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Abstract 
In a ​Linear Associative Net (LAN), all input settles to a single            
pattern, therefore Anderson, Silverstein, Ritz, and Jones (1977)        
introduced saturation to force the system to reach other         
steady-states in the ​Brain-State-in-a-Box (BSB). Unfortunately,      
the BSB is limited in its ability to generalize because its           
responses are restricted to previously stored patterns. We present         
simulations showing how a ​Dynamic-Eigen-Net (DEN), a LAN        
with ​Short-Term Plasticity (STP), overcomes the      
single-response limitation. Critically, a DEN also accommodates       
novel patterns by aligning them with encoded structure. We train          
a two-slot DEN on a text corpus, and provide an account of            
lexical decision ​and ​judgement-of-grammaticality ​(JOG) tasks      
showing how grammatical bi-grams yield stronger responses       
relative to ungrammatical bi-grams. Finally, we present a        
simulation showing how a DEN is sensitive to syntactic         
violations introduced in novel bi-grams. We propose DENs as         
associative nets with greater promise for generalization than the         
classic alternatives. 

Keywords: ​Content Addressable Memory; Auto-associative;     
Recurrent; Short-Term Plasticity; Generalization 

Introduction 
An account of generalization demands specifying how       
patterns with little surface-level similarity to traces in        
memory can be interpreted based on their structural        
alignment. Associative nets have demonstrated the ability to        
complete partial input patterns -- they exploit mutual        
constraints derived from patterns in memory to help fill-in         
detail not immediate in the stimulus (e.g., Anderson, et al.,          
1977; Hopfield, 1982). However, current associative      
networks are driven by surface-level similarity between the        
input and patterns in memory. It remains an open question          
whether associative nets can be sensitive to higher-order        
similarity structures. 

In associative nets, synapses between pairs of “neurons”         
are assumed to strengthen when the neurons activate within         
a short interval (Hebb, 1949). Assume for the sake of          
simplicity that a single neuron encodes a single feature in a           
stimulus (e.g., colour or size). Then the strengthened        
synapses encode correlations between features composing a       
stimulus.  

In a classic Hebbian system, patterns are represented as          
vectors and are encoded as a function of the superposition of           
the outer-product of each pattern vector, with itself, into a          
single weight matrix. Retrieval is driven by a time-update         
function of the weight matrix and a state vector, which          
interact to yield the next state vector.  

The state vector is first initialized to the probe. The state at             
the next time-point is a function of the vector-matrix         
multiplication of the current state and the weight matrix.         
The process is carried out iteratively until the system settles          
to a single state, i.e., when further iterations have no effect           
on the state vector. Iterative retrieval forces the various         
neurons to interact until the system reaches an equilibrium         
(steady) state -- the retrieved pattern. 

In LANs, the process pushes the original input towards the           
dimension that captures maximum variance in the encoded        
patterns, the dominant ​eigenvector of the weight matrix.        
Since retrieval always settles to the dominant eigenvector,        
the system can only generate a single pattern.  
Anderson et al. (1977) introduced ​saturation in the BSB by           

bounding each neuron’s activation by a constant. Saturation        
constrains possible states of activation within a box and         
forces convergence to one of the corners. The bounding box          
halts the system before the state gets dominated by the lead           
eigenvector, thereby allowing a larger number of steady        
states or responses. 

One of BSB’s limitations (also true of Hopfield networks;          
Hopfield, 1982) is that it restricts steady states to single          
eigenvectors and treats retrieved patterns that do not        
correspond to a previously stored trace as ​spurious​. If the          
eigenstructure of the system encodes statistical regularities       
from experience, the capacity to combine constraints from        
multiple dimensions of variance (eigenvectors) in the       
encoded patterns may be a more suitable candidate for         
generalization. 

Encoding in associative nets is grounded in Long-Term         
Potentiation (LTP; Collingridge & Bliss, 1995), however       
more recent work in neurophysiology also suggests       
plasticity on shorter time-scales (STP; e.g., Tsodyks,       
Pawelzik, & Markham, 1998). Miller, Brody, Romo, and        
Wang (2003) used a recurrent spiking neural network model         
to explain data from prefrontal cortex neural activity in         
monkeys performing a somatosensory delayed     
discrimination task. The task requires the maintenance of        
the frequency of a vibration during a delay phase for later           
response, hence it falls in the domain of working memory.          
They suggested short-term facilitation as a possible       
mechanism for stabilizing steady (attractor) states. To our        
knowledge, the consequence of plasticity at both short (e.g.,         
a few milliseconds to seconds) and long time scales (a few           
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weeks to years) has not been systematically explored in         
associative nets outside the realm of spiking neuron models.  

We explore STP as a control signal for dynamically          
modulating the contribution of the various dimensions of        
variance encoded in the weight matrix. We show that STP          
provides an alternative to saturation for overcoming the        
dominant eigenvector problem without introducing     
non-linearities. Importantly, whereas in classic associative      
nets, the weights combining the eigenvectors -- the        
eigenvalues -- remain static, introducing STP dynamically       
weighs the eigenvectors based on their similarity to the         
current input pattern. The additional control on the        
eigenstructure enables mixed-eigenstates, or retrieved states      
that are spread across multiple eigenvectors.  

The ability to combine multiple eigenvectors may be one          
mechanism for exploiting structural-level information. We      
provide some toy simulations to demonstrate the essential        
characteristics of DEN. We then scale up the system to          
encode bigram information from a text corpus. We use the          
scaled-up DEN to explain a set of JOG data showing slower           
responses for ungrammatical bi-grams relative to      
grammatical bi-grams. Next, we provide an account of        
lexical decision data examining the effect of syntactic        
violations between a prime and its successor, in two         
adjacent word-present trials, where there is a speed        
advantage in verifying the second word if it forms a          
syntactic bi-gram with its predecessor. Finally, we present        
evidence for generalizability in a simulation showing that a         
DEN can distinguish between novel grammatical and       
ungrammatical bi-grams. 

A Toy Example 
We now illustrate some key properties of three variants of          
associative networks. The first variant is a simple LAN, the          
second is the BSB, and the third is our STP-augmented          
LAN, which we refer to as a Dynamic-Eigen-Net (DEN). 

We specify the encoded patterns and retrieval cues to be           
identical across the three variants, and only change the         
iterative retrieval algorithm. Following Anderson et al.       
(1997), we assume that encoded traces are constructed using         
vectors with an equal number of -1’s and 1’s. For simplicity,           
we define four orthogonal vectors, each with dimensionality        
four, and take each to stand for a single word in English. We             
assume that input to the system is an eight-dimensional         
vector, and construct bi-gram vectors by concatenating pairs        
of individual word vectors. Hence, bi-grams are coded with         
the word in the first serial position active in the first slot and             
the word in the second serial position active in the second           
slot. 

Assume the four primitive word vectors correspond to         
“the”, “a”, “cat”, and “dog”. We construct the bi-grams “the          
cat” and “a dog” by concatenating the respective        
word-vectors, in sequence. We encode the two bi-gram        
vectors with unequal strengths to show how the LAN will          
always respond with the stronger pattern (strength of 1.2),         

even when the other pattern is only fractionally weaker         
(strength of 1.17). 

For all following simulations in the toy demonstrations, we          
assume a weight matrix, ​W = 1.2​m​the-cat​m​T​the-cat +        
1.17​m​a-dog​m​T​a-dog , where the capital “T” denotes the        
transpose and ​m​the-cat and ​m​a-dog ​are the bi-gram vectors         
corresponding to “the cat” and “a dog”, respectively. For         
later retrieval, we always construct the probe, ​p​, as ​p = 0.5​x            
+ ​N​(0, 0.1), where ​x is a bi-gram vector and ​N​(0, 0.1) is an              
eight-dimensional vector of samples from a zero mean        
Gaussian distribution with standard deviation set to 0.1. We         
scale down the probe by half prior to adding the noise and            
unit-normalize the resulting vector before attempting      
retrieval.  

We characterize the system’s state at each time-point in          
terms of the level of activation for the primitive word          
vectors, yielding four activation values in the first slot and          
four activation values in the second slot. We segment the          
state vector from the middle and take the first half as the            
first slot and the second half as the second slot. We set the             
activation value for a word in position one (or two) as the            
absolute value of the vector cosine of its primitive vector          
and the first slot (or second). 

Linear Associative Net 
In a LAN, we define the update function as the           

vector-matrix multiplication of the current state vector and        
the weight matrix. It is given by, ​x​T​t+1 = ​x​T​t​W ​. We designate             
a small criterion, ε, and terminate retrieval when the change          
from one time-point to the next falls below criterion,         
|| ​x​T​t+1 - ​x​T​t || < ε. After each iteration, we normalize the             
state-vector to unit-length by dividing it with its        
vector-length. We set the convergence criterion to 1e-07 for         
all the following toy simulations. 

We can rewrite the weight matrix, ​W​, in terms of its            
eigenstructure as ​W = Σ(𝜆​i​ė​i​ė​i​T​), where ​ė​i stands for the ​i​’th           
eigenvector of ​W​. The weight matrix ​can be decomposed         
into a superposition of the outer-products of its        
eigenvectors, ​ė​i​, weighted by their respective eigenvalues,       
𝜆​i​. We then have, ​x​T​t+1 ​= ​x​T​t​W ​= ​x​T​t-1​WW = ​x​T​0 W​t =             
Σ​i​(𝜆​t​i ​x​T​0​ė​i​)​ė​i​T​. In the limit, as we multiply the vector with the            
matrix and unit-normalize each time, ​x​T​t ​converges to the         
dominant eigenvector, ​ė​max​, except when ​x​T​0 ​ė​max = 0. If we            
assume any level of noise, the LAN is a single-response          
memory system. 

Table 1 shows the probability of a response (along the           
columns) as a function of the probe (along the rows). It is            
clear that the system always converges to the dominant         
pattern (“the cat”) regardless of the input. We provide the          
probabilities based on 1000 runs with each probe in Tables          
1, 2, and 3. 
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Table 1: Probabilities of response across probes show 
how a LAN is restricted to a single response.  

 
Probability of response 

 
the 
cat 

a  
dog 

the  
dog 

a  
cat 

dog  
the 

cat 
a 

Probe       

the cat 1 0 0 0 0 0 

a dog 1 0 0 0 0 0 

the _ 1 0 0 0 0 0 

a _ 1 0 0 0 0 0 

the dog 1 0 0 0 0 0 

a cat 1 0 0 0 0 0 

dog the 1 0 0 0 0 0 

cat a 1 0 0 0 0 0 

Note.​ The underscores preceded by determiners, “the” and “a”, 
stand for an empty second slot (i.e., all elements set to 0). 

 
  

Brain-State-in-a-Box 
The BSB remedies the dominant eigenvector problem by        
introducing saturation, forcing a maximum and minimum       
over the activations. The modified update function is given         
by,  
                   ​x​T​t+1​ = S( ​x​T​t​W ​),        where  

 

{
 1 ,      if   1 > ​x​i 

S(​x​i​) = x​i​ ,      if  -1 < ​x​i​ < 1 

 -1,      if   ​x​i​ < -1 

with 1 being the saturation constant. Normalizing is not         
required when using saturation. 

Table 2 has the same form as Table 1, and shows the             
probability of response as a function of the probes. Whereas          
the LAN always settled to the dominant pattern, “the cat”,          
the BSB settles to “the cat” with high probability when          
probed with “the cat” or “the _”. It settles to “a dog” when             
probed with “a dog” or “a _”. The underscore denotes an           
empty slot. The partial probes demonstrate the       
pattern-completion capabilities of the system. The second       
two probes, “the dog” and “a cat”, are novel combinations          
of the primitive word vectors. Both “the” and “a” have been           
encoded in the first slot and both “dog” and “cat” have been            
encoded in the second slot. Therefore they structurally align         
with the encoded patterns. However, the responses       
generated by the BSB are restricted to previously stored         
patterns.  

The final two probes, “dog the” and “cat a”, are the same             
novel combinations, except that the two words have been         
swapped, so that they are no longer aligned with the          
encoded structure. Here, the system responds with either        
“the cat” or “a dog”, with the probability for the former           
being much greater than the latter because of the different          
encoding strengths. In practice, BSB’s sensitivity to strength        
enables it to track probabilities of stimuli because higher         
frequency stimuli yield larger strengths for the relevant        
eigenvectors (Anderson et al., 1977). 
 
 Table 2: Probabilities of response across probes show how 

a Brain-State-in-a-Box is restricted to previously stored 
patterns.  

 
Probability of response 

 
the  
cat 

a  
dog 

the 
 dog 

a  
cat 

dog 
 the 

cat 
 a 

Probe       

the cat 1 0 0 0 0 0 

a dog 0 1 0 0 0 0 

the _ .997 .003 0 0 0 0 

a _ .042 .958 0 0 0 0 

the dog .782 .218 0 0 0 0 

a cat .785 .215 0 0 0 0 

dog the .667 .333 0 0 0 0 

cat a .645 .355 0 0 0 0 

Note.​ The underscores preceded by determiners, “the” and “a”, 
stand for an empty second slot (i.e., all elements set to 0). 

Dynamic-Eigen-Net 
We now show how STP enables the system to generalize to           
novel patterns based on combinations of multiple       
eigenvectors. We model STP by assuming a temporary        
increase in the weights corresponding to the active entries in          
the input. We assume that the temporary change follows the          
presentation of a new input and spans the duration of the           
subsequent set of iterations, ending after convergence. We        
model STP by superimposing the outer-product of the        
probe, with itself onto the weight matrix. We also normalize          
the state vector after each iteration, as was done with the           
LAN. 

The update function for a DEN is given by,          
x​T​t+1 ​= ​x​T​t​(​W ​+ x​0​x​T​0​) . Written in terms of the original input,             
the state at time ​t is given by, ​x​T​t ​= ​x​T​0​(​W ​+ x​0​x​T​0​)​t =              
x​T​0 ​(Σ​i​𝜆​i ​ė​i​ė​i​T ​+ ​x​0​x​T​0​)​t ​. Assume ​I ​is the identity matrix. At  

           
time one, ​x​T​0 ​(Σ​i​𝜆​i ​ė​i​ė​i​T ​+ ​x​0​x​T​0​)​1 ​= Σ​i​𝜆​i​(​x​T​0 ​ė​i​)​ė​i​T ​+ ​x​T​0​. At time    

     
     

two, we have Σ​i​𝜆​2​i​(​x​T​0 ​ė​i​)​ė​i​T ​+ Σ​i​𝜆​i​(​x​T​0 ​ė​i​)​2​x​0​T ​+ Σ​i​𝜆​i​(​x​T​0 ​ė​i​)​ė​i​T ​+    
   

   
  

x​T​0 = Σ​i​𝜆​2​i​(​x​T​0 ​ė​i​)​ė​i​T ​+ Σ​i​𝜆​i​(​x​T​0 ​ė​i​)​2​x​0​T ​+ ​x​T​1​. Assuming that ​x​T​0   
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is unit-normalized, since ​x​T​0​x​0​x​T​0 = ​Ix​T​0 = ​x​T​0​, any term          
carried over from a previous time-step ending with ​x​T​0​,         
persists to the next iteration. 

In both a LAN and the BSB, convergence filters out any            
component orthogonal to the encoded eigenvectors. In a        
DEN the input persists and is merged with other         
components that do align with the eigenstructure.  

Table 3 shows the probability of response as a function of            
the probe for a DEN. The first two probes (“the cat” and “a             
dog”) yield a similar pattern of response as the BSB. The           
pattern completion dynamics are evident in the next two         
probes, “the _” and “a _”, which yield comparable         
probabilities to the BSB. The second two probes in Table 3           
show the response probabilities for “the dog” and “a cat”,          
structurally aligned novel bi-grams. Although the system       
sometimes converges to the originally encoded patterns, it        
settles to the novel input with high probability, hence         
accommodating novelty. 
 

Table 3: Probabilities of response across probes show 
how a DEN accommodates novel patterns.  

 
Probability of response 

 
the 
 cat 

a  
dog 

the  
dog 

a  
cat 

dog 
 the 

cat 
 a 

Probe       
the cat 1 0 0 0 0 0 
a dog 0 1 0 0 0 0 
the _ .923 .001 .076 0 0 0 
a _ .003 .907 0 .09 0 0 

the dog .051 .03 .929 .002 0 0 
a cat .062    .039 0 .899 0 0 

dog the .635 .308 .027 .03 0 0 
cat a .629 .311 .028 .031 0 0 

Note.​ The underscores preceded by determiners, “the” and “a”, 
stand for an empty second slot (i.e., all elements set to 0). 
  

Finally, the last two probes, “dog the” and “cat a”, show            
the probabilities of responding when the words in the novel          
bi-grams swap serial-positions, resulting in novel      
combinations that do not align with the encoded structure. It          
is clear that the system never settles to the probed patterns           
(the last two response columns have zero probability). The         
most likely responses correspond to the previously encoded        
patterns. Hence, although the system accommodates novel       
patterns that structurally align with the encoded patterns, it         
does not do so if they are misaligned. 

Figure 1 shows the activations of the vocabulary items as a            
function of iteration, for two example runs corresponding to         
the novel probes, “the dog” (top panel) and “dog the”          
(bottom panel). The pattern of responses shown in the figure          

has a high probability, as shown in Table 3. The plots on the             
left side correspond to the first slot whereas the ones on the            
right correspond to the second slot. When the novel pattern          
aligns with previously encoded structure (top panel), the        
system settles to the novel pattern, however, when the same          
words in the bi-gram are swapped to break the alignment          
(bottom panel), the system settles to a similar pattern that          
does align (i.e., “a dog”). Hence, a DEN surpasses the          
generative complexity of the BSB, while still respecting the         
statistical regularities encoded in memory. 
 

 

Figure 1. Probing a DEN with a novel bi-gram yields a           
response corresponding to the initial input, only if it is          
aligned with the structure encoded in the matrix (top         
panel) but not when it is misaligned (lower panel). The          
number of iterations differs between the top and bottom         
panels because it takes longer for the system to converge          
to a misaligned input. 

From Theory to Data 
As a first point of contact between theory and data, we           
construct a DEN to explain some findings in the JOG and           
lexical decision tasks. The JOG task requires subjects to         
decide whether a sequence of words forms a well-formed         
composite, whereas the lexical decision task requires       
participants to decide if arrays of letters presented to them          
are words or nonwords. 

Münte and Heinze (1993) constructed bi-grams composed        
of a pronoun followed either by a noun or a verb, such as             
“my cat” and ““you walk”. They introduced violations by         
switching possessive pronouns to personal pronouns, or vice        
versa, as in “me cat” and “your walk”. They presented each           
bi-gram to participants, and asked them to make a speeded          
grammaticality judgement. They found a 50 msc cost when         
subjects responded to invalid bi-grams, relative to valid        
bi-grams, with the invalid bi-grams evoking an event-related        
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negativity, whose amplitude was much larger than the valid         
bi-grams, in the 300-600 msc range and maximal along the          
left frontopolar cortex. 

For two adjacent word-present trials, lexical decision is         
faster for the second word when its syntactic class is          
predicted by the previous word relative to when it violates          
the prediction (e.g., Goodman, McClelland, & Gibbs, 1981).        
Colé and Segui (1994) presented subjects with pairs of         
letter-strings and asked them to respond “yes”, only if both          
were valid words in French. Colé and Segui report subjects          
were slower to verify syntactically invalid bi-grams relative        
to valid bi-grams, with a greater effect for bi-grams whose          
initial word was closed-class relative to bi-grams whose first         
word was open-class. Open-class (e.g., adjectives, nouns,       
verbs etc.) words roughly correspond to content words and         
closed-class (e.g., determiners, pronouns, prepositions)     
words to function words. It has been speculated that the two           
classes may be stored separately (Garrett, 1979). 

In the next set of simulations, we trained a DEN by sliding             
a two-word window across the Touchstone Applied Science        
Associates (TASA) corpus to encode all the lag-one        
sequential dependencies in a two-slot system, similar to the         
one used in the toy examples. We first segmented the corpus           
by sentence and slid a window across each sentence         
separately. For each sentence, we superimposed the       
outer-products of bi-grams into a co-occurrence matrix.  

We used the Stanford Part-of-speech (POS) tagger        
(Toutanova, Klein, Manning, & Singer, 2003) to classify        
each word in the TASA corpus into a syntactic class. We           
then grouped bi-grams based on their syntactic composition.        
For each of nine different syntactic compositions, we used         
the 150 most frequent bi-grams as our grammatical set. We          
then constructed an ungrammatical bi-gram for each       
bi-gram in the grammatical set.  

The first two columns in Table 4 show the valid (top) and             
invalid (bottom) bi-gram compositions used, each with an        
example. For example, in a bi-gram consisting of a         
possessive pronoun and a noun (PPRS-NN), we can        
construct an ungrammatical bi-gram by turning the       
possessive pronoun into a personal pronoun (i.e., PPR-NN).        
If the PPRS-NN bi-gram is “her cat”, the ungrammatical,         
PPR-NN, bi-gram would be “she cat”. Alternatively, for a         
determiner-noun bi-gram (DT-NN), such as “the cat”, we        
can construct a corresponding ungrammatical bi-gram, “cat       
the”, by swapping the two words (NN-DT). The PPRS-NN         
versus PPR-NN and PPR-VBP versus PPRS-VBP      
comparisons correspond to Münte et al. (1993). We can use          
the DT-NN versus NN-DT and JJ-NN versus NN-JJ to get a           
handle on the open- versus closed-class distinction in Colé         
et al. (1994).  

We made several modifications to the DEN presented in          
the toy examples in order to scale the system. The first           
modification was a change from distributed-codes to       
local-codes. Instead of representing a word as a vector of          
-1’s and 1’s, we represented it with a vector with all but one             

element set to zero. The nonzero element, at an index          
unique to each word, was set to one.  

Local-codes ensure orthogonality and facilitate an increase        
in the vocabulary size. The second modification was to treat          
a word’s activation level as the absolute value of its          
corresponding element in the state-vector and follows from        
our change of representation to local-codes. With the        
localist representation, each cell in the weight matrix is         
proportional to the co-occurrence count of two words        
occurring in a bi-gram.  
 

Table 4: The model shows good discriminability between 
valid and invalid bi-grams across various syntactic 

violations. 
 
Violation Examples Intact  Lesioned 
NNS-VBP 
NN-VBP 

animals have 
animal have 2.359 0.406 

IN-VBG 
IN-VBP 

by looking 
by look 2.011 0.131 

NN-VBZ 
NN-VBP 

one knows 
one know 1.918 1.562 

⚬DT-NN 
NN-DT 

the dog 
dog the 1.898 1.73 

⬧PPRS-NN 
PPR-NN 

his head 
he head 1.486 1.09 

⚬JJ-NN 
NN-JJ 

long time 
time long 1.069 0.172 

NN-IN 
IN-NN 

look at 
at look 1.057 0.889 

⬧PPR-VBP 
PPRS-VBP 

you think 
your think 0.558 0.183 

VB-RBR 
RBR-VB 

learn more 
more learn 0.399 −0.094 

Note. The abbreviations correspond to the Penn Treebank        
convention for parts-of-speech. NN: singular or mass noun,        
IN: preposition, VB: verb, RBR: comparative adverb, VBZ:        
third-person, singular, and present tense verb, NNS: plural        
noun, VBP: non-third-person, present tense-verb, VBG:      
gerund or present-tense verb, DT: determiner, JJ: adjective,        
PPR: personal-pronoun, PPRS: possessive pronoun. The      
symbol, ⬧, designates comparisons corresponding to Münte       
and Heinze (1993) and the symbol, ⚬, designates comparisons         
we use to explain the closed-class versus open-class        
distinction relevant to Colé and Segui (1994). 
  
We apply a threshold to the encoded co-occurrence counts,          

such that, the (​i​, ​j​)’th cell is set to one only if its value is               
greater than 2, and zero otherwise. The thresholding helps         
prune spurious co-occurrences. Finally, the entire weight       
matrix was divided by 300, a value slightly higher than the           
largest eigenvalue of the matrix. Bounding the largest        
eigenvalue of the system prevents overpowering the       
contribution of STP during retrieval. The convergence       
criterion was set to 1e-05. 
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We compute a familiarity signal for each iteration as the           
vector length of the state prior to normalization. We tally          
the familiarity signals in the last iteration for each bi-gram          
and use the difference in familiarity between the paired         
valid and invalid bi-grams as a measure of discriminability.         
For each comparison, we compute discriminability ​as the        
quotient of the mean familiarity difference and its standard         
deviation. Because we subtracted the familiarity for the        
invalid bi-grams from the valid bi-grams, positive       
discriminability ​indicates greater familiarity for the valid       
relative to the invalid bi-grams. 

The third column in Table 3 shows the discriminabilities          
for the nine syntactic compositions in descending order. It is          
clear that the discriminability scores all lie above zero,         
showing that the system can distinguish between valid and         
invalid bi-grams.  

Consistent with Münte et al. (1993) the possessive         
pronouns followed by a noun (PPRS-NN; e.g., “his head”)         
are more familiar than personal pronouns followed by a         
noun (PPR-NN; “he head”) and the personal pronouns        
followed by a verb (PPR-VBP; e.g., “you think”) are more          
familiar than possessive pronouns followed by a verb        
(PPRS-VBP; “your think”). Although Münte et al. did not         
find a significant difference between the bi-grams       
containing the nouns relative to verbs, we obtain greater         
discriminability for the violations in bi-grams containing       
nouns.  

As regards to Colé et al. (1994), both the determiner versus            
noun swaps (DT-NN vs NN-DT; e.g., “the dog” vs “dog          
the”) and adjective noun swaps (JJ-NN vs NN-JJ; e.g., “long          
time” vs “time long”) show reasonable discriminability in        
that the valid bi-grams are considered more familiar than the          
invalid bi-grams. In line with the greater syntactic congruity         
effect for closed-class relative to open-class bi-grams they        
reported, we obtain greater discriminability for the       
closed-class bi-grams relative to the open-class bi-grams. 

To determine the extent to which the discriminability         
between valid and invalid bi-grams is based on encoded         
structure the last column of Table 4 shows what happens if           
the system has never encoded a bi-gram. Before probing the          
system with a valid and invalid bi-gram, we lesion memory          
by zeroing out the corresponding cell for the valid bi-gram          
in the weight matrix (and its mirror image in the matrix’s           
transpose). After convergence, we restore the cell to its         
original value before moving on to a different bi-gram pair.          
The obtained discriminability scores illustrate the system’s       
generalizability potential. All but one of the discriminability        
scores fall above zero, showing that the system is able to           
exploit structure to generalize. 

Discussion 
We explored the advantage of including both short- and         
long-term plasticity over the LAN and Anderson et al.’s         
(1977) BSB model. In a set of toy examples, we showed           
how augmenting a LAN with STP, modelled by summing in          

the outer-product of a probe vector to the weight matrix          
prior to iterative retrieval, overcomes the single-response       
limitation in the LAN. We further showed how the BSB’s          
responses are limited to previously encoded patterns, and        
how a DEN can assimilate novel patterns based purely on          
the structure encoded from previous instances. The DEN        
can reach equilibria that correspond to novel patterns when         
the novel patterns align with the eigenstructure of the         
system but not if they are contradictory to the structure. 

We scaled up the system to show that a two-slot           
Dynamic-Eigen-Net trained on the TASA corpus encodes       
enough structure to explain some empirical results from        
judgement-of-grammaticality and lexical decision tasks.     
Finally, we showed the system is able to distinguish         
between well-formed and ill-formed bi-grams even when       
memory for the bi-grams is lesioned. That is, the system is           
sensitive to various syntactic regularities based purely on        
the structural statistics of the language environment. 

Table 4 shows that the DT-NN versus NN-DT         
(closed-class) violations are highly discriminable based on       
encoded structure whereas JJ-NN versus NN-JJ (open-class)       
violations mainly rely on knowledge of the bi-grams        
themselves. We propose that the distinction between       
closed-class and open-class words need not imply distinct        
representations, a priori, but that the former is better         
determined by encoded structure relative to the latter, hence         
explaining the difference in the syntactic congruity effect        
reported by Colé et al. (1994). 
Although a systematic exploration of Short-Term-Plasticity       

in associative nets has not been presented in the cognitive          
modelling literature, its use in models has precedence (e.g.,         
Gardner-Medwin, 1989; Burgess & Hitch, 1999; Plaut &        
Shallice, 1993; Feldman, 1982). The various      
implementations make different architectural and learning      
assumptions, but overall show that including      
Short-Term-Plasticity has several advantages over networks      
with static connectivity. For instance, in the Hebbian        
systems, Gardner-Medwin assumes short-term weights are      
multiplicatively combined with long-term weights whereas      
Burgess and Hitch assume additive combination of the two.         
Gardner-Medwin provides information-theoretic analyses    
showing capacity advantages using their implementation of       
Short-Term-Plasticity and Burgess and Hitch rely on       
Short-Term-Plasticity to capture a set of memory       
benchmarks. Plaut and Shallice additively combine      
Short-Term-Plasticity to long-term weights, trained using      
error-driven learning, to model perseveration in their model        
of deep dyslexia. Feldman suggests Short-Term-Plasticity as       
one possible mechanism for feature-binding in vision. All of         
the accounts assume non-linear activation functions that       
obfuscate the influence of underlying eigenstructure of their        
systems, and neither provides a direct comparison with        
classic associative nets such as the Brain-State-in-a-Box. 
Our implementation of Short-Term-Plasticity compliments     
the spiking neuron work (e.g., Miller et al., 2003) by          
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showing how forcing attractor states provides the kind of         
stability needed for increasing the generative potential of the         
system. Wang, Markram, Goodman, Berger, Ma &       
Goldman-Rakic (2006) suggested a recurrent excitation      
threshold that must be surpassed in order for the system to           
transition into a reverberatory loop. In our implementation        
of Short-Term-Plasticity, we add the auto-association of a        
pattern into the weight matrix, before running the retrieval         
iterations. A critical requirement is that the weight of the          
auto-association exceeds the value of the dominant       
eigenvalue of the system as a whole. The lead eigenvalue          
can be considered a kind of recurrent excitation threshold of          
the system. 

Short-term weights have been explored in the broader         
machine-learning literature, however, the implementations     
rely on error-driven learning. For instance, Ba, Hinton,        
Mnih, Leibo, & Ionesco (2016) suggest encoding a set of          
recent hidden states into a fast-decaying set of short-term         
weights as a way to model greater facilitation for states          
corresponding to the system’s recent hidden state history.        
They propose the mechanism for recurrent neural nets        
which use error-driven learning for training the long-term        
connectivities. Reliance on error-driven learning limits the       
system’s ability to meet human-level cognitive benchmarks       
such as one-shot learning. Perhaps the kind of generalization         
sought in the broad machine-learning literature is better        
driven through recurrence within a Dynamic-Eigen-Net as       
opposed to slow error-driven learning.  

In conclusion, our demonstrations show that including STP         
in LANs vastly increases their generative complexity. Given        
that generalization requires exploiting structural regularities      
with little surface-level information, and a DEN’s ability to         
assimilate novel patterns based on structure alone, we        
propose our model as one candidate for a system capable of           
generalization. 
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