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Abstract

Conditionals pervade every aspect of our thinking, from the
mundane and everyday such as ‘if you eat too much cheese,
you will have nightmares’ to the most fundamental concerns
as in ‘if global warming isn’t halted, sea levels will rise dra-
matically’. Many decades of research have focussed on the
semantics of conditionals and how people reason from condi-
tionals in everyday life. Here it has been rather overlooked
how we come to such conditionals in the first place. In many
cases, they are learned through testimony: someone warns us
about the ill-effects of cheese. Any full account of the condi-
tional must consequently incorporate such learning. Here, we
provide a new formal account of belief change in response to a
testimonial conditional.

Keywords: Indicative conditional reasoning; testimony; belief
change; probability

Introduction

Conditionals figure centrally in our everyday discourse. On
hearing them, we must interpret them and adjust our beliefs.
Decades of research have sought to understand exactly
what conditionals are, that is, provide an account of their
semantics. However, as pointed out recently by (Collins,
Krzyzanowska, Hartmann, Wheeler, & Hahn, 2020), it re-
mains somewhat mysterious how we change our beliefs when
we encounter a conditional. There is a vast body of work on
reasoning with conditionals that probes the inferences people
will draw from a given conditional. But other aspects of in-
teraction with conditionals have been overlooked: virtually
no work has examined how beliefs change simply on hearing
a conditional asserted by a testimonial source. This is not just
an intriguing gap in its own right, but as Collins et al. ar-
gue, how beliefs change upon encountering an assertion of a
conditional constrains theories of what conditionals are.
With respect to the meaning of the conditional, a wealth of
research has demonstrated that people do not view the condi-
tional as the material conditional of classical logic, and that
reasoning performance is better characterised by a probabilis-
tic model which takes conditional reasoning to be Bayesian
belief revision with the conditional premise expressed as the
conditional probability P(C|A) (Oaksford & Chater, 2007).
Furthermore, judgments of the conditional probability corre-
late well with judgments of the probability of the conditional
(Evans, Handley, Neilens, & Over, 2007; Evans, Handley, &
Over, 2003; Over, Hadjichristidis, Evans, Handley, & Slo-
man, 2007; Oberauer & Wilhelm, 2003; Politzer, Over, &

Baratgin, 2010; Over et al., 2007). Studies have shown the as-
sociation with the conditional probability for indicative con-
ditionals (Evans et al., 2003); causal conditionals (Over et al.,
2007); conditional promises (Ohm & Thompson, 2006); con-
ditional tips, threats, and warnings (Evans, Neilens, Handley,
& Over, 2008); and counterfactual conditionals (Over et al.,
2007). This evidence suggests that whatever is learnt from a
conditional is likely to at least include something about the
conditional probability. However, recent data also suggest
that for the conditional probability and the probability of the
conditional to correspond well, the antecedent may need to
be positively relevant for the consequent (Skovgaard-Olsen,
Singmann, & Klauer, 2016; Krzyzanowska, Wenmackers,
& Douven, 2013; Krzyzanowska, Collins, & Hahn, 2017;
Krzyzanowska, 2013). In other words, there may need to be
some link between antecedent and consequent for a condi-
tional to be assertable.

That the conditional probability is implicated in the indica-
tive conditional suggests that integrating the conditional with
testimony should be possible in a probabilistic framework.
After all, the uncertainty raised by less than full reliability
of a testimonial source seems naturally captured by a proba-
bilistic perspective. However, such a merger turns out to be
technically less straightforward than one might assume.

Some Stylised Facts

How, then, might beliefs change on hearing a conditional and
how should they change? Collins et al. (2020) used the fol-
lowing simple context. Imagine that you are looking at cars
at a large car dealership, and someone tells you “If a car on
this lot is a Mercedes, then it’s black™.

If there is an association between the conditional and
P(CJ|A), a recipient receiving a conditional should increase
this conditional probability. However, intuitively it should
also matter who uttered the conditional: rationally, one might
change one’s belief more if the conditional is uttered by a
source with relevant expertise, such as the manager of the car
dealership, as opposed to an accompanying child.

This putative change to the conditional probability is the
most obvious intuition, but likely not the only change to take
place (but see (Douven, 2012)). Imagine believing today will
be a fine, sunny day, but as you prepare to leave your home,
someone says “If it rains today, then you’ll get wet.” This
may raise your belief in the probability of rain. Imagine addi-
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tionally that you are heading out to the bakery, and the same
person also says “If the bakery is open, can you get me a
croissant.” Here, you might actually decrease your judgment
of the probability of the bakery being open. Finally, it seems
harder to generate clear intuitions about the probability of the
consequent: but there would seem to be contexts on which it
would likely rise, given that one has just learned about a new
way of bringing it about. Collins et al. (2020) provide ex-
perimental evidence in line with these intuitions. We do not
review that evidence here, but rather focus on the question of
how best to model such changes.

Modelling the Belief Change

In addition to backing up basic intuitions about belief change
in response to testimonial conditionals, Collins et al. (2020)
also probe the range of extent approaches to conditionals and
demonstrate how they fail with the acquisition of conditionals
via testimony. Again, space limits prevent full discussion of
their results, hence we focus on the challenge for probabilistic
accounts such as the suppositional theory of the conditional.
Here, the difficulty lies in the fact that conditionals express
a relationship between variables, not (just) new information
about the state of one or more of those variables. Thus, the
standard tool for modelling belief revision within a proba-
bilistic framework—Bayesian conditionalization (or “Bayes’
rule”)-is at best indirectly applicable. Conditionalization nor-
matively prescribes belief change on observing evidence for
the state of a variable, and Bayesian networks (as in Fig-
ure 1) provide computational tools for propagating that ev-
idence to other connected variables (Bovens & Hartmann,
2003; Sprenger & Hartmann, 2019; Hartmann, 2020). On
the suppositional theory, a conditional such as ‘if A, then C’
implies something about the conditional probability P(C|A).
For a Bayesian network, however, this is not a claim about
the variables A and C per se, but rather about links between
them.

From the perspective of Bayesian networks, a model with
a link between A and C is simply a different model than A
and C without that link. This suggests that capturing such
changes requires thinking in terms of model transition. This
is exactly the novel approach to learning conditionals taken
in (Eva & Hartmann, 2018; Eva, Hartmann, & Rafiee Rad,
2020). These authors seek to identify rationality constraints
on the transition. Specifically, they identify formal means
that make the transition conservative: learning about a pre-
viously unknown connection in a model should not lead one
to abandon all other knowledge the model embodies. What
is desired is the minimal adjustment needed to accommodate
the new belief.

However, additional challenges are posed by the uncer-
tainty concerning the reliability of the source where knowl-
edge of that link is acquired via testimony (Coady, 1992).
Even the most well-intentioned sources make mistakes and
are less than fully reliable as a result. Hence, a central
challenge for humans is determining the reliability of our
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sources in order to normatively factor in that partial re-
liability. Considerable research in the last 15 years has
sought to identify normative constraints on source reliability
(Olsson, 2011; Bovens & Hartmann, 2003; Hahn, Merdes, &
von Sydow, 2018) and examined laypeople’s descriptive re-
sponses (A. J. L. Harris, Hahn, Madsen, & Hsu, 2016; Jarvs-
tad & Hahn, 2011; Collins & Hahn, 2019; Collins, Hahn, von
Gerber, & Olsson, 2018; P. L. Harris & Koenig, 2007). Here,
we adopt the spirit of one such normative approach (Bovens
& Hartmann, 2003) in order to capture the uncertainty asso-
ciated with sources in terms of model uncertainty.

Finally, adequately capturing the way one’s beliefs change
on hearing the assertion of a conditional by a testimonial
source, will likely need to factor in general considerations of
natural language pragmatics (Mey, 2001): speech acts carry
a presumption of relevance (Grice, 1989; Wilson & Sperber,
2004), hence the fact that someone sees fit to raise a topic at
all may alter our beliefs about the issues involved.

In this paper, we combine these ingredients into a novel
approach for formalizing belief change in response to condi-
tional assertions. We next detail the formal implementation
of these basic ideas.

The Baseline Model

An agent considers the propositions A (= the antecedent) and
C (= the consequent) and learns the conditional ‘If A, then
C’ from a partially reliable information source. She assigns a
reliability r € (0, 1) to the source. How shall she update her
(partial) beliefs about A and C? And how should the condi-
tional probability P(C|A) change?

To address these question, we proceed in two steps. In the
first step, we assume that the agent has a prior probability
distribution P over the propositional variables A (with values
A and —A) and C (with values C and —C). To represent P,
we consider the Bayesian network in Figure 1 and assign the
prior probability of the antecedent,

P(A) = a, (1)

and the conditional probabilities of the consequent C, given
the values of its parent,
P(CJA)=p , P(CI-A)=gq. 2)

With this, the joint prior probability distribution P over the
variables A and C is given by

P(A,C)=ap
P(-A,C)=aq ,

P(A,ﬁC) =ap
P(-A,-C) =agq, €)]

where we have used the shorthand notation P(A,C) for
P(A AC) which we will use throughout this paper. We also
use the shorthand X for 1 — x and assume that a, p,q € (0,1).

In the second step, we ask how the prior probability dis-
tribution changes once the agent learns the conditional ‘If A,
then C’. Let Q denotes the posterior probability distribution
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Figure 1: The Bayesian network representation of the relation
between A and C.

after learning the conditional from a partially reliable infor-
mation source. To determine Q, we consider two extreme
cases: (1) If the source is fully reliable, i.e. if r = 1, then the
agent updates by conditioning on the corresponding material
conditional. P/, can be parameterized in the same way as P

with
/ ap /

fr— s :1 5 /:. 4
a ap+d p q9 =9 (€]

It is interesting to note that one obtains the same result if one
uses the more general distance-based approach to Bayesian-
ism and determines P/,, by minimizing some f-divergence
between P/, and P, taking the constraint P/,,(C|A) = p' =1
into account. See (Eva & Hartmann, 2018; Eva et al., 2020;
Stern & Hartmann, 2018) for details. From eqs. (4) it is easy

to see that

d <a. &)
Defining ¢:=P(C) =ap+dq and ¢ :=P,,,(C)=d +d'q,
one finds that

d>c. (6)

At this point, one might wonder whether the utterance
of the conditional by a partially reliable information source
could be modeled by simply minimizing some f-divergence
between Q and P, taking the constraint Q(C|A) = p’ < 1 into
account, where the value of p’ depends on the reliability of the
source (e.g. p'(r) — 1 as r — 1).! This proposal has some
plausibility, but it faces serious difficulties when confronted
with empirical data. Here is why: If one follows the described
procedure, then the new probability of the antecedent and the
new probability of the consequent only depend implicitly on
r, viz. via the functional relationship between p’ and r. That
is, once p’ is fixed (and an f-divergence is chosen), then the
posteriors of A and C do not show any explicit dependence
on r. However, the data suggest something else: If the prior
probability distribution over the variables A and C is fixed and
a value of p’ is chosen, then the posterior distribution will still
depend on r. Hence, the simple proposal does not work.

(2) Let us now consider the case where the source is fully
unreliable, i.e. » = 0. Then a rational agent should disre-
gard the new information completely. Hence, the posterior

IThe f-divergence is defined as follows: Let Sy,...,S, be the
possible values of a random variable S over which probability distri-
butions P (= the prior distribution) and Q (= the posterior distribu-
tion) are defined. The f-divergence between Q and P is then given

by
sl =¥ rs)f (55 )

2

)

where f is a convex function such that f(1) = 0. For details and
applications in the psychology of reasoning, see (Eva & Hartmann,
2018; Eva et al., 2020).
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probability distribution P, , equals the prior probability dis-
tribution: P/, , = P.

To obtain the posterior distribution Q for all values of the
reliability r, we take the convex combination of P/, and
P, ..;» weighted with r or 7 respectively, i.e. Q =rP.,, +7P
(as P,,..; = P). Proposition 1 summarizes the features of Q:

Proposition 1 An agent considers the propositional vari-
ables A and C with a prior probability distribution P de-
fined over them as in eqs. (3). The agent then learns the
conditional ‘If A, C’ from a source to which she assigns a
reliability r and updates her (partial) beliefs as described
above. Then the posterior probability distribution Q has the
Sollowing features: (i) Q(A) < P(A), (ii) Q(C) > P(C), and
(iii) Q(C|A) > P(C|A).

Q accounts for some of the stylized facts described above.
For example, it accounts for the observation that the condi-
tional probability of C given A always increases. We also
see Collins et al.’s (2020) data that the probability of the con-
clusion (C) increases for a large range of prior distributions.
However, the baseline model cannot explain that the proba-
bility of the conclusion sometimes decreases. It can also not
explain that the probability of the antecedent (A) typically in-
creases in experiments. Modeling this latter observation is
a major challenge for all accounts of learning conditionals
which aim to be normatively plausible and empirically ad-
equate since Collins et al. show that extant accounts entail
that the probability of the antecedent always decreases after
learning the corresponding conditional. We address this issue
next.

The Extended Model

Consider the following situation: A friend tells you, totally
unexpected to you, that “If there is an earthquake, then there
will be a considerable amount of air pollution in the area”.
You are surprised by the remark. On the one hand you find it
plausible as an earthquake will probably cause air pollution.
At the same time you do not expect an earthquake at all and so
your prior of it is rather low. But why does your friend men-
tion an earthquake? Does she have special information which
you do not have? There must be a reason why your friend
mentions the earthquake. Pondering the issue, you increase
the probability of the antecedent. This seems rational.

Let us now formalize this insight. To begin with, we disre-
gard the propositional variable C and focus on A. We assume
that the agent also believes that things are somehow normal
and unsurprising. (Earthquakes and the like are really un-
likely in the area we live in.) Let us denote the corresponding
propositional variable by N (with values N: “Things are nor-
mal.” and —N: “Things are not normal.”) and include it in the
Bayesian network which represents the relevant beliefs of the
agent (see Figure 2).

We furthermore assume that n:= P(N) is large, that
pn :=P(A|N) is small and that gy := P(A|-N) is large.
In particular, we assume that gy > pn. Hence,
P(A) =npy+7gy will be fairly small. Now, the fact that
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Figure 2: The Bayesian network representation of the relation

between A and N.
O, ©

Figure 3: The Bayesian Network representation of the rela-
tion between A,C and N.

@

your friend mentions the possibility of an earthquake (i.e.
A) makes you doubt that things are as normal as you pre-
viously thought. Hence, you decrease the probability of N
and set n’ := P'(N) < n. To find the full posterior probability
distribution P’ you use Jeffrey conditionalization and obtain
P'(A) =n' py+n/qy. Ttis easy to see that P'(A) >P(A) as
P(A) = P(A) = (n—n')(gx — px) > 0.

This mechanism increases the probability of A. If the agent
then updates on the conditional, it will decrease, but it may
well be that the resulting posterior probability of A is larger
than the prior probability of A. It may, however, also reach
a value lower than the prior probability of A. The details de-
pend on the prior probability distribution over the proposi-
tional variables A, C and N and on the value of #’. Let us now
work this idea out in detail.

The full Bayesian network over the three propositional
variables A,C and N is given in Figure 3. The correspond-
ing prior probability distribution P is given by

P(N) =n @)
and
P(AN)=py , P(A|-N)=gy
P(CIA)=ps , P(C|-A)=qa. )

As before, we first consider how the agent updates if she
considers the information source to be fully reliable. In this
case the agent learns two pieces of information: (i) The prob-
ability of N shifts from P(N) =n to P,,,(N) =n'. (ii) The in-
dicative conditional A — C. To update, we use the distance-
based approach to Bayesianism and specify the following two
constraints on P;,;:

P;{el(N):n/ ) P;/-el(clA):plA: 1 (10)

With this, P/

, P, can be represented in the same way as P.

Proposition 2 An agent considers the propositional vari-
ables A,C and N with a prior probability distribution P de-
fined over them as in eqs. (8) and (9). The agent then learns
the conditional ‘If A, C’ from a source to which she assigns
a reliability r and updates her (partial) beliefs by minimizing
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an f-divergence between P, and P, taking the constraints
(10) into account. Then ¢/, = qa and

PN PA
DN PA+ PN

4N PA

—_—, (1m)
4gN PA T 4N

PN = qy =

with pl, < pn,qy < gn and gy > py if and only if gy > py.

Eq. (11) are interesting: If py is small, then p) and g)
are also small and hence P/,;(A) = n’ p/, + 1, is small and
therefore likely to be smaller than P(A). To proceed, let
us define A, (A) := Pl,;,(A) — P(A) and A,;(C) accordingly.
Figure 4 shows these functions for some typical values.

Panels 4(c) and 4(d) suggest that the probability of the con-
clusion (C) typically increases. However, in numerical stud-
ies we find that it decreases under certain conditions, e.g. if
pa4 is large (i.e. if learning the conditional does not provide
much new information) and if n’ > n, i.e. if the agent comes
to belief, after learning the conditional, that things are actu-
ally more normal than expected. This phenomenon needs a
more detailed experimental and theoretical analysis.

As in the case of the baseline model, we can now cal-
culate the posterior probability distribution Q = r P/, +7P.
Defining A(A) := Q(A) — P(A) (and A(C) and A(C|A) ac-
cordingly), the following proposition summarizes our results.

Proposition 3 An agent considers the propositional vari-
ables A,C and N with a prior probability distribution P de-
fined over them as in eqs. (8) and (9). The agent then learns
the conditional “If A, C” from a source to which she assigns
a reliability r and updates her (partial) beliefs as described
above. Then (i) A(A) =r-Ayer(A), (ii) A(C) = r- At (C), and
(iii) A(C|A) > 0.

Hence, our model explains why the (absolute values of the)
differences A(A) and A(C) increase linearly with the relia-
bility r. The plots in Figure 4 show the maximal (absolute)
differences, i.e. for r = 1.

Conclusions

We have presented a new approach to an overlooked, but cen-
tral, problem of human cognition. Human thought and lan-
guage are unthinkable without the conditional, yet little at-
tention has been given to how we acquire knowledge of con-
ditionals through testimony from others. The approach taken
here is simple yet powerful: when we acquire knowledge
of a new conditional relationship, our model of the world
changes. Where that knowledge is uncertain, because our
source is less than fully reliable, model uncertainty remains.
Arguably, both model transition and model blending are sub-
ject to rationality constraints. Future research working out
these constraints in increasing detail is likely to not only pro-
vide a missing puzzle piece for theoretical understanding of
conditional reasoning and communicating with conditionals,
but also to provide a blue print for other contexts of model
transition and model uncertainty in human cognition.
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Proof of Proposition 1

The posterior probability distribution Q is given by

Q(AC)=dr+apr
O(-A,C)=d qr+agqr

Q(A,~C) =apT (12)
Q(-A,-C) =d gr+aqr,

with @' given in eq. (4). Using egs. (12), we calculate
O(A)=d r+ar. Hence Q(A)—P(A) = (¢ —a)r <0 as
a' < a(see eq. (5)). Similarly, we calculate Q(C) =c'r+cF.
Hence Q(C) — P(C) = (' —c)r > 0 as ¢’ > c (see eq. (6)).
Finally, Q(C|A) = Q(A,C)/Q(A) = (d'r+ap7)/(d r+aF).
Hence, Q(C|A) — P(C|A) =d'pr/(d' r+a7F) > 0. It is inter-
esting to note that Q(C|A) is not given by p” :=r+ pF, as one
might have expected in analogy to the expressions for Q(A)
and Q(C). In fact, Q(C|A) < p.

Proof of Proposition 2
Using eq. (7), we calculate F := D¢(P.,||P):

n’p’ o n/Fq/
F=nprA'f( No) tnpyaa- f | 222
npN PA N PN 4A

- nlpi/il B n !
+”PN(IA'f<NqA> +anNPA'f<nqu )

DN gA N PA
Wil / Wili/

N qa- f (quA) +ngNga- f (M‘) (13)
ngn ga ngn ga

To find the values of p)y, ¢y and ¢/, which minimize F, we
first differentiate F by ¢/, and then set the resulting expression
equal to zero. Hence,

P W pndy ) f " pydy
DN qaA DN qA

= | (" dvdh 74y d,

+n' g - - | — — =0.
I lf<nqzqu I\ a

As this equation has to hold for all values of n’, we conclude
that the expressions in the square brackets have to vanish. Us-
ing the convexity of f, we obtain ¢, = g4. Inserting this result
into eq. (13), we obtain

1T
n py-

n’p’ o n/?

FnPNPA‘f< . >+"PN‘f X
N PN PA npn
7

_ n'q __(ndy
+nquA~f< N)+nqN-f<N>. (14)
ngn pa ngn

Next, we differentiate F by p, and set the resulting expres-
sion equal to zero:

PN PA npn

Hence, again using the convexity of f, we obtain

PN PA
DN PA+ PN

Py =



and with this

P —py = — PNPNPA_ _
N PN PA+DN
Similarly for g),. Finally, we calculate
gN — PN
pnPa+DPN)(av pa+aN)’

from which the last statement in the proposition follows.

Proof of Proposition 3
A(A):=Q(A)—P(A)=r-P,,;(A)+7-P(A)—P(A) Hence,
A(A) =r-(P,;(A) — P(A)). Accordingly for A(C). Next,
note that P 0and hence P/, (A,C) =

(A, ﬂC) P, (A). Set-
ting a := P(A) and a’ := P/ ,,(A), we finally find
0(A,C)

rel
0(A)
dr+apsr
ar+ar
a'par

= ————>0.
ar+ar

AC|A) =

—P(C|A)
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