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Abstract

Multiple cognitive theories make conflicting explainations for
human reasoning on syllogistic problems. The evaluation and
comparison of these theories can be performed by conceiv-
ing them as predictive models. Model evaluation often em-
ploys static sets of predictions rather than full implementations
of the theories. However, most theories predict different re-
sponses depending on the state of their internal parameters.
Disregarding the theories’ capabilities to adapt parameters to
different reasoners leads to an incomplete picture of their pre-
dictive power. This article provides parameterized algorithmic
formalizations and implementations of some syllogistic theo-
ries regarding the syllogistic single-response task. Evaluations
reveal a substantial improvement for most cognitive theories
being made adaptive over their original static predictions. The
best performing implementations are PHM, mReasoner and
Verbal Models, which almost reach the MFA benchmark. The
results show that there exist heuristic and model-based theo-
ries which are able to capture a large portion of the patterns in
syllogistic reasoning data.
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Introduction

Syllogisms are an extensively studied problem in human cog-
nition (for a discussion see, e.g., Khemlani & Johnson-Laird,
2012). An example of a syllogism is:

No diver is a waiter.
Some waiters are artists.

Therefore: Some artists are not divers.

A classical syllogism consists of two premises: In the ex-
ample above ‘No diver is a waiter’ and ‘Some waiters are
divers’. When asked to find logically valid conclusions to
syllogistic premises, subjects often respond with erroneous
conclusions (e.g., Begg & Denny, 1969). For example, a
common but invalid response to the syllogism above would
be ‘No diver is an artist’.

During the last century, many cognitive theories have been
developed to explain human reasoning on syllogistic reason-
ing tasks. However, none of them is yet universally ac-
cepted (Khemlani & Johnson-Laird, 2012). One reason for
this is that the predictions of these theories seem to fail to
capture a large portion of experimental data (Riesterer, Brand,
& Ragni, 2019). However, such evaluations usually rely on
static sets of predictions without taking the adaptive capabil-
ities of the theories into account. They provide only a lower

bound of the performance while the full predictive capabili-
ties of syllogistic theories remains uncertain.

An obstacle toward a more comprehensive evaluation is
that most syllogistic theories do not readily constitute a full
cognitive prediction model, i.e., a model that is able to gen-
erate a prediction for individual participants. For this article,
seven prevailing syllogistic theories have been formalized and
implemented in the programming language Python to gener-
ate a response for each syllogistic reasoning problem. This
allows an evaluation that respects the models’ ability to adapt
to individual reasoners, drawing a clearer picture of their pos-
sible predictive performance.

Background

A syllogism is a kind of logical argument that contains two
premises, each premise shares one term while the remaining
two are distinct. The terms in the premises (the sets of en-
tities) can be arranged in four different ways called figures
(Johnson-Laird & Steedman, 1978). The two premises each
have one of four quantifiers, called moods, in their syllogistic
combination: All (abbreviated by A), Some (I), None (E), and
Some ...not (O). There are a total of 64 kinds of syllogisms
disregarding differences in content. When terms like diver or
waiters are replaced by generic terms like A, B and C, we can
rewrite a syllogism by

All A are B.
Some B are C.

A well-formed conclusion relates the two non-shared prop-
erties A and C, for example Some A are C. Four different
kinds of syllogistic propositions and two ways to order the
terms A and C lead to eight possible conclusions to any syl-
logism. Together with the response NVC (‘No valid conclu-
sion’), this makes nine possible responses that can be given
by a reasoner to a syllogism. In this article, we model the task
of choosing exactly one out of these nine responses.

There are at least twelve theories that attempt to explain
syllogistic reasoning. They can roughly be categorized into
three domains (Khemlani & Johnson-Laird, 2012): Heuris-
tic theories propose that conclusions are drawn quickly and
intuitively, using apparent often syntactic features of the syl-
logism, such as the quantifiers (see below for an example).
Logic-based theories propose a deliberate reasoning mech-
anism using formal inference rules on mental representa-
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tions of syllogistic propositions, similar to logical deduction.
Model-based theories propose a mental representation that
corresponds to models, sets or diagrams. Reasoning takes
place in the form of encoding, manipulating and drawing con-
clusions from the respective model-based representations.

In this work, the same theories have been implemented
which Khemlani and Johnson-Laird (2012) provide a fixed
set of predicted responses for: Atmosphere (Woodworth &
Sells, 1935; Revlis, 1975), Matching (Wetherick & Gilhooly,
1995), Illicit Conversion (Chapman & Chapman, 1959;
Revlis, 1975) and PHM (Chater & Oaksford, 1999) as heuris-
tic theories, PSYCOP (Rips, 1994) as logic-based theory and
Verbal Models (Polk & Newell, 1995) and Mental Models,
including a classic implementation (Bucciarelli & Johnson-
Laird, 1999) and mReasoner (Khemlani & Johnson-Laird,
2013), as model-based theories. This allows an exhaustive
comparison of carefully collected fixed predictions with our
adaptable implementations.

Not considered are the following five theories: Verbal
Substitutions (Ford, 1995), Euler circles (Erickson, 1974),
Venn diagrams (Newell, 1980), Monotonicity theory (Geurts,
2003) and Source-founding theory (Stenning & Yule, 1997),
as they are not cognitive theories or did not provide a predic-
tion for all 64 syllogisms.

Model Implementations

Every syllogistic reasoning model has to define a prediction
function that maps each syllogism onto a subset of the nine
possible responses. This prediction function depends on pa-
rameters which can be fitted to actual item-response pairs.
A final prediction is obtained by choosing uniformly among
the produced responses. This makes theories which produce
more than one response compatible with a single-response
task without the need to make additional model-specific as-
sumptions.

Our implementations! are intended to be as faithful as
possible to the original formulation of the theories. How-
ever, some theories do not unambiguously lead to a cogni-
tive model. Some of them come with a full prediction model
that can be used as reference, others may, for instance, only
define some basic operations and leave the control structure
open. So there is an inevitable degree of subjectivity in the
implementation of some theories. For those theories that pro-
vide reliable and comprehensible reference predictions, these
predictions could be reproduced.

The following sections outline a selected number of our
implementations and the theories they are based on. Each
implementation is visualized using a diagram which shows
classes of mental representations (nodes) and operations
(edges) that constitute mappings between these classes.

The Matching Theory
Matching theory (Wetherick & Gilhooly, 1995) is a simple
heuristic theory that proposes that the quantifier of the conclu-

lgithub.com/CognitiveComputationLab/cogmods/tree/
master/syllogistic/2020_bischofsberger/
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sion corresponds to the quantifier of the premise that makes
an assertion about the fewest entities. In effect, the authors’
predictions follow from choosing among the premises of a
syllogism according to the preference relation on the quanti-
fiers:

No = Some not = Some > All

Turning the matching theory into a prediction model is
straightforward: Simply produce all conclusions with the one
or two quantifiers that follow from the preference relation ap-
plied to the premises at hand. For example, from the syllo-
gism All A are B. Some B are C would follow Some A are C
and Some C are A. While Some A are B. No C are B would en-
tail Some A are C, Some C are A, No A are C and No C are A.

Tentative
Conclusions

Matching
heuristic

Item

Respond—»] Responses

Figure 1: The Matching theory. Due to its single process of
applying the matching heuristic no parameters can be used to
adapt for differences between individual reasoners.

The capabilities of this simple one-operation model are
limited: It can neither specify the term order of a conclusion,
nor can it produce NVC, nor does it contain any adaptable
parameters.

The Atmosphere theory (Woodworth & Sells, 1935) is sim-
ilar to Matching in that it also consists of a single, non-
adaptive heuristic applied to a syllogistic item. However, At-
mosphere uses no preference relation over quantifiers but de-
rives the quantifier of the conclusion from the combined at-
mosphere that the premise quantifiers are supposed to evoke.

The Probabilistic Heuristic Model (PHM)

A more complex and powerful heuristic theory is the Proba-
bility Heuristics Model by Chater and Oaksford (1999) which
derives multiple heuristics from a probabilistic approach to
reasoning. Centrally, they derive an order of informativeness
I over the four proposition quantifiers:

I(All) > I(Some) > I(No) > I(Some not)

with >> much larger. The min-heuristic proposes that the
quantifier of the most preferred conclusion corresponds to
the quantifier of the least informative premise. The next
most preferred conclusion quantifier follows from probabilis-
tic entailment. For example All A are C probabilistically en-
tails Some A are C because the conditional probability con-
straint P(C | A) = 1, corresponding to All A are C, entails that
P(C | A) > 0 which corresponds to Some A are C.

While min-heuristic and p-entailment determine the quan-
tifier of the conclusion, the attachment heuristic determines
its term order. Attachment specifies that one of the two possi-
ble noun phrases (for example Some A or Some C) is chosen
as subject noun phrase of the conclusion if it appears as sub-
ject noun phrase of one of the premises and the other one
does not (Oaksford & Chater, 2001, p. 354). If both or none
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Figure 2: A conceptualization of the PSYCOP-inference process (based on the description by Rips, 1994, p. 244 ff).

of the candidate subject noun phrases appear in the premises,
the end term order seems to be determined by using the end
term of the most informative premise as subject. If the quan-
tifiers of the premises are the same, this criterion fails and
attachment yields no preferred term order.

Generated conclusions in PHM are evaluated using the
max-heuristic, which proposes that the plausibility of a con-
clusion is proportional to the informativeness of the most in-
formative premise.

Pent

Responses

Tentative
Conclusions

p-entailment

min-heuristic +attachment - b eristic
+ attachment I-pent v
Item Tentative
Conclusions

Figure 3: A conceptualization of the Probabilistic Heuristic
Model (PHM) and possible adaptions for the individual rea-
soner.

The predictive model shown in Figure 3 includes parame-
ters drawn from the original data description model (Chater
& Oaksford, 1999, p. 212 f.). We augmented the original
theory with five parameters. For example, the parameter
Pent that represents the amount of responses due to proba-
bilistic entailments is converted to a parameter that corre-
sponds to the probability that a probabilistic entailment is
drawn after the min-heuristic has been applied. The max-
heuristic is implemented using four parameters that determine
the probability that a tentative conclusion is responded with,
depending on the quantifier of the most informative premise.
These confidence parameters are restricted to follow the or-
der DPAll > DSome = PNo > DSome not according to the max-
heuristic.
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PSYCOP

PSYCOP (Rips, 1994) is a logic-based reasoning model
which applies formal deduction rules to sets of encoded
propositions in order to construct mental proofs. There are
forward rules that start to operate on the premises and back-
ward rules that start on a tentative conclusion. So the evalu-
ation routine works from both directions. There are multiple
parameters that control which deduction rules are available to
the reasoner.

PSYCOP’s deduction mechanism naturally applies to con-
clusion evaluation. To apply it to conclusion generation,
the following routine has been proposed by Rips (1994,
p- 244 ff.). First, apply all forward rules to the premises and
if that yields a conclusion, respond with it. If no conclusion is
found, a tentative conclusion is heuristically generated from
the premises using the preference order

No > Some not > Some > All.

Then, the tentative conclusion is evaluated and responded
with if a proof is found. If no proof is found, most partic-
ipants are supposed to either guess or respond NVC. This
structure has been implemented as shown in Figure 2. The
implementation allows to control the different processes by
twelve parameters (see the algorithm in the github reposi-
tory).

A strong limitation of PSYCOP as a conclusion generation
model is that its conclusion proposal heuristic only derives a
quantifier but no term order from the premises. To avoid mak-
ing additional assumptions, a term order is selected randomly
in our implementation. Thus, PSYCOP’s ability to capture
patterns in the choice of term order seems highly limited.

Other than PSYCOP, the theory of Illicit Conver-
sion (Chapman & Chapman, 1959) does not propose an ex-
plicit deduction process. Its main idea is that the mental rep-
resentation of the premises is augmented with the converse
of one or both premises. Our implementation of Illicit Con-
version delivers such a possibly converted representation as
input for a deduction process.



Mental Models

The theory of mental models (MMT for short) (Johnson-
Laird & Steedman, 1978; Bucciarelli & Johnson-Laird, 1999)
proposes that syllogisms are encoded as a mental representa-
tion of a situation in which the premises are true. For exam-
ple, a mental model of the syllogism Some A are B. Some B
are not C. might be:

a b
a b -c
b

This model contains three individuals. One with the prop-
erties A and B, one with the properties A, B and not-C and
one with the property B. Conclusions can be either directly
drawn from or evaluated based on a mental model. For exam-
ple, the above model would entail the conclusion Some A are
not C.

Central to MMT is the search for alternative models to re-
fute tentative conclusions, i.e. counterexamples. While some
reasoners may reply with their initial conclusion, others may
try to refute it by imagining situations in which the premises
are true but their tentative conclusion is false.

Two existing implementations of MMT have been re-
implemented to compare them with the other models. The
first one is a previous version (Bucciarelli & Johnson-Laird,
1999), with a LISP code which can be found online?. This
implementation builds a mental model according to specific
strategies from a syllogism and generates a conclusion per
term order from this initial model. Afterwards, it may or may
not generate counterexamples to its conclusions and update
them by drawing new conclusions from the counterexample.

As shown in Figure 5, two parameters have been added
to make this model fit a single-response task: pyir is the
probability that an initial counterexample is searched for and
D further holds the probability that an additional counterexam-
ple is searched for after at least one has already been found.
Thus, the model can differentiate between reasoners who do
not search for counterexamples at all, those who search for
one counterexample and then stop and those who search for
multiple counterexamples.

mReasoner

A more recent implementation of the MMT is mRea-
soner (Khemlani & Johnson-Laird, 2013). Its source code
is also publicly available®. mReasoner uses a more powerful,
stochastic, parameterized operation to build an initial mental
model. It generates a set of initial conclusions from its men-
tal model and with heuristics. According to this heuristic, the
quantifier is determined by a preference order that is analo-
gous to the order of informativeness in PHM. The end term
order is determined by complex rules using both the quan-
tifiers and the term order of the premises. mReasoner drops

Znentalmodels.princeton.edu/programs/Syllog-Public
.lisp
3mentalmodels.princeton.edu/models/mreasoner/
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any proposed conclusion that does not hold in the initial men-
tal model.

As the classical MMT, mReasoner either directly responds
with its heuristic conclusions or tries to refute them, depend-
ing on a parameter p). An additional parameter, pg,, controls
whether falsified conclusions are dropped entirely or weak-
ened. In the latter case, mReasoner tries to refute the weak-
ened conclusion again. The flow structure is shown in Fig-
ure 4.

mReasoner differs from the other implemented theories as
it not only uses probabilities to string together different de-
terministic operations but its operations themselves may be
stochastic. This is the case for its mental model encoding op-
eration. Its high degree of stochasticity makes it especially
suited to fit aggregated data.

While reasoners seem to use different strategies to
find counterexamples (Bucciarelli & Johnson-Laird, 1999,
p- 277), both implementations of the MMT do not contain
parameters that encode a preference between different search
strategies.

Another model-based theory, which resembles MMT, is the
theory of Verbal Models (Polk & Newell, 1995). It is a highly
adaptive theory that is focused on repeated encoding of the
syllogism rather than the search for counterexamples.

The Evaluation of the Cognitive Models

All models are evaluated using the CCOBRA framework®.
The repository provides two datasets, the Veser2018 dataset
(2058 items over 33 participants) is used for training and
the Ragni2016 dataset (8896 items over 139 participants) for
evaluation.

The evaluation of an adaptive model works as follows:
First, the model is pre-trained on the training set. For each pa-
rameter configuration of the model, an error is computed by
comparing the predictions of the model using that parameter
configuration with the actual responses in the training data.
The parameter configuration with the lowest error is used as
a starting point for the evaluation of each participant.

For the actual evaluation, CCOBRA traverses the test
dataset participant by participant and then item by item. After
the model has made a prediction for an item, its parameters
are fitted to the actual response. After all items of a partic-
ipant have been predicted, the model is reset to its state af-
ter pre-training and the evaluation process continues with the
next individual in the test data. In the end, the overall pre-
dictive accuracy of the model corresponds to the fraction of
correct predictions over the entire test dataset.

For comparison, the static reference predictions
from Khemlani and Johnson-Laird (2012, Table 7) are
turned into prediction models by employing the parametriza-
tions (see above). Additionally, two benchmark models
have been implemented: A Uniform Model that uniformly
chooses one of the nine responses and the MFA model which

4github.com/CognitiveComputationLab/CCOBRA
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Figure 4: A conceptualization of the implementation of mReasoner (Khemlani & Johnson-Laird, 2013).
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Figure 5: A conceptualization of the implementation of
the classical MMT based on Bucciarelli and Johnson-Laird
(1999) and possible parameter adaptations to predict the indi-
vidual reasoner.

predicts the most frequent response given by participants to
each syllogism in the training data available in CCOBRA.

Results and General Discussion

Figure 6 summarizes the predictive power of each imple-
mented cognitive theory. Each model is more predictive than
the random guessing model and thus is able to capture some
amount of signal in the data. Also, the performance of ev-
ery model except the Atmosphere theory, which does not use
any parameters, could be substantially improved compared
to the static predictions provided by Khemlani and Johnson-
Laird (2012, Table 7). Some amount of this improvement can
be explained without taking adaption into account. This is
the case for the Matching theory, where the predictions from
Khemlani and Johnson-Laird (2012, Table 7) differ from the

original predictions (Wetherick & Gilhooly, 1995, Table 1)
which were used for our implementation. But the bulk of the
improvement likely stems from adaption.

The custom implementations can roughly be categorized
into three levels of performance: The weakest ones are At-
mosphere and Matching. They predict less than 25 percent
of the responses correctly, which is likely due to their limit-
ing simplicity and lack of adaptability. They generate their
predictions according to simple mood-generating heuristics,
which, in particular, cannot lead to the prediction of NVC.
Consequently, they make wrong predictions for every item
with a NVC response.

In the middle range we find PSYCOP, classic MMT and II-
licit Conversion, indicating some possibilities for improving
the predictive rate per participants. As mentioned, PSYCOP
has been designed for conclusion evaluation rather than con-
clusion generation. It has a powerful conclusion evaluation
routine but a weak, non-parameterized conclusion generation
mechanism. With a more flexible way to propose conclusions
for evaluation, it might be able to perform significantly better
than the current version. The classical version of MMT has
already been improved in the form of mReasoner outperform-
ing its predecessor.

The best performing models are PHM, mReasoner and
Verbal Models. Our Verbal Models implementation has the
largest parameter space of all considered models, making it
very adaptable. Also, it scores highest among the predictions
from Khemlani and Johnson-Laird (2012, Table 7), indicat-
ing that it also provides a good baseline without considering
individual adaption. However, its additional potential seems
limited because of its large parameter space. It should also
be noted that the verification of Verbal Models on the basis of
the authors’ original work proved to be difficult. Thus, a con-
siderable degree of subjective assumptions had to be made for
implementation. A different implementation may be able to
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Figure 6: The predictive accuracies of the static predictions of the classical theories/models (as given in Khemlani & Johnson-
Laird, 2012) and the improvements by our adaptive implementations.

lead to an improvement in predictive performance.

mReasoner has previously been shown to predict pat-
terns in aggregated data using a stochastic prediction func-
tion (Khemlani & Johnson-Laird, 2016). Its success in
predicting a single-response task demonstrates its general
strength. Yet, there may remain some adaptive potential
which could be exploited by controlling the choice of strate-
gies for counterexample search via a parameter. Additionally,
choosing between different plausible heuristics to generate
conclusions may be beneficial for dual-process models like
mReasoner.

PHM can be made a highly adaptive model by introduc-
ing parameters. It forms its prediction purely heuristically. It
comprises a powerful set of heuristics to propose and evaluate
syllogistic conclusions. Its high accuracy shows that a heuris-
tic theory can reach the same level of performance as the best
model-based theories on a syllogistic single-response task.

The evaluation shows that there are syllogistic models that
are able to predict on average more than 40 percent of the con-
clusions drawn by an individual participant, almost reaching
the level of the most frequent answer give (the MFA bench-
mark). Riesterer et al. (2019) identified an empirical upper
bound for the performance of syllogistic prediction models by
fitting various neural networks. Their results suggest an up-
per bound of roughly 50 percent, which is not far beyond the
MFA benchmark. Thus, the best implemented models seem
to be able to capture the majority of structure in the data.

Seven theories of syllogistic reasoning have been imple-
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mented as adaptive prediction models. Allowing the adap-
tion to individual reasoners provides a significant gain in pre-
dictive performance for most models. While simple, non-
adaptive heuristic models like Atmosphere and Matching
seem not powerful enough to predict a large portion of re-
sponses correctly, there are models like PSYCOP and the
classical MMT implementation which leave room for im-
provement or have already been improved. The potential
for algorithmic improvements has been pointed out for some
models. The best models PHM, mReasoner and Verbal Mod-
els perform close to the MFA benchmark and likely not too far
below the theoretical upper bound. These results show that al-
lowing individual adaption allows existing model-based and
heuristic theories to explain the majority of responses given
in syllogistic reasoning.
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