analysis We used the same models as per Experiment 1
but given the between-participant design, only intercepts for
participant and by-participant slopes for the effect of block
were included as random effects.

Results
Our hypotheses were the same as with baboons: (1) par-
ticipants will maximise the number of correct predictions
in the presence of a higher-reward alternative, and (2) they
will maximise more in conditions with more alternatives (i.e.,
three shapes rather than two) and greater differences between
high-reward and low-reward choices.

Entropy drop A visual inspection of the results (Figure 1c)
suggests that, in conditions with skewed reward distributions,
the entropy of responses decreases by block, although it does
not reach the maximum entropy drop within 240 trials. In
contrast, entropy drop in conditions with uniform reward dis-
tributions stays close to 0. The results from the linear regres-
sion model support these observations. We found a signifi-
cant decrease in entropy by block (β = −0.086, se = 0.009,
p < 0.001), however, this decrease was significantly smaller
in Uniform conditions (β = 0.089, se = 0.009, p < 0.001).

The model further suggests that entropy decreases by block
more with three shapes in Skewed (β = −0.047, se = 0.009,
p < 0.001) but not in Uniform conditions (β = 0.046, se =
0.009, p < 0.001); as in Experiment 1, this difference in
Skewed conditions could simply be explained by the differ-
ences between maximum entropy drop.

Proportion of optimal responses Figure 1d shows the pro-
portion of optimal responses in the Skewed conditions. A
visual inspection of the results suggests that the proportion
of optimal responses is not higher than in the input ratio of
reward (70%) in the first block of responses, but that it in-
creases by block. We can further observe that the increase by
block is greater with three shapes. The results from the logis-
tic regression model confirm these observations. The model’s
intercept coefficients (β = 0.777, se = 0.151) suggest that
participants do not choose the optimal response significantly
above 70% in block 1 (z = −0.466, p = 0.642), thus sug-
gesting that participants’ initial behaviour is not significantly
different from probability matching. However, the significant
effect of block (β = 0.721, se = 0.089, p < 0.001) suggests
that the proportion of optimal responses increases by block
to be significantly different from probability matching from
the second block onward (p < 0.001). Results further show
that the increase in optimal responses is greater in Skewed 3
(β= 0.371, se= 0.088, p< 0.001) thus confirming a stronger
maximising behaviour with three rather than two shapes.

Cross-species comparison So far results suggest that both
baboons and humans ultimately use maximising and over-
matching rather than probability matching strategies to solve
binary and ternary prediction tasks. However, results across
species cannot be straightforwardly compared given the dif-
ferences in the number of trials per testing block (240 for ba-
boons and 60 for humans). This difference was due to an
overestimation, based on previous research (e.g., Wilson et
al., 1964), of the amount of trials it would take baboons to
reach a maximising strategy. We can still nevertheless cal-
culate the difference between the empirical probabilities of
reward in sub-blocks of 60 trials and the proportion of op-
timal responses within these sub-blocks. For humans, the
empirical reward probabilities are always 0.7 because by de-
sign each block of 60 trials rewarded the optimal response at
exactly that rate. For baboons, these probabilities will vary
slightly across sub-blocks of 60 trials, given that the reward
probabilities were controlled with respect to longer 240-trial
blocks. To resolve this, we calculate the difference between
participants’ empirically-observed reward rates and their op-
timal response rates for each 60-trial block: a difference of
0 between input and output proportions of optimal responses
would mean that the choice of optimal responses corresponds
perfectly to the input probabilities of reward (i.e. probabil-
ity matching); differences above 0 indicate that the optimal
response is chosen more often than its proportion of reward
(i.e. over-matching or maximising behaviour).

Figure 2 shows the increase in the proportion of optimal
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Figure 2: Increase in the proportion of optimal responses in Skewed
conditions (Experiments 1–2) in baboons and humans within the ini-
tial 240 trials, broken down into blocks of 60 trials. Means and stan-
dard errors as well as individual data points are shown. Dashed lines
represent the input reward probability (i.e., a difference of 0 from it).

responses within the first 240 trials across both species, seg-
mented in blocks of 60 trials. We ran a linear regression
model with fixed effects for species (baboons vs humans),
the number of shapes (three vs two), and block (of 60 tri-
als each). As random effects we included intercepts for par-
ticipant and by-participant random slopes for the effects of
block and the number of shapes. Results suggest that the
difference between input and output proportions of optimal
responses was not different from 0 initially (β = −0.005,
se = 0.020, p = 0.813) but that it increased significantly by
block (β = 0.074, se = 0.007, p < 0.001); the non-significant
effect of species along with the non-significant interaction be-
tween species and block suggest that this increase is com-
parable across species (β = 0.017, se = 0.020, p = 0.403;
β = 0.005, se = 0.007, p = 0.474). We further found a sig-
nificant interaction between block and the number of variants
suggesting that the proportion of optimal responses increases
more by block in conditions with three shapes (β = 0.028,
se= 0.006, p< 0.001); moreover, we did not find a three way
interaction with species (β=−0.006, se= 0.006, p= 0.347),
suggesting that this difference holds across species as well.
In other words, baboons and humans performed in the same
way on this task, both exhibiting an early phase of exploration
that resembles probability-matching followed by movement
towards maximisation.

Experiment 3: Over-matching across domains
Experiments 1 and 2 provide evidence against probability
matching behaviour in humans and baboons: when a max-
imising strategy is available, both species show a tendency
towards maximisation over time, across different degrees of
complexities. In Experiment 3 we test whether humans are
even more likely to over-match in linguistic tasks compared to
non-linguistic tasks (as suggested in Ferdinand et al., 2019).
We use a similar design to that in Experiment 2 but adapt

it to be comparable to Ferdinand et al. (2019), which has
previously shown differences between domains. Participants
in Ferdinand et al. (2019)’s non-linguistic tasks are asked to
choose between differently coloured marbles with different
probabilities of occurrence; in their linguistic tasks, partic-
ipants are asked to choose between linguistic variants (al-
ternative forms to convey the same meaning). In common
with much of the literature on linguistic probability match-
ing/regularisation, these tasks are divided into training and
testing phases. During training participants are passively ex-
posed to a set of shapes/words with different probabilities of
occurrence; in testing, they are asked to predict a sequence
of the same shapes/words without feedback. In Experiment 3
we adapt our Experiment 1–2 method to more closely resem-
ble these tasks: we eliminate feedback and monetary reward
during training; during testing, participants are told that their
responses will influence their monetary reward, but do not re-
ceive trial-by-trial feedback which would allow them to adjust
their behaviour accordingly.

Materials and Methods

We ran a between-participants experiment where we manipu-
lated two variables: domain (words or shapes) and number of
variants (two or three). The reward distribution was skewed
across all conditions: the input reward ratios were 70:30 and
70:15:15 for two and three variants respectively as in Exper-
iments 1–2. In the non-linguistic (shapes) conditions partic-
ipants were exposed to a sequence of shapes and then were
asked to predict a sequence of the same shapes themselves.
In the linguistic (words) conditions participants were exposed
to a sequence of words (two or three non-words which were
used variably to refer to a single referent object, i.e., the
words were synonyms which were deployed unpredictably,
as in, e.g., Ferdinand et al., 2019) and were then asked to
predict a sequence of words produced by the same popula-
tion of speakers. Crucially, participants were told they would
be rewarded for each correct prediction in the sequence they
produced, but unlike in Experiments 1–2 they did not receive
feedback on each trial.
Participants As per Experiment 2, we recruited 104
English-speaking adult participants for a ten-minute long ses-
sion. Participants were evenly distributed amongst the four
conditions (N = 25 across all conditions except for Shapes-
Skewed 2, where N = 29).
Procedure The experiment was divided into a training and
a testing phase. During training participants were exposed
to a sequence of shapes or words. One of the shapes/words
appeared more often than the other: the input ratios of oc-
currence were 70:30 and 70:15:15 for conditions with two
(Skewed 2) and three variants (Skewed 3) respectively. Dur-
ing testing, participants were asked to predict a sequence
of shapes/words based on their training. Participants went
through two blocks of 60 trials during training and two blocks
of 60 trials during testing; this makes the total number of tri-
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Figure 3: Proportion of optimal responses (i.e., majority vari-
ants in training) during testing trials in Experiment 3, across do-
mains (words or shapes) and degrees of complexity (two or three
shapes/words). Means and standard errors as well as individual data
points are shown. Dashed lines represent the input probability of
occurrence during training.

als equivalent to Experiment 2.

Analysis We analysed a single outcome variable: the
choice of optimal responses. We ran the same model as per
Experiment 2 but with an additional fixed effect for domain
(words vs shapes).

Results
Figure 3 shows the proportion of optimal responses. A vi-
sual inspection of the results suggests that the proportion of
optimal responses (i.e., majority variant) in testing is only
slightly higher than in training (70%) on average. We do not
observe any obvious differences between blocks or between
domains. The results from the logistic regression model show
that participants choose optimal responses subtly but signifi-
cantly above 70% in testing block 1 (β = 1.557, se = 0.160;
z = 4.432, p < 0.001), thus suggesting that participants’ sub-
tle over-matching behaviour is significantly different from
probability matching. We found no other significant effects,
suggesting similar behaviour across blocks (β = 0.069, se =
0.067, p= 0.304), number of variants (β= 0.027, se= 0.158,
p = 0.866), and domains (β = 0.063, se = 0.159, p = 0.693).

Discussion
Our results provide evidence against probability matching be-
haviour in simple decision making tasks in baboons as well
as in adult humans. In Experiment 1 and 2, where the dis-
tribution of reward was skewed (i.e. 70:30 or 70:15:15) and
a maximising strategy was therefore available, both species
showed an initial exploratory behaviour resembling proba-
bility matching followed by a switch to over-matching be-
haviour within 240 trials: in the first block of 60 trials, the
selection of the shape with the highest reward probability
was not significantly different from its reward probability, but
there was a significant increase of over-matching by block.

In Experiment 1, where we were able to collect 2400 trials
per baboons, we observe a convergence on maximising be-
haviour after 240 trials. We did not observe the same con-
vergence in Experiment 2 with humans because we did not
collect as many trials for humans in Experiment 2, but given
that we found comparable behaviour within 240 trials across
species, we predict that over-matching behaviour in humans
would increase by block after the 240 trials in a similar fash-
ion to eventually converge on maximising; we are currently
running a longer version of the same experiment to test this.
Crucially, we also found probability matching behaviour in
both species when the reward distribution was uniform. This
difference in behaviour between skewed and uniform condi-
tions suggests that maximising is not the default strategy but
that both species are sensitive to the availability of maximis-
ing strategies.

We also found evidence for an effect of degree of com-
plexity: an earlier tendency towards maximising behaviour in
ternary rather than binary prediction tasks, where not only the
number of choices increased but also the differences between
probabilities of reward for higher-reward and lower-reward
variants was greater. In the results obtained from baboons,
we observe that this difference is later lost as participants con-
verge towards maximising behaviour after the initial 240 tri-
als. Altogether, regardless of the tendency towards maximisa-
tion, it is still possible that the initial period of exploration is
longer than expected from a decision theoretic sense. Further
work is required to assess differences in the trade-off between
exploration and exploitation with a more fine grained analy-
sis of decision making over time across species and different
reward distributions (for differences across age groups, see
Sumner et al., 2019).

Finally, we did not find evidence of a difference in human
behaviour across our non-linguistic and linguistic tasks (cf.
Ferdinand et al., 2019). We found that participants slightly
over-produce the majority input variant, thus suggesting a
weak tendency toward over-matching across domains. How-
ever, we did not observe as strong a tendency towards max-
imising behaviour in Experiment 3 as in Experiment 2, which
could be due to the lack of feedback and the passive expo-
sure to the input probabilities. It is possible that the lack
of reinforcement during exposure hinders the learning of the
input probabilities. Further, the lack of feedback to partic-
ipants’ responses at each trial during testing could also im-
pact their selection strategies: without feedback, participants
might be more likely to focus on the prediction of an en-
tire sequence of outcomes (and not of a single outcome at
a time) which in turn may increase the probability of the pro-
duction of rare variants. It is nevertheless worth noting that
over-matching behaviour in Experiment 2 is not as strong in
block two as in the following blocks, suggesting weak over-
matching behaviour within 120 trials even with feedback and
reward. This suggests that the presence of feedback and re-
ward is required to produce the over-matching and maximis-
ing behaviour we see in Experiments 1–2; it does not sim-
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ply emerge from repeated testing. Interestingly, there is some
variability in the experimental methods used to demonstrate
probability matching / regularisation in the experimental lit-
erature in linguistics: some studies avoid feedback in testing
(e.g. Ferdinand et al., 2019) whereas others provide feedback
on at least some test trials (e.g. Culbertson, Smolensky, &
Legendre, 2012), which may induce (subtle) differences in
the tendency to maximise. It is also worth noting that the
over-matching effect we observe in Experiment 3 is small:
participants only over-produce the majority variant by about
5%, that is, producing it on 75% of trials rather than 70% as in
their input. Since most experiments on linguistic probability
matching use far fewer test trials (e.g. 10 trials in Ferdinand et
al., 2019), they will typically lack the statistical power and/or
response granularity to differentiate between this small level
of over-matching and probability-matching.

Conclusion
Our results provide evidence against the common assump-
tion that monkeys and humans are likely to probability match
in simple decision making tasks and raise questions over the
validity of conclusions in standard behavioural experiments,
which our results suggest may simply have insufficient tri-
als to show a maximising behaviour which unfolds over time.
It also casts doubt on the suggested domain-specific sources
of maximising behaviour in linguistic tasks by providing evi-
dence of shared mechanisms in probability learning not only
across primate species but across linguistic and non-linguistic
tasks.
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Fagot, J., & Bonté, E. (2010). Automated testing of cognitive
performance in monkeys: Use of a battery of computerized
test systems by a troop of semi-free-ranging baboons (pa-
pio papio). Behavior research methods, 42(2), 507–516.
doi: 10.3758/BRM.42.2.507

Fagot, J., & Paleressompoulle, D. (2009). Automatic testing
of cognitive performance in baboons maintained in social
groups. Behavior Research Methods, 41(2), 396–404. doi:
10.3758/BRM.41.2.396

Ferdinand, V., Kirby, S., & Smith, K. (2019). The cognitive
roots of regularization in language. Cognition, 184, 53–68.
doi: 10.1016/j.cognition.2018.12.002

Gardner, R. A. (1957). Probability-learning with two and
three choices. The American Journal of Psychology, 70(2),
174–185. doi: 10.2307/1419319

Hudson Kam, C. L., & Newport, E. (2005). Regularizing Un-
predictable Variation: The Roles of Adult and Child Learn-
ers in Language Formation and Change. Lang. Learn. Dev.,
1(2), 151–195. doi: 10.1207/s15473341lld0102 3

Koehler, D. J., & James, G. (2010). Probability matching and
strategy availability. Mem. Cognit., 38(6), 667–676. doi:
10.3758/MC.38.6.667

Lau, B., & Glimcher, P. W. (2005). Dynamic Response-
by-Response Models of Matching Behavior in Rhesus
Monkeys. J. Exp. Anal. Behav., 84(3), 555–579. doi:
10.1901/jeab.2005.110-04

Neimark, E. D., & Shuford, E. H. (1959). Comparison of
predictions and estimates in a probability learning situa-
tion. Journal of Experimental Psychology, 57(5), 294. doi:
10.1037/h0043064

Parrish, A. E., Brosnan, S. F., Wilson, B. J., & Beran, M. J.
(2014). Differential Responding by Rhesus Monkeys (
Macaca mulatta ) and Humans ( Homo sapiens ) to Variable
Outcomes in the Assurance Game. Anim. Behav. Cogn.,
1(3), 215–229. doi: 10.12966/abc.08.01.2014

Sumner, E., Li, A. X., Perfors, A., Hayes, B., Navarro, D., &
Sarnecka, B. W. (2019). The exploration advantage: Chil-
dren’s instinct to explore allows them to find information
that adults miss. PsyArXiv. doi: 10.31234/osf.io/h437v

Vulkan, N. (2000). An economist’s perspective on prob-
ability matching. J. Econ. Surv., 14(1), 101–118. doi:
10.1111/1467-6419.00106

Weir, M. W. (1972). Probability performance: Reinforce-
ment procedure and number of alternatives. The American
Journal of Psychology, 261–270. doi: 10.2307/1420666

Wilson, W. A., Oscar, M., & Bitterman, M. E. (1964).
Probability-learning in the monkey. Q. J. Exp. Psychol.,
16(2), 163–165. doi: 10.1080/17470216408416361

758


