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Abstract

Studies suggest that people use the least possible effort to gen-
erate natural language descriptions of sets of objects. This
means that they base descriptions on what is perceptually avail-
able to them. For instance, people can subitize, i.e., rapidly
assess the exact quantity of small numbers of objects, so when
the quantity of objects in the visual scene is beneath this thresh-
old, they give numeric descriptions; when the quantity is above
this threshold, they generate non-numeric descriptions. How-
ever, no research examines how people describe visual scenes
of items in groups. As such, it is unclear how people will form
descriptions of scenes that contain a large total number of items
in groups. We report on a novel experiment designed to in-
vestigate how people produce quantified descriptions of scenes
composed of salient visual groups. The results corroborate the
least effort hypothesis, and suggest that people’s incremental
perception of quantity drives their descriptions.
Keywords: numerical perception; pragmatics; quantified de-
scription; subitizing; visual grouping

Introduction
People make use of quantified descriptions to characterize vi-
sual scenes. Consider a map of the state of Hawaii (see Fig-
ure 1) and imagine how you might describe the number of
islands that compose it. You could describe it using exact
numbers (e.g. “I see exactly eight islands”); bounded numer-
als (e.g., “I see more than five islands”); or vague quantifiers
(e.g. “I see several islands.”). Pragmatic and discourse goals
will likely affect the level of precision you use to describe
the total number of islands (Cummins, 2015; Hesse & Benz,
2018), and limited attentional and perceptual resources like-
wise affect the precision with which people describe quanti-
ties (Briggs, Wasylyshyn, & Bello, 2019).

People rapidly and accurately determine the number
of small groups of items in a process called subitizing
(Kaufman, Lord, Reese, & Volkmann, 1949). While there
might be some variation to the subitizing limit, it is safe to
say that people can subitize quantities up to 4 (Mandler &
Shebo, 1982). Exact enumeration within the subitizing range
requires between 40–100 ms for each visual item (Trick &
Pylyshyn, 1994). For sets of items that fall outside the subitiz-
ing range, people appear to have two ways of assessing quan-
tity. First, they can estimate quantity using a mental represen-
tation known as the approximate number sense (ANS). The
ANS refers to a developmentally primitive representational
capacity that allows people to perform numerical calculations
without assigning names to numbers. Hence, the ANS does

Figure 1: Outlines of major islands comprising the U.S. state
of Hawaii: an example of a collection of distinct visual ob-
jects.

not provide access to individual items or yield exact numbers,
but people can use it to make comparisons, such as estimating
whether one group of items is bigger than another (Dehaene,
1992; Izard & Dehaene, 2008). Second, people can process
sets of items out of the subitizing range by counting them,
which allows them to construct more precise quantity rep-
resentations. Counting demands cognitive effort and can be
slow: people count items at a rate of about 250–350 ms per
item (Trick & Pylyshyn, 1994).

Empirical investigations into how people perceive nu-
merosity tend to adopt restrictive tasks that do not allow
people to generate a broad range of descriptions. For in-
stance, many numerical perception tasks force participants
to report the exact number of items in a scene (e.g., Man-
dler & Shebo, 1982). Initial work in more free-form quan-
tified description tasks required participants to describe a set
of items in contrast to an alternative set. In daily life, par-
ticipants do not abide by such constraints: your description
of the Hawaiian archipelago did not depend on comparisons
to other archipelagos, and a description, such as, “a bunch of
islands” may suffice. Few studies examine how people natu-
rally formulate quantified descriptions of visual scenes.

Recent work suggests that when placed under time
constraints, people describe sets of items by appealing to
inexact language (Briggs et al., 2019). Barr, van Deemter,
and Fernández (2013) also showed that people use exact
numbers to describe items below the subitizing range and
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non-numerical quantifiers for items above it. They exam-
ined how people use quantified expressions to distinguish
one set of objects from other sets of different quantities.
Participants used numbers 90% of the time to distinguish
sets with a subitizable number of objects, but did so only
39% of the time for the targets with numerosity beyond
the subitizing range. They often used numeric descriptions
when comparing against sets where the distractors were
blank images: the result would seem to violate the Gricean
maxim of quantity (Grice, 1975), since reporting the number
of items is overinformative when a simpler response, e.g.,
“the one with the circles” would suffice. Barr et al. (2013)
hypothesized that people balance informativity with the
effort required to produce a description. Briggs and Harner
(2019) interpreted the proposal to concern the information
produced by perceptual processes in limited time frames. We
synthesize both proposals as follows:

Least effort hypothesis: speakers generate descriptions
using as little effort as their processing limitations permit.
Their descriptions may be overinformative in situations
in which perceptual processes make salient information –
such as numerosity, color, and shape – accessible.

The hypothesis explains participants’ preference to produce
descriptions such as “a set of four circles” when “a set of
circles” would suffice.

People need not rely on descriptions of total quantity to
characterize groups of items at all. For example, participants
in Barr et al. (2013) also produced referring expressions that
used spatial information such as density to discriminate tar-
gets: one participant generated an expression that described
a target as “the most crowded.” When describing the Hawai-
ian islands (Figure 1), you might describe its overall shape
(e.g., “a group of islands lying along a curved path”). Like-
wise, you could break the island chain into subgroups and
describe the number of subgroups (“three groups of islands”)
or the cardinality of each subgroup (“a group of two islands,
a group of five islands, and a single large island”). People can
refer to the number of subgroups and the cardinality of each
subgroup, either by themselves (e.g., “three groups”) or as an
addendum to their description of the total quantity of items
(e.g., “eight islands in three groups”).

Barr et al. (2013) and Briggs et al. (2019) investigated how
people produce quantified descriptions of collections of ob-
jects in scenes without salient groups. In this paper, we re-
port investigations into how people’s quantified descriptions
change in the presence of salient groups. We begin by review-
ing prior work on the effects of visual grouping on enumera-
tion and discuss how visual grouping may interact with prag-
matic constraints to affect quantified descriptions. We then
describe an experiment designed to elicit quantified descrip-
tions of visual scenes under different grouping conditions. Fi-
nally, we discuss how our results relate to the tension between
perception and pragmatics in visual description.

Perceiving and describing groups
Grouping and the spatial arrangement of objects affect the
perception and representation of numerosity. People per-
ceive grouped items as more numerous than those that are not
grouped (Poom, Lindskog, Winman, & Van den Berg, 2019;
Vos, Van Oeffelen, Tibosch, & Allik, 1988). Cantrell and col-
leagues (2013; 2015) studied the effects of grouping on the
perception of individuals; they found that people consider the
features of groups more prominent than the features of the in-
dividual group members. Items in more regular patterns like-
wise appear more numerous than randomly positioned items
(e.g., Ginsburg, 1976, 1980; Cousins & Ginsburg, 1983).
Similarly, items organized into groups via Gestalt principles
appear more numerous than groups without such organization
(Frith & Frit, 1972). The amount of space that items occupy
affects perception of their numerosity: elements that take up
more space appear more numerous than those that take up less
(Vos et al., 1988)

Research also demonstrates that visual grouping makes
enumeration easier. For instance, people have an easier time
estimating the numerosity of a set of dots distributed into reg-
ular patterns than the same set of dots distributed randomly
(Burgess & Barlow, 1983). Van Oeffelen and Vos (1982)
found that people are faster at giving overall item numbers
outside the subitizing range if they can break the scene up
into a subitizable number of groups. The findings suggest
that people can quickly perceive subitizitable groups, evalu-
ate the individual cardinalities of their groups, and sum those
cardinalities to estimate the total number of items in a scene
(Fernberger, 1921; Oberly, 1924). Starkey and McCandliss
(2014) refers to the process as “groupitizing.”

Research into how people form quantified descriptions of
scenes ignores how groups affect descriptions. Above, we
identified three relevant referents when considering quanti-
fied descriptions of groups: the total number of visual items,
the number of groups, and the cardinality of each group. Con-
sider the following possible quantified descriptions of a hypo-
thetical scene that depicts 3 groups of 4 dots:

“There are 12 dots.” [D1]

“There are 12 dots in 3 groups.” [D2]

“There are 3 groups of 4 dots.” [D3]

“There are 12 dots in groups of 4.” [D4]

“There are 3 groups of 4 dots for a total of 12 dots.” [D5]

D1 concerns the total quantity of items in the scene; D2 con-
cerns the total items and the number of groups; D3 presents
the number of groups and the total number of items; D4
presents the number of groups and their cardinality. And D5
presents all three sorts of information. D1 is underinforma-
tive: it doesn’t provide any information that the dots are or-
ganized into groups. D2 is also underinformative, since it
is compatible with 12 items separately into groups of non-
uniform cardinality. D3 and D4 are equally informative. D5
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is overinformative: of the three numbers it provides, one of
the numbers can be computed from the other two.

As we will show, over 95% of people’s responses fall into
one of the five patterns above. Which description do theories
predict people generate to describe quantities of items? The
Gricean maxim of quantity suggests that people should not be
underinformative – e.g., they shouldn’t describe 3 groups of
4 dots with descriptions such as, “there are 3 groups,” since
the description is compatible with, say, a set of 3 groups
of 100 dots. Likewise, they shouldn’t produce descriptions
such as D1 and D2, which are similarly underinformative, or
D5, which presents redundant information. But the maxim of
quantity provides no guide on how to appropriately describe
groups and their composition: to describe the scenario above,
is it more sensible to say, “there are 3 groups of 4 dots” (D3)
or “there are 12 dots in groups of 4” (D4)?

It is not surprising that pragmatic accounts make no
distinction between D3 and D4, as they do not depend on
processing constraints. But the two descriptions are equally
informative, even though they differ in complexity – to infer
the missing information, D3 requires multiplication, and D4
requires division. The least effort hypothesis, introduced ear-
lier, concerns people’s processing constraints in perceiving
visual scenes. In applying it to images with visually salient
groups, it predicts that people’s descriptions will depend on
whether they concern subitizable groups of items. When a
set of subitizable groups is present, speakers should have
little difficulty perceiving both the number of groups and
their cardinality. But, unless the total number of items can
be subitized, it should be inaccessible to individuals unless
they carry out mental arithmetic. The least effort hypothesis
therefore predicts the following:

Least effort hypothesis predictions: For scenes that
depict a subitizable set of items, speakers should generate
descriptions such as D1. In contrast, for scenes that depict a
non-subitizable set of items arranged into groups, speakers
should generate descriptions such as D3 more often than
any other description.

Barr et al. (2013) did not explain the mental computations
that underlie the least effort hypothesis. Here, we propose the
idea is compatible with the incremental processing of visual
scenes. The least effort hypothesis would suggest that, for
scenes that can be groupitized, people perceive and encode
the number of groups and the cardinality of each group be-
fore they determine the total quantity of items in the scene.
In fact, people often decompose a cluttered scene into sub-
groups, which can facilitate mental arithmetic (Starkey &
McCandliss, 2014; Ciccione & Dehaene, 2020).

To test the least effort hypothesis, we ran a study that re-
quired participants to generate a description from a single
image of a collection of objects. Namely, it sought to test
whether people’s descriptions differed when they described
small sets of items in the subitizing range, i.e., sets of 3 or

Subitizing Range
Randomized

Subitizing Range
Grouped

Post-subitizing Range
Grouped

Post-subitizing Range
Randomized

Subitizable, Grouped

Non-subitizable, Random

Non-subitizable, Grouped

Subitizable, Random

Figure 2: Examples of images from each of the four condi-
tions in the Experiment. Non-subitizable images depict items
whose total number cannot be subitized.

4 items, and when they described large groups of items in
the non-subitizing range, i.e., sets of 9 or 12 items. It further
sought to test whether visually grouping sets of items shifted
the sorts of quantified descriptions people produced.

Experiment
The experiment tested how people generate natural language
descriptions of an image depicting a set of objects. Half
of the images presented total quantities of items that peo-
ple could subitize (i.e., they included either 3 or 4 objects)
and the other half presented scenes that had total quantities
outside the subitizing range (i.e., they included 9 or 12 ob-
jects). And half the images spatially arranged the objects into
groups, while the other half scattered the objects in random
positions across the image. Participants had to describe the
scene as they saw fit.

Method
Participants. Fifty participants (mean age = 38.9 years; 27
males and 23 females) volunteered through the Amazon
Mechanical Turk platform (see Paolacci, Chandler, and
Ipeirotis (2010), for a review). All participants reported
being native English speakers; we dropped five participants
for either giving uninterpretable descriptions, or else for
giving multiple descriptions on the same trial (e.g., “I see 3
dots. I see more than 2 dots...”).

Design. The study manipulated whether images depicting
sets of items were grouped or not and whether people could
subitize the total number of items or not; the manipulations

1010



yielded a 2 x 2 repeated-measures design. Half the images
depicted sets of items that fell within the subitizing range, so
that images showed 3 or 4 items in total; and the other half
showed sets that could not be subitized, i.e., sets that 9 or
12 items in total. And, for half the images showed items in
random positions, and the other half showed items in 3 or 4
groups of 3 or 4 objects each.

Procedure. Participants carried out 8 trials, i.e., 2 trials in
each of the 4 conditions. The experiment randomized the
order of the trials. On each trial, participants viewed a single
image and then typed out a description of the scene. Each
trial was self-paced with no time limit. Participants typed out
their responses to the prompt, “Please enter a description of
the image.”

Materials. Images in the study concerned sets of everyday
objects (e.g., paperclips, mugs, or flowers). Each image
depicted one type of object. Figure 2 provides an exam-
ple of a set of mugs in each of the four conditions in the study.

Data analysis. Three annotators coded participants’ re-
sponses along categories designed to examine what quantified
information they included in their descriptions. Annotators
coded each description on whether they mentioned:

1. The total number of individuals: whether a response men-
tioned a numeral to characterize the entire group of objects
(e.g., “12 mugs”).

2. The number of groups: whether a response mentioned a nu-
meral to characterize the number of groups (e.g., “4 groups
of mugs”).

3. The cardinality of groups: whether a response mentioned
a numeral to characterize the number of objects in a group
(e.g., “groups of 4 mugs”).

Participants were free to mention any combination of the
quantities above, and so we can classify their responses into
23 + 1 = 9 separate categories, which includes the category
of response that lacked any numerals. Despite the diversity of
options, participant responses could be classified into one of
the five sorts of description introduced above (D1-D5), where
D1 concerns any response that mentions the total number of
individuals but not the number of groups or the cardinality of
groups, and so on for D2-D5. We focus the results on these
five relevant patterns of responses.

In addition to coding participants’ use of numerals, annota-
tors coded responses on two exploratory measures:

4. Non-numerical quantifiers: whether participants used
quantifiers that made no use of numerals to refer to either
the total number of objects, the number of groups, or the
number of objects in each group (e.g., “a few mugs”).

5. Spatial relations: whether participants made some refer-
ence to the spatial arrangement of the collection, e.g. “4
mugs grouped together.”

Kendall’s coefficient
Code of concordance
Total number of individuals .77
Number of groups .87
Cardinality of groups .92
Inexact quantifiers .88
Spatial relations .99

Table 1: Three annotators coded participants’ responses in
the Experiment in five separate ways blind to the condition of
the trial. All three coders evaluated the same sample (1/4th)
of responses. The table provides their interrater reliabilities.
The annotators resolved discrepancies, refined their coding
criteria, and then divided the remaining responses to code in-
dividually.

Open science. Data from the experiment, experimen-
tal code, annotator codings, and statistical analyses are
all available online through the Open Science Framework
(https://osf.io/u7gyc/).

Results
Figure 3 shows the proportion of responses that fell into the
four different categories (D1-D5) as a function of whether
images showed items in groups or not and as a function of
whether they showed a subitizable set of items or not. Hence-
forth, we refer to images that depict more items than can be
subitized as non-subitizable images. We subjected the table
of frequencies that underlies Figure 3 to a χ2 test, which re-
vealed that the frequencies of the four different responses de-
pended on the four conditions in the study (χ2 = 164.03,d f =
12, p < .0001). To perform direct tests of the predictions of
the least effort hypothesis, we dummy-coded D1-D5 to treat
each one as a binary dependent variable, e.g., 1 if a particular
response could be considered D1, and 0 otherwise. Partic-
ipants made D1 responses far more often (72% of the time)
than D2 responses (5%), D3 responses (12.5%), D4 responses
(2%); and D5 responses (7%; Wilcoxon tests, zs > 5.67, ps <
.0001, Cliff’s δs > .96). For brevity, the remaining analyses
concern the patterns of D1 and D3 responses, but we provide
a full battery of statistical analyses online.

As Figure 3 reveals, participants generated D1 responses
more often for subitizable than non-subitizable images (86%
vs. 56%, respectively; Wilcoxon test, z = 5.21, p < .0001,
Cliff’s δ = .63). And they generated more D1 responses
for randomized images than for grouped images (92% vs.
51%, respectively; Wilcoxon test, z = 5.55, p < .0001, Cliff’s
δ = .74). Their tendency to generate D1 responses yielded a
reliable interaction: participants tended not to generate D1
responses for non-subitizable images (Wilcoxon test, z =
4.54, p < .0001, Cliff’s δ = .57). The results corroborate
the first of two predictions of the least effort hypothesis: for
subitizable images (i.e., the two white bars in the first panel
of Figure 3), people provided terse descriptions of the infor-
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D1:
"...12 mugs"

D2:
"...12 mugs in 3 groups"

D3:
"...3 groups of 4 mugs"

D4:
"...12 mugs in groups of 4"

D5:
"...12 mugs in 3 groups of 4"
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Figure 3: Proportion of participants’ descriptions of images in the Experiment that fell into one of five different sorts of
description (D1-D5) as a function of whether the image showed a subitizable set of items or not, and as a function of whether
salient groups were visible or not. The five sorts of description contained a combination of numeric quantifiers that concerned
the total number of items, the number of groups, or the cardinality of groups. Error bars show 95% confidence intervals.

mation for which they have available, i.e., the total number
of items. When items are non-subitizable and randomly dis-
persed, people may have to count them individually to as-
certain the total number. But when groups are salient in a
non-subitizable image, their strategy shifted.

Participants’ pattern of D3 responses revealed this shift in
strategy (see the second panel of Figure 3). They made D3 re-
sponses 44% of the time for grouped, non-subitizable images.
The result yielded a reliable interaction (Wilcoxon test, z =
4.40, p < .0001, Cliff’s δ = .49). And it yielded reliable main
effects, i.e., people produce more D3 responses for subitiz-
able than non-subitizable images (24% vs. 2%, respectively;
Wilcoxon test, z = 4.73, p < .0001, Cliff’s δ = .47); and they
produced more D3 responses for grouped vs. randomized im-
ages (22% vs. 3%; Wilcoxon test, z = 4.40, p < .0001, Cliff’s
δ = .49).

Planned comparisons show that participants produced more
D3 responses than D2, D4, and D5 responses (43% vs. 9%,
3%, and 17%, respectively; Wilcoxon tests, zs > 2.52, ps <
.02, Cliff’s δs > .31). Likewise, they produced more D2 re-
sponses than D1 responses for grouped, non-subitizable im-
ages, though the difference was not statistically reliable (43%
vs. 24%; Wilcoxon test, z = 1.67, p = .09, Cliff’s δ = .22).
These results corroborate the remaining prediction of the least
effort hypothesis. They suggest that participants based their
quantified descriptions, not on considerations of informativ-
ity, but rather on perceptual constraints such as the informa-
tion available to them as they rapidly assessed each image.

Exploratory analyses. In addition to examining partic-
ipants’ usage of numerical quantifiers, we coded their
responses along two exploratory dimensions of interest:
whether participants used non-numerical quantifiers, e.g.,
“some,” “a few,” and “several,” and whether they used spatial
language, e.g., “grouped close by one another” and “clustered
together.” In total, participants used non-numerical quanti-
fiers in their responses 7% of the time, and they used spatial
language 17% of the time. Figure 4 presents the proportions
of responses for which participants used non-numerical quan-

tifiers and spatial language as a function of the conditions in
the study.

As the figure shows, participants tended to use non-
numerical quantifiers more often for non-subitizable images
than for subitizable images (13% vs. 2%; Wilcoxon test,
z= 3.23, p= .001, Cliff’s δ= .23). And they used such quan-
tifiers more often for random images (9%) than for grouped
images (6%), but the difference was not reliable (Wilcoxon
test, z = 1.68, p = .09, Cliff’s δ = .11). Nevertheless, the
interaction between the two manipulations was significant
(Wilcoxon test, z = 2.35, p = .02, Cliff’s δ = .13).

Participants tended to use spatial language more than twice
as often as they used non-numerical quantifiers. Figure 4
shows that for randomized images, their generation of spatial
language was nearly identical between subitizable and non-
subitizable sets, but for images that depicted salient groups,
people used spatial language far more often for subitizable
sets than non-subitizable sets; the pattern yielded a signif-
icant interaction (Wilcoxon test, z = 2.98, p = .003, Cliff’s
δ = .25), a main effect of subitizability (Wilcoxon test, z =
2.54, p = .01, Cliff’s δ = .18), and no detectable difference
between grouped and randomized images (Wilcoxon test,
z = 0.00, p = .99, Cliff’s δ = .02).

Non-numeric
quantification

Spatial
language

Random Grouped Random Grouped
0.00

0.25

0.50

P
ro
po
rti
on

Subitizable Non-subitizable

Figure 4: Proportion of participants’ usage of non-numerical
quantifiers and spatial language in the Experiment as a func-
tion of subitizablity and grouping condition. Error bars show
95% confidence intervals.
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General Discussion
According to the Gricean maxim of quantity, ideal descrip-
tions of scenes should be neither underinformative – they
should not omit relevant and salient information – nor overin-
formative – they should not be redundant (Grice, 1975). But
people flout the maxim systematically (e.g., Okanda, Asada,
Moriguchi, & Itakura, 2015), particularly when they gener-
ate descriptions of scenes. For instance, they flout the maxim
of quantity when they describe an image as “4 black dots”
when a description such as “a set of dots” suffices (Barr et
al., 2013). To explain such behavior, recent theorists ar-
gue that perceptual costs associated with visual properties
guide natural language description (Briggs & Harner, 2019;
Van Deemter, 2016; Krahmer & Van Deemter, 2012). People
generate descriptions in a way that minimizes such costs, a
proposal we refer to as the least effort hypothesis. The least
effort hypothesis argues that speakers generate descriptions
based on the information readily available to them. It sug-
gests that people should describe images depicting groups in
systematic ways: they should tend to base descriptions on
perceptually salient features instead of actively negotiating a
balance between informativity and relevance. Hence, it ex-
plains why people generate overinformative descriptions. We
extended the proposals to concern images depicting groups:
because people appear to enumerate small numbers of groups
with ease, they should base descriptions on, e.g., the number
of those groups instead of the total number of items.

To test the idea, we conducted an experiment that asked par-
ticipants to generate descriptions of grouped and ungrouped
sets of objects. Participants were free to describe sets of items
in any way they chose. They responded systematically: most
of the time, they used numerals to describe the total number of
items on the screen. They did so for subitizable images, i.e.,
those that depicted sets whose quantities they could rapidly
establish, and they did so for sets of higher quantity that were
distributed randomly across the image, presumably because
they counted the items. But their strategy shifted qualitatively
for images that arranged many items into salient groups: par-
ticipants based their descriptions of such images on the num-
ber of groups and the cardinality of those groups, i.e., num-
bers hypothesized to be accessible to participants without re-
lying on a counting strategy. The results corroborated the
predictions of the least effort hypothesis.

The least effort hypothesis may be the end result of the
constraints and processes that underlie numerical perception.
Such processes are incremental and capacity-limited, i.e.,
perceivers must devote attentional resources to comprehend
complex scenes that depict multiple objects. To alleviate
the burden of processing objects serially, people can decom-
pose scenes into subgroups, whose individual members they
can then enumerate using arithmetic (Starkey & McCandliss,
2014; Ciccione & Dehaene, 2020). The results we report are
consistent with such behavior, and they suggest that the least
effort hypothesis is harmonious with incremental perceptual
processes: people appear to base their descriptions of images

on the earliest available information sufficient to characterize
the scene.

One limitation of the present task is the pragmatic demands
placed on the speaker. Participants in the study had to gen-
erate descriptions by typing them out, and many may have
opted for shorter descriptions. The medium may explain why
they preferred descriptions such as, “12 items” to descriptions
such as “12 items in 3 groups of four,” but it does not explain
the shift in descriptive strategy for images depicting groups
of non-subitizable items. Nevertheless, cooperative speakers
should aim to be both informative and brief. One way of con-
struing the least effort hypothesis is as a heuristic by which
people achieve that balance without engaging in deliberative
counting or arithmetic processes.

One avenue for future work would be to examine scenes
with subgroups of heterogenous cardinality. For instance,
consider an example of a collection of items with four sub-
groups each with a different number of items. In this case, it is
impossible to concisely provide a description of the cardinal-
ity of each subgroup; the least effort hypothesis predicts that
people should not describe group cardinality. Another test of
the hypothesis could place speakers under time constraints,
both for viewing the stimuli and for generating descriptions.
Participants would generate more terse descriptions, but the
information they choose to omit may prove informative. For
instance, limited presentation time may make it difficult to
assess the cardinality of groups and drive participants to base
descriptions on the number of groups alone.

To build interpretable image description systems, re-
searchers must first understand how people perceive scenes.
Many contemporary natural language generation algorithms
assume a fully explicit, symbolic representation of a visual
scene (e.g., Krahmer & Van Deemter, 2012). These ap-
proaches make predictions about how people generate of
quantified descriptions (Briggs & Harner, 2019; Chen, van
Deemter, & Lin, 2019). For instance, Briggs and Harner
(2019) modeled the human data from Barr et al. (2013)
through a method they called perceptual cost pruning, which
removes particular symbolic information to mimic the per-
ceptual costs required to encode particular pieces of infor-
mation. The human data were best simulated by picking the
most precise descriptions remaining after taking such costs
into account. This procedure provides a computational im-
plementation of the least effort hypothesis. The results of our
study suggest that a better way of implementing the least ef-
fort hypothesis in computational systems is to instead design
them to incrementally perceive and construct scene represen-
tations, thereby yielding the most human-like descriptions.

Acknowledgments
We would also like to thank Kevin Zish, Kalyan Gupta, and the
Knexus Research Corporation for their assistance in supporting
these studies. Additionally, we would like to thank the reviewers
for helpful feedback in improving the presentation of this work. This
work was supported by a NRC Research Associateship award to HH,
a NRL Karles Fellowship awarded to GB, and AFOSR MIPR grant
F4FGA07074G001. The views expressed in this paper are solely

1013



those of the authors and should not be taken to reflect any official
policy or position of the United States Government or the Depart-
ment of Defense.

References
Barr, D., van Deemter, K., & Fernández, R. (2013). Gen-

eration of quantified referring expressions: evidence from
experimental data. In Proceedings of the 14th european
workshop on natural language generation (pp. 157–161).

Briggs, G., & Harner, H. (2019). Generating Quantified Re-
ferring Expressions with Perceptual Cost Pruning. In Pro-
ceedings of the 12th International Conference on Natural
Language Generation (pp. 11–18). Tokyo, Japan.

Briggs, G., Wasylyshyn, C., & Bello, P. F. (2019). Elicita-
tion of Quantified Description Under Time Constraints. In
Proceedings of the 41st Annual Meeting of the Cognitive
Science Society (pp. 1436–1442). Montreal, Canada.

Burgess, A., & Barlow, H. (1983). The precision of nu-
merosity discrimination in arrays of random dots. Vision
Research, 23(8), 811–820.

Cantrell, L., Kuwabara, M., & Smith, L. B. (2015). Set size
and culture influence children’s attention to number. Jour-
nal of Experimental Child Psychology, 131, 19–37.

Cantrell, L., & Smith, L. B. (2013). Set size, individuation,
and attention to shape. Cognition, 126(2), 258–267.

Chen, G., van Deemter, K., & Lin, C. (2019). Generating
quantified descriptions of abstract visual scenes. In Pro-
ceedings of the 12th international conference on natural
language generation (pp. 529–539). Tokyo, Japan.

Ciccione, L., & Dehaene, S. (2020). Grouping
mechanisms in numerosity perception. Retrieved from
https://doi.org/10.31234/osf.io/p6ryv

Cousins, J., & Ginsburg, N. (1983). Subjective correlation
and the regular-random numerosity illusion. The Journal
of general psychology, 108(1), 3–10.

Cummins, C. (2015). Constraints on Numerical Expressions
(Vol. 5). Oxford University Press.

Dehaene, S. (1992). Varieties of numerical abilities. Cogni-
tion, 44(1-2), 1–42.

Fernberger, S. W. (1921). A preliminary study of the range of
visual apprehension. The American Journal of Psychology,
32(1), 121–133.

Frith, C. D., & Frit, U. (1972). The solitaire illusion: An
illusion of numerosity. Perception & Psychophysics, 11(6),
409–410.

Ginsburg, N. (1976). Effect of item arrangement on per-
ceived numerosity: Randomness vs regularity. Perceptual
and motor skills, 43(2), 663–668.

Ginsburg, N. (1980). The regular-random numerosity illu-
sion: Rectangular patterns. The Journal of General Psy-
chology, 103(2), 211–216.

Grice, H. P. (1975). Logic and conversation. 1975, 41–58.
Hesse, C., & Benz, A. (2018). Giving the wrong impres-

sion: Strategic use of comparatively modified numerals in
a question answering system. In Proceedings of The Con-
ference on Natural Language Processing (KONVENS) (pp.
148–157). Vienna, Austria.

Izard, V., & Dehaene, S. (2008). Calibrating the mental num-
ber line. Cognition, 106(3), 1221–1247.

Kaufman, E. L., Lord, M. W., Reese, T. W., & Volkmann, J.
(1949). The discrimination of visual number. The Ameri-
can Journal of Psychology, 62, 498–525.

Krahmer, E., & Van Deemter, K. (2012). Computational gen-
eration of referring expressions: A survey. Computational
Linguistics, 38, 173–218.

Mandler, G., & Shebo, B. J. (1982). Subitizing: An anal-
ysis of its component processes. Journal of Experimental
Psychology: General, 111, 1–22.

Oberly, H. S. (1924). The range for visual attention, cognition
and apprehension. The American Journal of Psychology,
35(3), 332–352.

Okanda, M., Asada, K., Moriguchi, Y., & Itakura, S. (2015).
Understanding violations of gricean maxims in preschool-
ers and adults. Frontiers in psychology, 6, 901.

Paolacci, G., Chandler, J., & Ipeirotis, P. G. (2010). Running
Experiments on Amazon Mechanical Turk. Judgment and
Decision Making, 5, 411–419.

Poom, L., Lindskog, M., Winman, A., & Van den Berg, R.
(2019). Grouping effects in numerosity perception under
prolonged viewing conditions. PloS one, 14(2).

Starkey, G. S., & McCandliss, B. D. (2014). The emergence
of “groupitizing” in children’s numerical cognition. Jour-
nal of Experimental Child Psychology, 126, 120–137.

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and
large numbers enumerated differently? a limited-capacity
preattentive stage in vision. Psychological Review, 101,
80–102.

Van Deemter, K. (2016). Computational models of referring:
a study in cognitive science. MIT Press.

Van Oeffelen, M. P., & Vos, P. G. (1982). Configurational
effects on the enumeration of dots: Counting by groups.
Memory & Cognition, 10(4), 396–404.

Vos, P. G., Van Oeffelen, M. P., Tibosch, H. J., & Allik, J.
(1988). Interactions between area and numerosity. Psycho-
logical Research, 50(3), 148–154.

1014


