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Abstract

Human infants have the remarkable ability to learn the asso-
ciations between object names and visual objects from inher-
ently ambiguous experiences. Researchers in cognitive science
and developmental psychology have built formal models that
implement in-principle learning algorithms, and then used pre-
selected and pre-cleaned datasets to test the abilities of the mod-
els to find statistical regularities in the input data. In contrast to
previous modeling approaches, the present study used egocen-
tric video and gaze data collected from infant learners during
natural toy play with their parents. This allowed us to capture
the learning environment from the perspective of the learner’s
own point of view. We then used a Convolutional Neural Net-
work (CNN) model to process sensory data from the infant’s
point of view and learn name-object associations from scratch.
As the first model that takes raw egocentric video to simulate
infant word learning, the present study provides a proof of prin-
ciple that the problem of early word learning can be solved,
using actual visual data perceived by infant learners. More-
over, we conducted simulation experiments to systematically
determine how visual, perceptual, and attentional properties of
infants’ sensory experiences may affect word learning.

Keywords: Word learning, Computational Modeling, Eye
Tracking and Visual Attention, Parent-Child Social Interaction

Introduction

Infants show knowledge of their first words as early as 6
months old and produce their first words at around a year.
Learning object names — a major component of their early
vocabularies — in everyday contexts requires young learners
to not only find and recognize visual objects in view but also
to map them with heard names. In such a context, infants seem
to be able to learn from a sea of data relevant to object names
and their referents because parents interact with and talk to
their infants in various occasions — from toy play, to picture
book reading, to family meal time (Yu & Smith, 2012).
However, if we take the young learner’s point of view, we
see that the task of word learning is quite challenging. Imagine
an infant and parent playing with several toys jumbled together
as shown in Figure 1. When the parent names a particular toy
at a particular moment, the infant perceives 2-dimensional im-
ages on the retina from a first-person point of view, as shown
in Figure 2. These images usually contain multiple objects
in view. Since the learner does not yet know the name of the
toy, how do they recognize all the toys in view and then infer
the target to which the parent is referring? This referential
uncertainty (Quine, 1960) is the classic puzzle of early word
learning: because real-life learning situations are replete with

Figure 1: An infant and parent play with a set of toys in a
free-flowing joint play session. Both participants wore head-
mounted cameras and eye trackers to record egocentric video
and gaze data from their own perspectives.

objects and events, a challenge for young word learners is to
recognize and identify the correct referent from many possible
candidates at a given naming moment. Despite many exper-
imental studies on infants (Golinkoff et al., 2000) and much
computational work on simulating early word learning (Yu &
Ballard, 2007; Frank, Goodman, & Tenenbaum, 2009), how
young children solve this problem remains an open question.

Decades of research in developmental psychology and cog-
nitive science have attempted to resolve this mystery. Re-
searchers have designed human laboratory experiments by
creating experimental training datasets and testing the abilities
of human learners to learn from them (Golinkoff et al., 2000).
In computational studies, researchers have built models that
implement in-principle learning algorithms, and created train-
ing sets to test the abilities of the models to find statistical
regularities in the input data. Some work in modeling word
learning has used sensory data collected from adult learners or
robots (Roy & Pentland, 2002; Yu & Ballard, 2007; Rasanen
& Khorrami, 2019), while many models take symbolic data or
simplified inputs (Frank et al., 2009; Kachergis & Yu, 2017,
K. Smith, Smith, & Blythe, 2011; Fazly, Alishahi, & Steven-
son, 2010; Yu & Ballard, 2007). Little is known about whether
these models can scale up to address the same problems faced
by infants in real-world learning. As recently pointed out
in (Dupoux, 2018), the research field of cognitive modeling
needs to move toward using realistic data as input because all
the learning processes in human cognitive systems are sensi-
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tive to the input signals (L. B. Smith, Jayaraman, Clerkin, &
Yu, 2018). If our ultimate goal is to understand how infants
learn language in the real world — not in laboratories or in
simulated environment — we should model internal learning
processes with natural statistics of the learning environment.
This paper takes a step towards this goal and uses data col-
lected by infants as they naturally play with toys and interact
with parents.

Recent advances in computational and sensing techniques
(deep learning, wearable sensors, etc.) could revolutionize the
study of cognitive modeling. In the field of machine learn-
ing, Convolutional Neural Networks (CNNs) have achieved
impressive learning results and even outperform humans on
some specific tasks (Silver et al., 2016; He, Zhang, Ren, &
Sun, 2015). In the field of computer vision, small wearable
cameras have been used to capture an approximation of the
visual field of their human wearer. Video from this egocen-
tric point of view provides a unique perspective of the visual
world that is inherently human-centric, giving a level of detail
and ubiquity that may well exceed what is possible from envi-
ronmental cameras in a third-person point-of-view. Recently,
head-mounted cameras and eye trackers have been used in
developmental psychology to collect fine-grained information
about what infants are seeing and doing in real time (He et
al., 2015; Silver et al., 2016). These new technologies make it
feasible to build computational models using inputs that are
very close to infants’ actual sensory experiences, in order to
understand the rich complexity of infants’ sensory experiences
available for word learning.

In the present study, we collect egocentric video and gaze
data from infant learners as they and their parents naturally
play with a set of toys. This allows us to capture the learning
environment from the perspective of the learner’s own point
of view. We then build a computational system that processes
this infant sensory data to learn name-object associations from
scratch. As the first model taking raw egocentric video to sim-
ulate infant word learning, the present study has two primary
goals. The first aim is to provide a proof of principle that the
problem of early word learning can be solved using raw data.
The second aim is to systematically determine the computa-
tional roles of visual, perceptual, and attentional properties
that may influence word learning. This examination allows
us to generate quantitative predictions which can be further
tested in future experimental studies.

Method
Data Collection

To closely approximate the input perceived by infants, we
collected visual and audio data from everyday toy play — a
context in which infants naturally learn about objects and their
names. We developed and used an experimental setup in which
we placed a camera on the infant’s head to collect egocentric
video of their field of view, as shown in Figure 1. We also
used a head-mounted eye gaze tracker to record their visual
attention. Additionally, we collected synchronized video and
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gaze data from the parent during the same play session.

Thirty-four child-parent dyads participated in our study.
Each dyad was brought into a room with 24 toys (the same
as in (Bambach, Crandall, Smith, & Yu, 2018)) scattered on
the floor. Children and parents were told to play with the toys,
without more specific directions. The children ranged in age
from 15.2 to 24.2 months (u=19.4 months, 6=2.2 months).
We collected five synchronized videos per dyad (head camera
and eye camera for child, head camera and eye camera for
parent, and a third-person view camera — see Figure 1). The
final dataset contains 212 minutes of synchronized video, with
each dyad contributing different amounts of data ranging from
3.4 minutes to 11.6 minutes (u=7.5 minutes, 6=2.3 minutes).
The head-mounted eye trackers recorded video at 30 frames
per second and 480 x 640 pixels per frame, with a horizontal
field of view of about 70 degrees. We followed validated
best practices for mounting the head cameras so as to best
approximate participants’ actual first-person views, and for
calibrating the eye trackers (Slone et al., 2018).

Training Data

Parents’ speech during toy play was fully transcribed and di-
vided into spoken utterances, each defined as a string of speech
between two periods of silence lasting at least 400ms (Yu &
Smith, 2012). Spoken utterances containing the name of one of
the objects were marked as “naming utterances” (e.g. “that’s a
helmet”). For each naming utterance, trained coders annotated
the intended referent object. On average, parents produced
15.51 utterances per minute (6=4.56), 4.82 of which were ref-
erential (6=2.09). In total, the entire training dataset contains
1,459 naming utterances.

Recent studies on infant word learning show that the mo-
ments during and after hearing a word are critical for young
learners to associate seen objects with heard words (Yu &
Smith, 2012). In light of this, we temporally aligned speech
data with video data, and used a 3-sec temporal window start-
ing from the onset of each naming utterance. Given that each
naming utterance lasted about 1.5 to 2 seconds, a 3-sec win-
dow captured both the moments that infants heard the target
name in parent speech and also the moments after hearing the
name. For each temporal window, a total of 90 image frames
(30 frames per second) were extracted. To summarize, the
final training dataset consists of all the naming instances in
parent-child joint play, with each instance containing a target
name and a set of 90 image frames from the child’s first-person
camera that co-occur with the naming utterance. As shown in
Figure 2, each image typically contains multiple visual objects
and the named object may or may not be in view.

Testing Data and Evaluation Metrics

To evaluate the result of word learning, we prepared a separate
set of clean canonical images for each of the 24 objects varying
in camera view and object size and orientation in a similar
manner to previous work (Bambach, Crandall, Smith, & Yu,
2016). In particular, we took pictures of each toy from eight
different points of view (45 degree rotations around the vertical
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Figure 2: Overview of our approach. The training data were created by extracting egocentric image frames around the moments
when parents named objects in free-flowing interaction. The data was fed into deep learning (ResNet) models to find and
associate visual objects in view with names in parent speech. As a result, the models built the associations between heard labels

and visual presentations of target objects.

Figure 3: Testing images. We evaluate the models trained
from egocentric images using systematically captured images
from various views with a clean background.

axis), totaling 3,072 images (see Fig 3). This test set allowed
us to examine whether the models generalized the learned
names to new visual instances never seen before. During
test, we presented one image at a time to a trained model
and checked whether the model generated the correct label.
We compute mean accuracy (i.e., the number of correctly
classified images over the total number of test images) as the
evaluation metric.

Simulating acuity

Egocentric video captured by head-mounted cameras provides
a good approximation of the field of view of the infant. How-
ever, the human visual system exhibits well-defined contrast
sensitivity due to retinal eccentricity: the area centered around
the gaze point (the fovea) captures a high-resolution image,
while the imagery in the periphery is captured at dramatically
lower resolution due to its lesser sensitivity to higher spatial
frequencies. As a result, the human visual system does not
process all “pixels” in the first-person image equally, but in-
stead focuses more on the pixels around the fovea. To closely
approximate the visual signals that are “input” to a learner’s
learning system, we implemented the method of (Perry &
Geisler, 2002) to simulate the effect of foveated visual acu-
ity on each frame. The basic idea is to preserve the original
high-resolution image at the center of gaze while increasing
blur progressively towards the periphery, as shown in Fig-
ure 4b. This technique applies a model of what is known
about human visual acuity and has been validated with human
psychophysical studies (Perry & Geisler, 2002).
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Figure 4: We simulated foveated vision by applying an acuity
filter to the original egocentric image, based on the eye gaze
position (red crosshairs).

Convolutional Neural Networks Models

We used a state-of-the-art CNN model, ResNet50 (He, Zhang,
Ren, & Sun, 2016), trained with stochastic gradient descent
(SGD). The network outputs a softmax probability distribution
over 24 object labels, so the label with the highest probability
is the predicted object. SGD optimizes the CNN parameters
to minimize the cross entropy loss between the predicted dis-
tribution and the ground truth (one-hot) distribution. Before
SGD, we initialized the parameters of ResNet50 with a model
pretrained on ImageNet (Russakovsky et al., 2015). Thus,
the model can reuse the visual filters learned on ImageNet to
avoid having to learn the low-level visual filters from scratch.
The training images were resized to 224 x 224 pixels with
bilinear interpolation. We used SGD with batch size 128, mo-
mentum 0.9, and initial learning rate 0.01. We decreased the
learning rate by a factor of 10 when the performance stopped
improving, and ended training when the learning rate reached
0.0001. Because training was stochastic, there is natural varia-
tion across training runs; we thus ran each of our experiments
10 times and report means and standard deviations. Moreover,
since our goal was to discover general principles that lead to
successful word learning and not to analyze the results of indi-
vidual objects, we applied a mixed-effect logistic regression
with random effects of trial and object in each of our analyses.
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Figure 5: Results from models trained with infant data improve
with more naming instances, while the models trained with
the parent data show no improvement.

Experiments and Results

Study 1: Learning object names from raw
egocentric video

The aim of Study 1 is to demonstrate that a state-of-the-art
machine learning model can be trained to associate object
names with visual objects by using egocentric data closely
approximating sensory experiences of infant learners. We also
evaluated models learned with parent view data in order to
compare the informativeness of these different views. More-
over, to examine the impact of properties of the training data,
we created several simulation conditions by sub-sampling the
whole set of 1459 into seven subsets with different numbers
of naming events (50, 100, 200, 400, 600, 800, 1100). While
we expected that more naming instances would lead to better
learning, we sought to quantify this relationship.

Figure 5 reveals two noticeable patterns in the models
trained on the infant data and the model trained on the par-
ent data. First, when there are 200 or more naming events,
models trained with infant data consistently outperformed
the same models trained on parent data (e.g., for 200 nam-
ing events: Myfan = 16.12%,SEj fane = 1.73%; M parens =
8.32%,SE parent = 1.27%;B = 0.34,1 = 3.64, p < 0.001). Sec-
ond, as the quantity of training data increased, the models
trained on infant data obtained better performance while the
models trained on the parent data saturated. Taken together,
these results provide convincing evidence that the model can
solve the name-object mapping problem from raw video, and
that the infant data contain certain properties leading to better
word learning. The finding that infant data lead to better learn-
ing is consistent with recent results reported on another topic
in early development — visual object recognition (Bambach et
al., 2018).

Study 2: Examining the effects of different
attentional strategies

Humans perform an average of approximately three eye move-
ments per second because our visual systems actively select
visual information which is then fed into internal cognitive
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Figure 6: The model trained with sustained attention events
outperformed the model trained with distributed attention
events. Within the sustained attention events, the model trained
with on-target instances outperformed the model trained with
on-non-target instances.

and learning processes. Thus during the 3-second window
during and after hearing a naming utterance, an infant learner
may generate multiple looks on different objects in view, or,
alternatively, may sustain their attention on one object. The
aim of Study 2 is to investigate whether different attention
strategies during naming events influence word learning, and
if so, in which ways.

To answer this question, we first assigned each naming
event into one of two categories: sustained attention if the
infant attended to a single object for more than 60% of the
frames in the naming event, and distributed attention oth-
erwise. This split resulted in 750 sustained attention (SA)
and 709 distributed attention (DA) events. In either case,
the infant may or may not attend to the named object be-
cause the definition is based on the distribution of infant
attention, not on which objects were attended in a nam-
ing event. We trained two identical models, one on SA in-
stances and one on DA instances. The results in Figure 6
reveal that the model trained with sustained attention events
(Mystained = 30.53%, SEustained = 2-08%) outperformed the
model trained with distributed attention events (M jisributed =
23.26%, SE gistriputea = 1.78%; 3 = 0.20,¢ = 2.65, p < 0.005),
suggesting that sustained attention on a single object while
hearing a name leads to better learning.

Of course, infants may or may not show sustained atten-
tion on the object actually named in parent speech. In total,
infants attended to the target in 452 out of 750 SA events,
and attended to a non-target object in the other 298 SA
events. Attending to the target object with sustained atten-
tion should help learning while sustained attention on a non-
target object should hinder learning. To test this prediction,
we sub-sampled 298 on-target events from 452 SA events,
and compared them with the remaining 298 on-non-target
events. As shown in Figure 6, the model trained with the on-
target events (Mqrger = 39.27%, SEarger = 2.30%) achieved
significantly higher accuracy than the model trained on on-non-
target events (Myon—rarger = 8.42%, SEnon—rarger = 1.20%; B =



0.98,r =14.52,p < 0.001).

In everyday learning contexts such as toy play, young learn-
ers do not passively perceive information from the environ-
ment; instead, the visual input to internal learning processes
is highly selective moment-to-moment. The ability to sustain
attention in such contexts is critical for early development and
has been linked to healthy developmental outcomes (Ruff &
Rothbart, 2001). The results from the present study suggest
a pathway through which sustained attention during parent
naming moments creates sensory experiences that facilitate
word learning.

Study 3: Examining the effects of visual properties
of attended objects

One effect of sustained attention during a naming moment is
to consistently select a certain area in the egocentric view so
that the learning system can process the visual information
in that focused area to find the target object and link it with
the heard label. Moving from the attentional level to the
sensory level, we argue that associating object names with
visual objects starts with visual information selected in the
infant’s egocentric view, and therefore the factors that matter
to word learning may not just be attended objects but sensory
information selected and processed in the naming moments.
Study 3 seeks to determine how visual properties of attended
objects influence word learning.

Previous studies using head-mounted cameras and head-
mounted eye trackers showed that visual objects attended by
infants tend to possess certain visual properties — e.g., they
tend to be large in view, which provides a high-resolution
image of the object (Yu & Smith, 2012). In light of this,
the present simulation focused on object size. The naming
events were grouped into two subsets by a median split of
object size. The large subset contains naming instances in
which named objects are larger than the median size (6%)
whereas the small subset contains naming instances in which
named objects are smaller than the median. The same model
was separately trained on the large set and the small set. We
found the model trained with large objects achieved signifi-
cantly higher accuracy on the test dataset than that trained with
small objects (M;4rge = 30.50%,SEarge = 2.20%; Mspan =
18.81%,SEsmq = 1.81%;B = 0.29,t = 4.12, p < 0.001).

If the target object in a naming event is large in view, that
object is more likely to be attended by infants. Thus, in-
fants’ sustained attention on a target object is likely to co-
vary with the size of the object. If so, the difference in the
learning results described above could be due to sustained
attention but not object size. To distinguish the effects on
word learning between those two co-varying factors, we di-
vided naming events into sustained attention and distributed
attention as in Study 2, and examined the effects of object
size in those two situations. In each case, we used a median
split to further divide naming events into a large subset and
a small subset. As shown in Figure 7, when infants showed
sustained attention on named objects, the model trained based
on large targets outperformed the same model trained with
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Figure 7: Effect of object size. Naming events were divided
based on object size; instances in the large set contain visual
instances of named objects large in view whereas the named
objects are small in view in the small set.

small targets (Mjgrge = 24.27%,SE arge = 2.03%; Mgpan =
12.18%,SEgna; = 1.5%;B = 0.37,t = 4., p < 0.001). In the
cases of naming events with distributed attention, the model
again favored events with large target objects over those with
small targets (Mjarge = 17.07%,SE4r5e = 1.60%; Mgpar =
12.88%,SEgna; = 1.33%;p = 0.20,t = 2.02,p < 0.05).
Taken together, these results suggest that visual properties
of the target object during a naming event have direct and
unique influence on word learning.

General Discussions

Despite the fact that the referential uncertainty problem in
word learning was originally proposed as a philosophical puz-
zle, infant learners need to solve this problem at the sensory
level. From the infant’s point of view, learning object names
begins with hearing an object label while perceiving a visual
scene having multiple objects in view. However, many com-
putational models on language learning use simple data pre-
selected and/or pre-cleaned to evaluate the theoretical ideas of
learning mechanisms instantiated by the models. We argue that
to obtain a complete understanding of learning mechanisms,
we need to examine not only the mechanisms themselves but
also the data on which those mechanisms operate. For infant
learners, the data input to their internal processes are those
that make contact with their sensory systems, so we capture
the input data with egocentric video and head-mounted eye
tracking. Moreover, compared to prior studies of word learn-
ing from third-person images (Chrupata, Kadar, & Alishahi,



2015), the present study is the first, to our knowledge, to use
actual visual data from the infant’s point of view to reconstruct
infants’ sensory experiences and to show how a computational
model can solve the referential uncertainty problem with the
information available to infant learners.

There are three main contributions of the present paper as
the first steps toward using authentic data to model infant word
learning. First, our findings show that the available informa-
tion from the infant’s point of view is sufficient for a machine
learning model to successfully associate object names with
visual objects. Second, our findings here provide a sensory
account of the role of sustained attention in early word learn-
ing. Previous research showed that infant sustained attention at
naming moments during joint play is a strong predictor of later
vocabulary (Yu, Suanda, & Smith, 2019). The results here
offer a mechanistic explanation that the moments of sustained
attention during parent naming provide better visual input for
early word learning compared with the moments when infants
show more distributed attention. Finally, our findings provide
quantitative evidence on how in-moment properties of infants’
visual input influence early word learning.

The present study used only naming utterances in parent
speech (object names in those utterances, etc.), but we know
that parent speech during parent-child interaction is more
information-rich. For example, studies show that individual ut-
terances in parent speech are usually inter-connected, forming
episodes of coherent discourse that facilitate child language
learning (Suanda, Smith, & Yu, 2016; Frank, Tenenbaum, &
Fernald, 2013). To better approximate infants’ learning ex-
periences in our future work, we plan to include both object
naming utterances and other referential and non-referential
utterances as the speech input to computational models. In-
cluding the whole speech transcription will also allow us to
examine how infants learn not only object names but also
other types of words in their early vocabularies, such as action
verbs. In addition, we know that social cues in parent-child
interaction play a critical role in shaping the input to infant
learners. With egocentric video and computational models,
our future work will simulate and analyze how young learners
detect and use various kinds of social cues from the infant’s
point of view.
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