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Abstract

Recent advances in Deep Learning (DL) and Reinforcement
Learning (RL) make it possible to train neural network agents
with raw, first-person visual perception to execute language-
like instructions in 3D simulated worlds. Here, we inves-
tigate the application of such deep RL agents as cognitive
models, specifically as models of infant word learning. We
first develop a simple neural network-based language learning
agent, trained via policy-gradient methods, which can inter-
pret single-word instructions in a simulated 3D world. Tak-
ing inspiration from experimental paradigms in developmental
psychology, we run various controlled simulations with the ar-
tificial agent, exploring the conditions in which established hu-
man biases and learning effects emerge, and propose a novel
method for visualising and interpreting semantic representa-
tions in the agent. The results highlight the potential util-
ity, and some limitations, of applying state-of-the-art learning
agents and simulated environments to model human cognition.

Keywords: early word learning; neural networks; situated ar-
tificial agents; 3D environments; word learning biases

Introduction
The learning challenge faced by children acquiring their first
words has long fascinated philosophers, linguists and cogni-
tive scientists (Bloom, 2000). To start making sense of lan-
guage, an infant must induce structure in a stream of continu-
ous visual input, reconcile this structure with consistencies in
the linguistic observations, store this knowledge in memory,
and apply it to inform decisions about how best to respond to
new utterances.

Many neural network models also overcome a learning task
that is – to varying degrees – analogous to early human word
learning. Image classification tasks such as ImageNet require
models to induce discrete semantic classes, aligned to words,
from unstructured pixel representations of large quantities of
photographs (Krizhevsky, Sutskever, & Hinton, 2012). Vi-
sual question answering systems (e.g. Antol et al. (2015))
must reconcile raw images with sequences of symbols, in the
form of natural language questions, in order to predict lexical
or phrasal answers. More recently, situated artificial agents
have been developed that learn to understand sequences of
words not only in terms of the contemporaneous raw visual
input, but also in terms of past visual input and the actions
required to execute an appropriate motor response (e.g. Oh,
Singh, Lee, and Kohli (2017), Hill et al. (2020)). The most
advanced such agents learn to execute a range of phrasal in-
structions, such as find the green object in the red room, in a

continous, simulated 3D world. To solve these tasks, an agent
must execute long sequences of (comparatively) fine-grained
actions, conditioned on the available language string and ac-
tive first-person visual perception.

Here, we consider the utility of deep RL agents, trained
and tested in a 3D game world, as models of human cogni-
tion; specifically of early word learning. The customisable
nature of the world, including a limited set of objects, prop-
erties, and symbolic linguistic stimuli (Fig. 1B), allows us
to replicate several well-known experimental paradigms nor-
mally applied with human learners. In a typical experimental
episode, the agent is presented with a single word and two
objects in a room. It must move by choosing between eight
motor actions, viewing the objects from different perspectives
until it can determine which one best reflects the meaning of
the word.1 It receives a scalar positive reward if it selects the
correct object by moving towards and bumping into it.

We show that, under certain training conditions, our agent
comes to exhibit various aspects of early word learning. First,
the agent successfully learns a vocabulary of words from dif-
ferent semantic classes, and we study the dynamics of this
process. We show that the rate at which the agent acquires
new words increases rapidly after an initial slow period, an
effect matching the human vocabulary spurt (Plunkett, Sinha,
Møller, & Strandsby, 1992). We also propose two ways to
speed up word learning: moderating the agent’s experience
according to a curriculum (Elman, 1993) and an auxiliary
learning objective reinforcing the association between words
and the agent’s replayed visual experience. Second, we in-
vestigate whether the agent exhibits a shape or colour bias
(MacWhinney, 1999; Regier, 2003). And finally, for a bet-
ter view of how the model processes information at the al-
gorithmic level, we develop a novel method for dynamically
visualising how different word types stimulate activations in
different parts of its architecture. Taken together, these simu-
lations illustrate how the combination of DL and RL together
may be a fruitful, if imperfect, basis for building holistic sim-
ulations of human semantic cognition.

1There is clearly more to knowing the meaning of a word than
being able to identify an appropriate referent, but we are inspired by
how infants initially learn to identify objects.
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Figure 1: A: Schematic agent architecture. B: An example of
the word learning environment.

A 3D world for language learning
We fix the overall layout of the world (a rectangular room),
the range of positions in which the agent begins an episode
(near the back of the room), the locations that objects can oc-
cupy (two positions at the front), a list of objects that can ap-
pear, the relative frequency of each object appearing, and re-
wards for selecting a certain object given a particular instruc-
tion word. The environment engine is then responsible for
randomly instantiating episodes that satisfy these constraints
together with corresponding instruction words. Even with
this relatively constrained level specification, there are a huge
number of unique episodes that the agent can encounter dur-
ing training, each involving different object shapes, colours,
patterns, shades, and relative positions.

A situated word-learning agent
Our agent (Figure 1A), combines standard modules for pro-
cessing symbolic input (an embedding layer) and visual input
(a three-layer convolutional network). At each time step t,
the visual input vt (a 3×84×84 tensor of floating point RGB
pixel values) is encoded by the convolutional vision module
into a 3136 (= 64 feature maps × 49 locations) dimensional
embedding, and a language module embeds the instruction
word lt into a 128 dimensional embedding. A mixing mod-
ule determines how these signals are combined before they
are passed to an LSTM core memory. In this work, the mix-
ing module is simply a feedforward linear layer that maps
the concatenation of the output from the vision and language
modules to a 256-dimensional embedding. The language
module is a simple linear lookup weight matrix (since the in-
struction consists of one word) applied to one-hot encodings
of the input words. Thus, prior to learning, the model has no
prior information about the correct reference, or word class,
for the different types of words that it experiences.

The 256-dim hidden state st of the core memory Long
Short Term Memory (LSTM) module is fed to an action pre-
dictor (a fully-connected layer plus softmax), which com-
putes the policy, a probability distribution over possible motor
actions π(at |st), and a state-value function estimator Val(st),
which computes a scalar estimate of the agent state-value
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Figure 2: A Word learning trajectories for the agent. B The
acceleration of vocabulary size in an infant. C The effect of
reward-prediction auxiliary loss on learning speed. D Word
learning trajectories for an agent following a curriculum.

function (the expected discounted future return). This value
estimate is used to compute a baseline for the return in the
asynchronous advantage actor-critic (A3C) policy-gradient
algorithm (Mnih et al., 2016), which determines weight up-
dates in the network in conjunction with the RMSProp opti-
miser (Tieleman & Hinton, 2012). The weights in the visual,
language and core memory modules are trained end-to-end.

Word learning dynamics
In our first simulation, we randomly initialized all of the
weights in the agent network, and then trained it on episodes
with instruction words referring to the shape, colour, pattern,
relative shade or position of objects. There were 40 shape
words, e.g. “pencil”; 10 colour words, e.g. “blue”; 2 pattern
words, e.g. “striped”; 2 shade words, e.g. “darker”; and 2
direction words, e.g. “left”. An instruction such as “blue”
would mean find the blue object, and the agent would be re-
warded by bumping into the blue object at the other end of the
room. The instruction word in each episode unambiguously
specified one of the two target objects, but other unimpor-
tant aspects of the environment could vary maximally. Thus,
shape-word instructions could refer to objects of any colour,
colour-words to objects of any shape, and so on. The agent
received a reward of +10 if it bumped into the correct object,
−10 if it bumped into the wrong object, and 0 if the maxi-
mum number of timesteps was reached. All words appeared
with equal frequency during training.

We found that the agent slowly learned to respond correctly
to the words it was presented with, but at some point the
rate of word learning accelerated rapidly (Fig. 2A, red curve).
This effect is observed in both young infant learners (Nazzi
& Bertoncini, 2003) and (supervised) connectionist simula-
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tions of word learning (Fig. 2B, as recorded by Plunkett et al.
(1992)). Our results show that the effect persists when such
networks are trained with RL algorithms from raw pixel in-
put. By the end of successful training, the agent was able to
walk directly up to the two objects and reliably identify the
appropriate referent.2

For our agents, some of the delay in the onset of word
learning can be explained by the need to acquire relatively
language-agnostic capacities such as useful sequences of mo-
tor actions or the distinction between objects and walls. How-
ever, some of the acceleration seems also to derive from the
accruing semantic knowledge. To demonstrate this, we com-
pared word learning speeds in an agent with prior knowledge
of 2 words to an agent with knowledge of 20 words (Fig. 2A,
green and blue curves). The prior knowledge was provided
by training the agent on the word-learning task, as described
above, but restricting the vocabulary to 2 and 20 words. So
in both cases the agent has learned to “see” and move, but
the agent pre-trained on 20 words learned new words more
quickly. This effect accords with accounts of human devel-
opment that emphasise how learning becomes easier the more
the language learner knows (Bates & MacWhinney, 1987).

We also explored ways to reduce the number of rewarded
training episodes before word learning onset, in the form of a
curriculum. We found one way to achieve this by moderating
the scope of the learning challenge faced by the agent ini-
tially, before later expanding its experience once word learn-
ing had started. Specifically, we trained the agent to learn
the meaning of the 40 shape words under two conditions. In
one condition, the agent was presented with the 40 words (to-
gether with corresponding target and confounding objects)
with uniform random frequency throughout training. In an-
other condition, the agent was only presented with a subset
of the 40 words (with uniform random frequency across that
subset) until these were mastered (as indicated by an average
reward of 9.8/10 over 1000 consecutive trials), at which point
this subset was expanded to include more words. So the stim-
uli are initially constrained to a two-word subset S1,S1 ⊂ S,
until the agent learns both words, then extended to a 5-word
subset S2,S1 ⊂ S2 ⊂ S, then a 10-word subset S3,S2 ⊂ S3 ⊂ S,
until finally being exposed to all 40 words in S. As shown
in Fig. 2D, the agent following the curriculum reached 40
words faster than the agent confronted immediately with a
large set of new words. This effect accords with the idea that
early exposure to simple linguistic input helps child language
acquisition (Fernald, Thorpe, & Marchman, 2010), and with
curriculum effects observed when training neural networks on
text-based language data (Elman, 1993; Bengio, Louradour,
Collobert, & Weston, 2009).

We found a further way to reduce the number of episodes
required to achieve word learning by applying an auxiliary
learning objective on stored trajectories of the agent’s ex-
perience, in a manner proposed by Jaderberg et al. (2016)

2For a video of an agent’s behaviour, see https://tinyurl
.com/tcjw5qj.

(Fig. 2C).3 In agents with this auxiliary prediction process,
the final 4 observations of each episode are saved in a replay
buffer and processed offline by the visual and language mod-
ules. The concatenation of the output of these modules is
then used to predict whether the episode reward was positive,
negative or zero. A cross-entropy loss on this prediction is
optimised jointly with the agent’s A3C loss.

This application of an auxiliary prediction loss can be seen
as a rudimentary model of hippocampal replay biased to-
wards rewarding events, a mechanism that is thought to play
an important role in both human and animal learning (Gluck
& Myers, 1993; Pfeiffer, 2017). The auxiliary loss serves
to reinforce the correspondence between visual scenes and
words by effectively posing the question does this word match
this view? This internal question-answering process seems to
complement the instruction following, leading to faster word
learning at early stages.

Word learning biases
It is widely agreed that children exploit certain labelling bi-
ases during early word learning, which serve to constrain
the possible referents of novel, ambiguous lexical stimuli
(Markman, 1990). Regier (2003) discusses various accounts
of how such constraints or biases can emerge naturally from
environment signals in connectionist models. A particularly
well-studied learning constraint is the shape bias (Landau,
Smith, & Jones, 1988), whereby infants tend to presume that
novel words refer to the shape of an unfamiliar object rather
than, say, its colour, size or texture. Our simulated envi-
ronment permits replication of the original experiments by
Landau et al. (1988) that uncovered the shape bias in infants.

During training, the agent learns word meanings in a room
containing two objects, one that matches the instruction word
(positive reward) and a confounding object that does not (neg-
ative reward). Using this method, the agent is taught the
meaning of a set C of colour terms, S of shape terms and
A of ambiguous terms (in the original experiment, the terms
a ∈ A were the nonsense terms ‘dax’ and ‘riff’). The target
referent for a shape term s ∈ S can be of any colour c ∈ C
and, similarly, the target referent when learning the colours
in C can be of any shape. In contrast, the ambiguous terms in
A always correspond to objects with a specific colour ca /∈C
and shape sa /∈ S (e.g. ‘dax’ always refers to a black pencil
during training, and neither black nor pencils are observed in
any other context).

As the agent learns, we periodically measure its bias by
means of test episodes for which no learning takes place. In
a test episode, the agent receives an instruction a ∈ A (e.g.
‘dax’) and must decide between two objects, o1, whose shape
is sa and whose colour is ĉ /∈C∪{ca} (e.g. a blue pencil), and
o2, whose shape is ŝ /∈ S∪{sa} and whose colour is ca (e.g. a
black fork). Note that in the example neither the colour blue

3Data in this and other learning curves show the best 5 + =
SE from 16 replicas with hyperparameters sampled from specific
ranges; details available on request.
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Figure 3: Development of shape/colour bias as the agent learns. The red curve indicates performance on the training task over
time. A positive value for the blue curve reflects a shape bias (max = +10) and negative value reflects a colour bias (max =
−10).

nor the shape fork are observed by the agent during train-
ing. As with the original human experiment, the degree, and
colour/shape polarity, of bias in the agent can be measured,
as the agent is learning, by its propensity to select o1 in pref-
erence to o2. Moreover, by varying the size of sets S and C,
we can examine how different training regimes affect the bias
exhibited by the agent.

Fig. 3 illustrates how a shape/colour bias develops in
agents exposed to three different training regimes. The bias
is represented by the blue line, which is the mean “score”
when +10 is awarded for the object matching the instruc-
tion in shape, and -10 for the object matching in colour, over
1000 random test episodes (i.e. a line below zero indicates a
propensity to choose objects matching in colour). An agent
that is taught exclusively colour words (|S| = 0, |C| = 8) un-
surprisingly develops a strong colour bias. More interest-
ingly, an agent that is taught an equal number of shape and
colour terms (|S|= 8, |C|= 8) also develops a colour bias. In
order to induce a (human-like) shape bias, it was necessary to
train the agent exclusively on a larger set of (|S|= 20, |C|= 0)
shapes before it began to exhibit a notable shape bias.

It is notable that in the balanced condition our agent ar-
chitecture (convolutional vision network combined with lan-
guage instruction embedding) naturally promotes a colour
bias. This may be simply because, unlike information per-
tinent to shapes, the agent has direct access to colour in the
RGB stream of pixel input, so that if the environment is bal-
anced, specialising perceptual and grounding mechanisms in
favour of colours is a more immediate path to higher returns.
Note also that our conclusion differs from that of Ritter, Bar-
rett, Santoro, and Botvinick (2017), who observed a shape
bias in convolutional networks trained on ImageNet. Our
experiments suggest that this effect is more likely driven by
the distribution of training data (the ImageNet data contains
many more shape-based than colour-based categories) rather
than the underlying convolutional architecture. Indeed, in the
present model, it may be that this flexible ability to induce rel-

evant biases facilitates the sudden acceleration of word learn-
ing described earlier. As the agent’s object recognition and
labelling mechanisms specialise (towards shapes, colours or
both, as determined by the environment), the space of plausi-
ble referents for new words narrows, permitting faster word
learning as training progresses.

Indeed, the fact that shape terms occur with greater fre-
quency in typical linguistic environments, for American chil-
dren at least, can be verified by analysis of the child-directed
language corpus Wordbank (Frank, Braginsky, Yurovsky, &
Marchman, 2017). Our simulations therefore accord with ac-
counts of the human shape bias that emphasise the role of
environmental factors in stimulating the development of such
a bias (Regier, 2003). In this view, the human shape bias is
not an expression of the default state of underlying perceptual
and cognitive mechanisms but rather a product of the preva-
lence and functional importance of shape categories in the
experience of typical infants.

Visualising grounding in action and perception
One compelling aspect of early word learning in humans is
infants’ ability to make sense of apparently unstructured raw
perceptual stimuli. This process requires the learner to in-
duce meaningful extensions for words (when there are limit-
less potential referents in the environment), and to organise
these word meanings in semantic memory. The success of
this process has been explained by innate cognitive machin-
ery delimiting conceptual domains, or at least for narrowing
the space of possible referents (Marcus, 1999). Alternative
accounts, which accord more closely with the learning mech-
anism presented here, emphasise the capacity of associative
learning systems to infer word meanings by exploiting di-
verse signals in the environment, and bootstrapping currently
known words to learn new words more easily (Smith & Yu,
2008; Frank, Tenenbaum, & Fernald, 2013).

First, we visualised the space of word embeddings in an
agent trained on words from the different classes shown in
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Fig. 5, with experience sampled uniformly over words. We
observe that these word classes, which align with both se-
mantic (shape vs. colour) and syntactic (adjective vs. noun)
categories, emerge naturally in the embedding space of the
agent as it discovered the underlying relationship between
words, raw-pixel visual observations of the environment and
the ‘correct’ set of referents as encoded in the environment.

We further explored how this emergent semantic structure
manifested itself in processing across the network during an
episode. We analysed the trained agent to better understand
how it solves the problem of cross-situational word learning
in our setting. To do so, we adapted the network to compute
weightings for visual field locations at all layers of its visual
processing module (a modification we term layerwise atten-
tion), and measured these weights when agents were trained
to understand words of the different types.

More precisely, let el be the representation of an instruc-
tion word l and vi be the output of layer i = 1,2,3 of the

visual module with dimension ni × ni × ki, where ki is the
number of feature maps. In the layerwise attention module,
the vi are first passed through 3 independent linear layers to
v′i with common final dimension ni× ni×K, such that K is
also the dimensionality of el . The v′i are then stacked into a
single tensor T of dimension d×K, where d = ∑

3
i=1 n2

i . T
is then multiplied by el and passed through a softmax layer
to yield a d dimensional discrete probability distribution over
all (pixel-like) locations represented in each layer of the vi-
sual module V. These values are applied in a weighted sum
of the (ki-dimension) representations returned by each layer
before concatenation, as before, with el .

By analysing the distribution over spatial locations and vi-
sual layers computed by the layerwise attention mechanism,
we found that colour and shade words words stimulated acti-
vations at the lower levels of the visual-processing module,
whereas shape word stimuli activated comparatively more
features computed at higher levels (see the red, green and blue
bars in Fig 4B, showing activations at levels 1, 2 and 3 of the
CNN, respectively). This observation accords with previous
analyses of filters in convolutional networks trained for image
classification (LeCun, Kavukcuoglu, & Farabet, 2010).

At the mixing layer of the network, we also measured the
relative strength of total activation flowing through the visual
vs. linguistic pathways for agents trained on different word
types, and observed that the direction words were associ-
ated with much lower activations from the visual module than
other word types. (See the total height of the bars in Fig 4B,
which indicates relative activation strength on visual vs. lan-
guage units, so the higher the bar the more activation on the
visual side.) This observation underlines the embodied nature
of representation in the agent. Effectively, direction words
are grounded in actions to a greater extent than vision, a find-
ing that aligns with cognitive and neuroscientific theories that
emphasise the interaction between linguistic semantic repre-
sentation and sensory-motor processes (Pulvermüller, Mose-
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ley, Egorova, Shebani, & Boulenger, 2014).
Simonyan, Vedaldi, and Zisserman (2014) propose a tech-

nique for visualising which pixels in an image contribute
most to a network’s class prediction for that image, using
backpropagation to compute the derivative of the model’s
class score with respect to the image pixels4. Here, we can ap-
ply a similar technique to a trained agent, but instead comput-
ing the derivative of the layerwise-attention probability mass
on vision layer V1-V2 with respect to the input image at each
timestep. This allows us to render the ‘focus’ of each of V1-
V3 onto the (modified greyscale) visual input as the agent re-
sponds to colour or shape instructions, as shown in the video
https://tinyurl.com/tcjw5qj. A still of this visualiza-
tion technique is shown in Figure 6.

Discussion and conclusions
Deep reinforcement learning is a comparatively new learn-
ing paradigm that is suited to a range of tasks in AI, and
has been recently extended to agents conditioned on lan-
guage input (Oh et al., 2017; Hill et al., 2020). Here we
have applied this paradigm to develop an end-to-end, neural-
network-based model of cross-situational word learning that
can ground word meanings in perception and actions, while
relying on few prior assumptions about representation of the
visual environment or cognitive states. An appealing aspect
of such a model is that the learning process reflects strong in-
teractions between perception, control and language. Such a
paradigm may ultimately provide a plausible learning-based
computational account for a range of empirical data that em-
phasize the embodied nature of cognition (Wilson, 2002).

The holistic nature of the simulations also has downsides,
however. Since the visual stimuli to our agent is presented
as an unstructured array of pixels, it can be challenging to
interpret how the agent is making sense of this information.
Similarly, since the agent has the freedom to move according
to the actions it predicts, as experimenters we lose a degree
of control over its visual stimuli across different conditions.
Of course, this trade-off between realism and control lies at
the heart of experimentation in all human sciences. Our ap-
proach affords a degree of novel realism, in that the learning
algorithms are instantiated in an agent situated in an environ-
ment, but less realistic in its reliance on an abstract simulated
world rather than images, videos or care-giver utterances.

Moreover, while our simulations have accounted for some
well-known aspects of infant word learning, there are many
others that our model in its current guise does not cap-
ture. Unlike infants, it is not required to segment the speech
stream (Roy & Pentland, 2002), or isolate words from nat-
ural (multi-word) child-directed speech (Larsen, Cristia, &
Dupoux, 2017). Although word learning in our model gets
faster the more it learns, unlike children it is unable to un-
derstand a new name for an object after a single experience

4In contrast to the standard computation of the derivative of the
loss function with respect to the model’s weights, computed to de-
termine weight updates during training.

Figure 6: The derivative of the layerwise attention mass allo-
cated to V1, V2 and V3 with respect to input pixels, plotted
onto greyscale renderings of the input, at a single timestep of
episodes involving a colour or a shape instruction. When per-
forming a colour task, V1 output from the edge of objects (in
red) is most important to the model, whereas when perform-
ing a shape task, V1 is used to survey the background, while
V2 and V3 focus more on the objects in the scene.

(so-called fast-mapping) (Xu & Tenenbaum, 2007). The exis-
tence of only a single agent in our present environment makes
it impossible to consider pragmatic inference or exploit so-
cial cues (Frank et al., 2013), and the visual complexity does
not match that of the real world (Ritter et al., 2017). Fi-
nally, while we have shown that learning can be expedited by
offline ‘semi-supervised’ learning, the predominant learning
signal derives from repeated explicit feedback (reward) from
following instructions. Such explicit feedback is a frequent
experience for language learners in certain cultures, but rare
in others (Cristia, Dupoux, Gurven, & Stieglitz, 2017).
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