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Abstract

Foraging over land for resources was central to the evolution
of search processes and decision-making for many organisms,
including humans. The processes underlying natural foraging
behaviors are foundational to cognition. However, in the field,
it is difficult to collect detailed and accurate measures of search
behaviors and hard to manipulate search conditions. We used
Google Earth and the Unity 3D platform to recreate a patch
of the Himalayan foothills with ancient temples used as way-
points for travelers on foot. Two hundred players recruited via
MTurk moved over the landscape with realistic speed, energy
usage, and perceptual conditions to find as many temples as
possible given a limited energy budget. Half were constrained
by the need to return to a home base to report found temples,
and half were not. When search paths were analyzed in terms
of segment distributions, players who found relatively more
temples (high scorers) more closely followed the theoretically
optimal Lévy walk that balances exploration and exploitation,
regardless of the home base. This intrinsic pattern was also
found in perceptual search intervals, with high scorers lean-
ing more towards exploration. By contrast, when search paths
were analyzed as wholes, an extrinsic pattern was found in that
players ranged farther without a home base, and this differ-
ence was more pronounced for high scorers. We conclude that
Lévy-like patterns are intrinsic and effective in terms of path
segments and perceptual intervals, but overall search behavior
adapts to extrinsic factors and constraints.

Keywords: Human Foraging; Search; Lévy walks; Diffusion;
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Introduction
Foraging is fundamental to the survival of all mobile species,
from bacteria to humans. It is also the quintessential search
process under conditions of uncertainty, where the location of
resources is mostly unknown (Todd, Hills, & Robbins, 2012).
Foraging processes, therefore, are engaged not only to find
food and other physical resources but also information as in
as memory search (Kerster, Rhodes, & Kello, 2016) and per-
ceptual search (Rhodes, Kello, & Kerster, 2014). Foraging is
widespread in many types cognitive functions and is hypoth-
esized to play a foundational role in the evolution of human
and biological intelligence (Rosati, 2017).

Given the fundamental and widespread nature of forag-
ing, researchers have suggested a common basis to search
behaviors that may have evolved across species and envi-
ronments. One candidate that has been studied extensively
is Lévy search (Viswanathan et al., 2011). Lévy search
processes are comprised of frequent short movements inter-
spersed with increasingly rarer, longer movements, where the

probability of observing a given path length is inversely pro-
portional to the length(l j), P(l) ∼ l−µ

j ; 1 < µ ≤ 3 and paths
refer to the distances traveled between consecutive pauses or
turns. Many studies across species in various domains have
found foraging path length distributions to follow those pre-
dicted by Lévy search (Reynolds, 2018) including human for-
aging (Brown, Liebovitch, & Glendon, 2007; Raichien et al.,
2014; Reynolds et al., 2018) and in abstract spaces like mem-
ory (Kerster et al., 2016) and visual scenes (Rhodes et al.,
2014).

Widespread evidence for Lévy search suggests that it might
reflect a basic property of search that is intrinsic when re-
sources are scarce and uncertain, and the searcher has little or
no memory to devote their search history (Sims et al., 2019).
When searchers do have memory and decision-making capa-
bilities, they still exhibit Lévy-like search paths, but search
patterns are also adaptable to extrinsic factors that are infor-
mative of successful search behaviors. For instance, the ex-
ponent µ has been observed to increase when resources are
plentiful (Nurzaman et al., 2010), and to adjust for whether
resources or destructive or non-destructive (da Luz, Raposo,
& Viswanathan, 2015). Lévy search patterns are local to the
sizes of individual path segments (Viswanathan et al., 2011),
whereas, from a broader perspective, goal-directed search be-
haviors depend on decision processes that span spatial and
temporal scales in which local choices integrate over short
timescales and interact with broader, non-local decision pro-
cesses (Purcell & Kiani, 2016).

Figure 1: Example player view near the start point of the
virtual foraging game, with the landmark tower in the back-
ground.

In the present study, we examine human foraging in an eco-
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Figure 2: Trajectories of Home-Base players (Left) versus No-Home players (Right). Colors indicate trajectories for low-
scorers (blue) and high-scorers (red) for each condition.

logically natural search task designed to test for both intrinsic
and extrinsic factors at play in search processes over multi-
ple scales. Given the role of foraging in human evolutionary
history as hunter-gatherers, we designed a 3D game environ-
ment based on an actual terrain space and resource distribu-
tion in the Himalayas (Fig 1). Items to be foraged are ex-
isting temples that are spatially distributed according to hu-
man on-foot movement patterns–historically, some of them
served as waypoints for journeys of nomadic tribes of the re-
gion (Kaushal, 2001), and they are non-randomly distributed
due to various environmental and human behavioral and cul-
tural factors (Hill, 2006). Our design decisions focused more
on the way the game is played, and we included two eco-
logically valid modes of play. All players started on top of
the same hill where a tower landmark stood, and in one con-
dition they only needed to see and click on temples to find
them. In another “home base” condition, players had to see
and click on temples and then report them back to home base
by clicking on the tower landmark. Therefore, home base was
an extrinsic constraint on search trajectories that introduced a
broader layer of decision-making to the more local level of
decisions to find new temples, and the even more local level

of decisions about individual movements.
Our game is modeled on human hunter-gatherer foraging, and
previous studies have shown that foraging humans exhibit
Lévy-distributed movements (Raichien et al., 2014). We ex-
pect to replicate these previous studies, but with the added
benefit of precise and fairly complete measures of foraging
behaviors, including perceptual actions (looking around) and
search efficiency (temples found given a fixed energy bud-
get, c.f. (Wilson, Quintana, & Hobson, 2012). Given the
energetic cost of movement over the landscape, versus no en-
ergetic cost for scanning, we also predict costly movements
to be exploited by “free” perceptual exploration at intermit-
tent stops along the way–the difference in costs should be
reflected in different patterns of perceptual versus locomotive
search. We also predict effects of the home base manipulation
given previous studies showing influences of memory and
learning on search strategies (Namboodiri et al., 2016) that
make them more efficient (Méndez, Campos, & Bartumeus,
2014). Specifically, it should be more efficient and less taxing
on memory to constrict excursions closer to the home base.
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Methods
The foraging game was implemented in Unity R© 3D and pri-
marily scripted in C#. The game was modeled on a five km-
square area in the Himalayas (Top-Left - 32.6548, 76.056530,
Bottom-Right - 32.54895, 76.194889). The relief of the ter-
rain was downloaded from Google Earth and rendered in the
Unity environment using Infinity Code. Forty-nine temples
were identified in the chosen area based on location data from
Google Maps. The coordinates of the temples were marked
in the Unity landscape, and a model temple was placed at
each location. Trees were distributed uniformly across the
landscape with a medium level sparsity, which served as vi-
sual distractors that made temple detection more effortful.
The game start point was a hilltop location near the center
of the landscape, and each player was given an energy budget
that roughly enabled them to traverse 10 kilometers of a flat
plane. Movement was only forward and backward with turns
to change direction, and movement speed was set to be 6m/s,
which is a fast but realistic human 5K race. A visible en-
ergy bar was depleted as a function of the slope approximated
from prior studies on human energy expenditure (Minetti et
al., 2002). Specifically, a constant minimum was set per me-
ter for flat and downhill surfaces, and energy expenditure in-
creased by 35% for each angular degree of increase in grade.

Home-base | Low Score;        = 0.9   
Home-base | High Score;       
No home | Low Score;      = 1.04 
No home | High Score;       = 1.2
Normal Diffusion;      = 1
Ballistic limit;       = 2
Sub-diffusive limit;       = 0.5

 
        = 0.8

Figure 3: Coarse-graining of MSD as a function of energy
expended for ensemble trajectories in each condition, sepa-
rated by low (blue) and high (red) scorers. Displacement are
also divided into local (left) and non-local (right) scales by
the vertical dashed black line.

Players used six keys to control movement and perspec-
tive (‘w,’ ‘a,’ ‘s,’ ‘d,’ ‘up arrow,’ ‘down arrow’), the latter two
tilting their line of sight up and down to adjust for sloping ter-
rain. Mouse movements were used for clicking on temples in
view when found, and auditory feedback was available with
steps to indicate movement, and clicks to indicate successful
temple identification. Players were given a guided practice
trial to acclimate to the game and its rules and controls. They
were instructed to find as many temples as possible before
depleting their energy, with the number of temples displayed
in the corner of the screen. In the home base condition, the
number found and number reported back to base were both

displayed, where players clicked on the home base to report
temples found. Player scores were only based number re-
ported, and to calibrate, players were told that 49 temples
existed in the game.

The game was hosted on Amazon’s Mechanical Turk, and
100 unique participants played in the home-base condition
and another 100 in the no-home condition. Each player was
paid a base amount of 50 cents for completing the game, and
an additional bonus of 20 cents was awarded for every temple
successfully recorded in no-home condition, but for home-
base, the bonus was awarded for every temple reported back
to the home base. The game was played for 12 minutes on
average, and the average number of temples recorded or re-
ported in the two conditions was 7.

Results
All individual search trajectories are plotted in Fig 2 sepa-
rated by the home base condition. The plots show that players
generally ranged farther away from the starting point when
there was no need to report back to home base, even though
the environment, energy budget, and other search conditions
remained constant.

The degree of spatial dispersion of search trajectories was
quantified by diffusion analysis via mean squared displace-
ment (MSD). MSD was computed as a function of energy ex-
pended (similar to time passed) to characterize the type of dif-
fusion, where a random Brownian walk generates a displace-
ment slope (α) of 1. Subdiffusive (α < 1) and superdiffusive
(α > 1) MSD functions indicate more or less locomotively
constrained search processes than expected by a chance ran-
dom walk. To examine the relationship between MSD func-
tions and search efficiency, trajectories were further classified
by a median split (4 temples found) of low and high scorers,
which had means of 1 versus 13 temples found, respectively.

MSD was calculated as

MSD =
1
n

n

∑
j=1

< [r(e+∆e)− r(e)]2 > j (1)

where r(e) is the position vector of the player at energy e, ∆

e is the energy expended, n is the total number of players.
MSD values were computed over an ensemble average of all
trajectories in the four conditions. MSD is usually calculated
as a function of time, but our study afforded the opportunity to
measure displacement in terms of energy expenditure which
was more relevant to game play and arguably more relevant
to organisms in natural foraging environments compared with
time.

MSD functions were similar at local scales (see path seg-
ment analyses below) but diverged at longer scales, so we fo-
cus our MSD analyses on the longer scales. We fit regression
lines to MSD functions in logarithmic coordinates to estimate
the degrees to which players ranged farther or less far com-
pared with the random walk baseline of 1 (Fig 3).

We found that players were significantly superdiffusive
in the no-home condition, with a mean diffusion of ex-
ponent of 1.12 ± 0.5, and significantly subdiffusive in the
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Figure 4: Raw Complementary Cumulative Distribution Function (CCDF a.k.a. 1 - CDF) for movement step sizes aggregated
across all subjects in each condition (circles). A truncated power-law distribution was fit to the distribution of movement
segments or each player (solid lines), and distributions with power-law exponents under the Lévy optimum µ < 2 are shaded
more darkly compared with those at or above µ >= 2.
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Figure 5: Mean µ (left) and mean α (right) of the four condi-
tions.

home-base condition with a mean exponent of 0.7 ± 0.5,
F(1,196) = 4.96, p = 0.02. Moreover, the effect of home
base was exaggerated for high versus low scores as evidenced
by an interaction between home base condition and score,
F(1,196) = 3.07, p = 0.08. Fig 5 shows the mean diffusion
exponents for each condition separated by low versus high
scorers.

The MSD results show that players adapted their over-

all search trajectories to range farther when there was not
a home-base constraint, and this adaptation was greater for
high scorers. We further analyzed search behaviors by divid-
ing paths into movement segments and scan segments. Move-
ment segments were defined as time intervals of continuous
straight movement, with each one demarcated by stop points
or turn points. Scan segments were defined as time intervals
during which players turned or stood still but did not move.
We assume that players were mostly acquiring visual infor-
mation during these periods.

We analyzed each type of segment distribution by estimat-
ing model parameters using maximum-likelihood estimation
(MLE). The best-fitting model was determined on the basis of
relative likelihoods using Akaike Information Criteria (AIC)
and the Kolmogorov-Smirnov D goodness-of-fit metric. We
tested the model distributions commonly examined in be-
havioral and foraging studies: Truncated Power-Law, Pareto,
Lognormal, Exponential, and Bi-Exponential distributions.

AIC results showed the truncated power-law model was
most commonly the most likely model for movement seg-
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ments (84% of trajectories). Bi-exponential and lognor-
mal models were also likely, but were not favored because
additional parameters or lack of fit, respectively. There-
fore we analyzed the best fitting truncated power-law pa-
rameters for all trajectories as common measure to com-
pare shapes across conditions. The power-law exponent, µ,
was closer to the theoretical optimum of 2 for high scor-
ers (Mhome-base = 1.92± 0.05,Mno-home = 1.85± 0.05) com-
pared with low scorers (Mhome-base = 1.70±0.08,Mno-home =
1.72±0.06), F(1,196) = 12.03, p < 0.05), and there was no
reliable effect of home base, F(1,196) = 0.15, p = 0.7. This
pattern of results adds to the large body of evidence for an
intrinsically optimal Lévy-like distribution of movement path
lengths.

Finally, the same analysis of scan segments yielded re-
sults that were consistent with movement segments in one
respect, but different in another. But first, we establish that
scan segments did, in fact, provide us with a gauge of per-
ceptual search. Fig 6 plots the sum of perceptual intervals
for each trajectory against the score obtained for that tra-
jectory, separated by the home base condition. It shows a
reliable positive correlation in both conditions, rhome-base =
0.45, p < 0.001;rno-home = 0.60, p < 0.001. This implies
that visual search was indeed engaged during scan seg-
ments. AIC results showed that truncated power-law dis-
tributions were again the most likely and showed a de-
pendence on score F(1,179) = 3.8, p < 0.05. And again,
home base had no reliable effect on mean power-law expo-
nents µ, F(1,179) = 0.51, p = 0.5. However, µ estimates for
perceptual segment distributions were closer to 1 whereas
those movement segments were closer to 2 (see above).
Moreover, µ estimates for low scorers (Mhome-base = 1.30±
0.05,Mno-home = 1.26±0.05) were larger than those for high
scorers (Mhome-base = 1.18 ± 0.05,Mno-home = 1.17 ± 0.05).
The direction of this effect was opposite that for movement
segments. This difference between segment types may be ex-
plained by the fact that scan segments cost no energy, which
led better players to spend proportionally longer times on vi-
sual search, resulting in heavier-tailed distributions and lower
µ estimates.

Discussion

The foothills of the Himalayas provided a heterogeneous
landscape populated with temples located by humans, for hu-
man navigation and shelter. Locomotive and perceptual con-
ditions were at the human scale, and the foraging game was
designed to examine intrinsic and extrinsic factors at multi-
ple levels of analysis. At the level of movement segments,
players exhibited Lévy-like search paths with estimated ex-
ponents closer to the theoretical optimum of 2 correspond-
ing with more efficient search trajectories, regardless of the
home base manipulation. The optimum represents a mix of
longer, extensive segments interspersed with shorter, inten-
sive segments that exploit the new territory found by longer
movements. This mix is theorized to balance the more en-
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Figure 6: Correlation between the total duration of perceptual
events and score, separated by home-base (red) and no-home
(blue) players.

ergetically costly (and time consuming) long segments with
less costly shorter ones. By contrast, at the scale of perceptual
search, µ estimates for scan segments were far from the opti-
mal two and instead appeared to improve as they approached
1. This difference implies that Lévy-like search patterns de-
pend on the type of search behavior engaged. In the absence
of energetic costs (and lower time costs), longer perceptual
scans have greater utility and hence shift the optimal µ to-
wards 1.

At the level of whole search trajectories, efficient search
depended on the constraint of reporting temples back to
the home base. MSD analyses yielded far-ranging, super-
diffusive trajectories without a home base constraint, versus
tighter, sub-diffusive trajectories with home base. Thus, the
home base had an effect on the whole trajectories that was not
present at the level of path segments. The home base served
as a resource akin to a temple, i.e. a structure to be located.
However, unlike temples, the home base was a resource that
players could return to repeatedly as they found temples, re-
ported them back to base, and then embarked on another
excursion to find more temples. The function of the home
base introduced a broader level of constraint on the non-local
search, but not on the local path segments. The emergence
of home range in home-base condition is a direct spatial ex-
pression (Börger, Dalziel, & Fryxell, 2008) of the multi-scale
nature of efficient foraging strategy. An efficient foraging
strategy should involve an adequate exploration of the envi-
ronment, which should be balanced by energetically-optimal
exploitation. This trade-off operates on multiple scales; on
one scale, it manifests as a balance between many short-step
sizes and a few long-step sizes, while, on a larger scale, it
may lead to the emergence of a home range (Kazimierski,
Abramson, & Kuperman, 2015), (Sakiyama & Gunji, 2016).

Our results call for theories of foraging that explain search
patterns at multiple levels, with both intrinsic properties as
well as extrinsic effects and constraints. In terms of intrin-
sic properties, Lévy-like segment distributions may reflect
simple heuristics, such as priority-based queuing (Barabási,
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2005) or temporal discounting (Namboodiri et al., 2016).
These heuristics operate by giving more or less priority to
extensive (exploration) versus intensive (exploitation) search
patterns (Reynolds et al., 2015). Our results indicate that the
balance of these priorities can be controlled separately for dif-
ferent levels of search (movement versus perceptual), and for
different scales (local for non-local). Our results also indicate
that varying extrinsic constraints can affect diffusive proper-
ties of whole search trajectories while keeping the local bal-
ance of intensive versus extensive search patterns intact. The
findings resemble previous studies that have found a similar
distinction between extrinsic and intrinsic factors of search,
and suggest how externally influenced search may build upon
inherent Lévy-like patterns that increase the chances of ran-
dom encounters (Salvador et al., 2014; Bartumeus & Levin,
2008; Bartumeus, 2007). The role of cognitive processes
underlying such multi-scale patterns and the constraints that
shape them need further examination.

Finally, our virtual game environment allowed us to ex-
amine foraging as a function of energy expenditure that var-
ied naturally with the terrain. Most notably, maintaining
high ground was both energetically and perceptually advan-
tageous, and search trajectories were clearly constrained to
maintain this advantage, as can be seen in 2–players tended
to move along ridges rather than go down to lower elevations.
Considerations of energy and viewpoint affected search tra-
jectories, but further studies and analyses are needed to inves-
tigate the nature of these effects. We can also expect trade-
offs to occur between intrinsic costs of time and mental effort,
and extrinsic costs of energy expenditure, e.g. in making de-
cisions to expend energy to walk up closer to the temples or
spending more time to visually scan and plan.

In conclusion, our virtual foraging environment is a plat-
form for studying search processes in conditions that mimic
our hunter-gatherer history, yet afford complete control over
the environment and measurements of all aspects of search
behaviors. Our long-term aim is to use the virtual environ-
ment to study human foraging as a quintessential expression
of intelligence.
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