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Abstract

In both professional domains and everyday life, people must
integrate their own experience with reports from social network
peers to form and update their beliefs. It is therefore important
to understand to what extent people accommodate the statis-
tical dependencies that give rise to correlated belief reports
in social networks. We investigate adults’ ability to integrate
social evidence appropriately in a political scenario, varying
the dependence between the sources of network peers’ beliefs.
Using a novel interface that allows participants to express their
probabilistic beliefs visually, we compare participants against a
normative Bayesian standard. We find that they distinguish the
value of evidence from dependent versus independent sources,
but that they also treated social sources as substantially weaker
evidence than direct experience. The value of our elicitation
methodology and the implications of our results for modeling
human-like belief revision in social networks are discussed.

Keywords: social networks; probabilistic beliefs; sequential
belief updating; information cascades; Bayesian modeling

Introduction
We live and learn in a “society of minds” (Minsky, 1988).
This means that we form beliefs not just on the basis of our
own observations (and prior expectations) but also based on
the beliefs communicated by our neighbors in our social net-
work. For instance, interview panel members will typically
discuss job applicants even after having seen mostly the same
application materials and interviews, making it difficult to
distinguish individual panel members’ (prior) judgments of
candidates’ abilities from collective judgments formed on the
basis of the shared evidence. Similarly, imagine you have read
about two political campaign strategies, each proposed by a
different candidate. If initially you find both strategies equally
compelling, resulting in uncertainty about which of the two
candidates you would like to support, you might well seek out
new information about the candidates by talking to friends. If
your friends base their beliefs partially on reading the same
articles, how should you weigh their opinions?

The above examples illustrate one source of statistical de-
pendency between opinions in a social network: shared in-
formation originating from the same source. If we are to
understand learning in a social world, we must understand
how people deal with such statistical dependencies while in-
tegrating their direct observations from the environment with
the communicated beliefs of their social network peers. In-
vestigating how information spreads through social networks
and how statistical dependencies affect the formation of peo-
ple’s beliefs is thus a key issue for cognitive science with
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Figure 1: Illustration of network conditions. t0: neighbors A-C
form beliefs given data. t1: neighbors update beliefs based on
interaction (sequential case only). t2: target updates belief.

implications for e.g., the study of misinformation and echo
chambers (Bikhchandani, Hirshleifer, & Welch, 1992; Watts,
2002; Whalen, Griffiths, & Buchsbaum, 2018; Madsen, Bailey,
& Pilditch, 2018), the dynamics of micro-targeting (Madsen &
Pilditch, 2018), or advocacy organisations’ attempts to shape
public debate (Bail, 2016).

Here, we investigate how people integrate information based
on statistical (in)dependencies underlying the beliefs of three
social network peers in a fictitious political context. We first
introduce a simple Bayesian model of belief revision to ac-
count for the normative case. Building on previous work on
sensitivity to shared information in social learning (Whalen et
al., 2018), we compare three different conditions (see Fig. 1).
The first (Fig. 1a) serves as baseline in a sense that statistical
independence between the beliefs of network peers is induced
by the cover story. In the second condition, independence is vi-
olated as participants are told that the three network neighbors
form their beliefs sequentially, meaning that the belief of the
neighbor that formed their belief last (neighbor C) contains
all information gathered by the others (Fig. 1b). In a third
condition, social network peers form beliefs on the basis of
shared evidence (Fig. 1c). Dependencies between beliefs in
condition 2 differ from dependencies in condition 3 in the
sense that neighbor C is the most relevant source since their
belief already incorporates the beliefs of the other neighbors.
We report on a behavioral experiment that investigated how
subjects update prior beliefs under these conditions.

Information Cascades and Probabilistic Beliefs Informa-
tion cascades—spreading of beliefs through networks—can
produce maladaptive collective outcomes even as agents in-
corporate information from network neighbors in individually
rational ways (Bikhchandani et al., 1992). This inherent sus-
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ceptibility of social networks towards information cascades
is supported by research showing that information cascades
occur in simulated social networks where agents are furnished
with an individually rational cognitive architecture (Fränken
& Pilditch, 2020). Similar results have been obtained from
empirical analyses of social media data, which showed that
users cluster into communities dominated by like-minded oth-
ers, resulting in proliferation of unsubstantiated beliefs or
conspiratorial thinking (Del Vicario et al., 2016).

Previous models of information cascades assumed that peo-
ple settle on particular beliefs by maximizing over subjective
probabilities, thus leading to degradation of the information
transmitted (Bikhchandani et al., 1992; Pilditch, 2017). Addi-
tionally, simulation-based work by Pilditch (2017) (see also
Madsen et al., 2018) did not account for potential dependen-
cies underlying the beliefs of network peers. The assumption
of independent beliefs among network peers is frequently used
in general models of opinion dynamics and consensus genera-
tion, where people’s belief revision processes have been mod-
eled by combining their initial beliefs with the weighted aver-
age of neighboring beliefs (Hegselmann, Krause, et al., 2002;
Lorenz, 2006, 2007; Becker, Brackbill, & Centola, 2017). Ex-
panding this body of literature, recent empirical results have
shown that people’s social learning strategies are adaptive -
accounting for statistical dependencies underlying the beliefs
in their social networks (Whalen et al., 2018). In addition to
maximizing, Whalen et al. (2018) tested the assumption of
“probability matching”, which assumes that people settle on
beliefs stochastically, drawing particular conclusions propor-
tional to the posterior probability of a belief (Shanks, Tunney,
& McCarthy, 2002).

In the present work, we make neither assumption (match-
ing or maximizing), instead empirically exploring a setting
in which agents communicate their full probabilistic beliefs.
Using probabilistic beliefs allows us to explore the influence
of communicated certainty—defined here as the precision of
the belief distribution—and its related probabilistic quantity
confidence—the probability that a particular choice is correct.
These are at the core notion of an rational agent (Pouget, Dru-
gowitsch, & Kepecs, 2016; Fleming & Daw, 2017) and thus
play a crucial role during the integration of social information
to update prior beliefs (see e.g., De Martino, Bobadilla-Suarez,
Nouguchi, Sharot, & Love, 2017).

Normative Framework
We explore a general sequential belief updating setting in
which people first gather evidence by themselves (i.e., aso-
cial information) before reporting their initial belief about
the relative competence of two fictitious competing political
candidates. Evidence comes in the form of binomial “perfor-
mance tests” that result in either a 0 = loss or 1 = win for each
candidate. We thus model evolving beliefs about the relative
competence of candidate A over B using the beta probability
distribution X ∼ Beta(α,β). Following Bayes’ rule, the ini-
tial posterior probability of a belief or hypothesis p(h), given

asocial information, d, thus corresponds to the normalized
product of the likelihood p(d|h) and the prior p(h):

p(h|d) ∝ p(d|h)p(h) (1)

In our computational model, we use an initially uniform
Beta(1,1) prior which is conjugate to the binomial likeli-
hood

(n
k

)
pk(1− p)kn−k, allowing us to model belief updat-

ing straightforwardly using the analytical posterior Beta(1+
k,1+n−k). For example, observing data D = {0,1,1} where
k = 2 successes in n = 3 binomial trials, the posterior is X
∼ Beta(3,2) with a mean of 3

5 . This reflects the nature of
subjects’ beliefs about the two candidates, which include an
overall preference for a candidate (if mean α

α+β
is < or > .5)

and a measurement of certainty (precision of the beta distribu-
tion, given by (α+β)2(α+β+1)

αβ
). The model then also gives clear

qualitative (directional) and quantitative predictions for how
learners should update their belief upon observing the beliefs
of other network neighbors depending on the condition. As
in Equation 1, we use Bayes’ theorem to model how people
should integrate the beliefs (i.e., social information) from their
network neighbors s:

p(h|s1, ...sn) ∝ p(s1, ...sn|h)p(h) (2)

Assuming that the beliefs of neighbors are perfectly in-
dependent, transparent and trustworthy (Fig. 1a), the tar-
get’s posterior after incorporating the beliefs of their peers
should simply be a new beta distribution with the parameters
Beta(n0+kA+kB+kC,n0+nA+nB+nC−kA−kB−kC) where
n0 and k0 are from their prior. If neighbors are sequentially
dependent, in the sense that A communicated their belief to B
who then saw more data and communicated to C, the aggre-
gated parameters of the posterior distribution should be based
on the neighbor that formed their belief last (i.e., neighbor C
in Fig. 1b). The normative posterior for the sequential case is
thus equal to Beta(n0+kC,n0+nC−kC). Finally, if sources are
dependent in the sense that their beliefs are based on at least
partially shared information (Fig. 1c), the normative model
provides an upper- and a lower bound for the revised poste-
rior. The upper bound is equal to the independent case, and it
assumes that none of the neighbors’ beliefs were influenced
by the shared data (i.e., D = {}). Conceptually, this can be
compared to a scenario in which panel members ignore all
shared application materials and interviews, evaluating the
candidate’s performance ability entirely based on their prior
beliefs.

As we do not vary the parameters of peers between con-
ditions in our experiment, the only source of variation in up-
dating can be attributed to manipulating the dependencies
between neighbors. Thus, the model lower bound is equal to
subtracting the lowest α and β parameters from the aggregate
parameters. For the present experiment, we do not specify on
how much neighbors were influenced by the shared data. Thus,
assuming all possible combinations of overlap equi-probable,
we model the normative impact of shared information on belief
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updating as having a magnitude intermediate between strictly
independent information (higher magnitude) and sequentially
updated beliefs (lower magnitude). Based on this framework
(Fig. 1), we derived the following qualitative (directional) pre-
dictions: The difference between subjects initial- and revised
posterior probabilistic beliefs will be smaller when the beliefs
of social network peers are dependent as compared to the in-
dependent condition (1). The dependent case of sequentially
updated beliefs will result in a smaller update of prior beliefs
as compared to shared information (2).

Experiment
Participants Participants (N = 79, range: 21 - 69 years,
mean = 39.89, SD = 12.97, 35 female) were recruited and
tested through Amazon’s Mechanical Turk. Participants were
native English speakers based in the United States. They were
paid $1.75 for their time (mean = 17.49 min, SD = 6.91 min).

Task Description and Measures1 Participants imagined be-
ing a political consultant travelling around the US to help local
branches of their political party decide between two fictitious
competing candidates most suitable for public office. To do so,
they imagined that they were travelling to three different cities,
with two different candidates competing in each city. Prior to
the main task, participants completed a short training phase
and comprehension quiz to ensure that they understood how
to provide their beliefs using the interface shown in Fig. 2.
Specifically, participants used two response sliders to provide
their full probabilistic beliefs, one controlling the mean of
the density (belief slider) and one controlling the log preci-
sion (certainty slider). The response sliders ranged from 1-99;
where a belief of 1 means full support for the left candidate,
50 is neutral, and 99 full support for the right candidate. A
certainty of 1 is the lowest possible certainty and a certainty
of 99 is the highest possible certainty. The resulting density
was dynamically displayed to participants as they selected
their response. The range of allowable values was restricted to
ensure the belief function was concave (i.e., α ≥ 1 or β ≥ 1).

15/05/2020 Political Consultant

https://www.bramleylab.ppls.ed.ac.uk/experiments/flask_bel_updating 1/1

Provide your initial recommendation
Based on the candidates' performances on the selection tests, which candidate do you think is most suitabl

public office?

Belief Slider:

60

Certainty Slider:

50

   Williams neutral Smith  

Continue
Figure 2: Interface for rating belief and certainty.

Within each city, the order of steps was: (1) obtaining prior
belief based on observing asocial evidence → (2) learning
about the beliefs of social network neighbors under consid-
eration of statistical (in)dependence → (3) providing final

1OSF; demo video; GitHub

posterior belief. We set the scene using an uniform prior be-
lief X ∼ Beta(1,1) telling subjects that the two competing
candidates were tested on two initial tests (each winning one
of them) prior to the arrival of participants. Participants then
observed the performance of the two competing candidates
across two additional independent selection tests assessing
different qualifications not covered in the initial tests.

Following observation of asocial information, participants
rated their prior belief and certainty in the relative suitability of
the two competing political candidates for public office. The
procedure was identical for each condition. After the initial
assessment phase, subjects were shown the belief and certainty
ratings of three social network neighbors (i.e., social informa-
tion; see Fig. 3). The network neighbors were described as
three locals that were likely voters from a subject’s political
party who had learned about the candidates during debates
in their local town-hall. Each city included a different cover
story about the relationship between the three locals match-
ing either statistical independence, sequential dependence, or
shared information. After learning about the beliefs of locals
and their relationship, subjects provided their final belief.

15/05/2020 Political Consultant

https://www.bramleylab.ppls.ed.ac.uk/experiments/flask_bel_updating 1/1

Findings from the interview and final recommendatio

   Williams neutral Smith  

Jim's rating:
Belief: 86
Certainty: 79

   Williams neutral Smith  

Mete's rating:
Belief: 53
Certainty: 78

   Williams neutral Smith  

Mia's rating:
Belief: 86
Certainty: 81

   Williams neutral Smith  

Your initial recommendation:
Belief: 60
Certainty: 50

Continue

Considering the findings from the interview and your initial recommendation, now please provide your final
recommendation about which is the more competent candidate. Your initial recommendation is displayed be
as a reminder.

***Recall: The three locals learned about the candidates at the same Townhall
Meeting (see illustration below).***

Figure 3: Example beliefs of locals.

Design and Procedure We employed a within-subjects de-
sign with three levels (variations of network setups implied by
differing cover stories). The three levels of our independent
variable were: independent information, sequential depen-
dence, and shared information. The two data points (i.e., test
outcomes) used to parameterize subjects’ initial (neutral) prior
beliefs, the resulting normative prior, and the parameters of
the three locals are shown in Table 1. Parameter settings were
constant across conditions, with the only source of variation
being our independent variable. Resulting model predictions
and sufficient statistics are summarised in Fig. 4 (columns
1-2). The order of conditions and the position of the candi-
date supported by locals (left/right) was randomized between
participants. After completion of the main task, participants
provided basic demographics (e.g., gender).

Table 1: Fixed parameters used across conditions.

Data Normative Prior Parameters of Locals
{1,0} B(2,2) B(46,9.5), B(49,10), B(50,45)

Analysis Our analysis has two parts. First, we compared the
aggregate parameters of subjects’ posterior judgments between
conditions to evaluate qualitative (i.e., directional) alignment
with our model predictions. Thus, we first contrasted subjects’
posterior means (model 1) and variances (model 2) between
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B(2, 2)
μ=0.5, σ 2 =0.05

B(147,66.5)
μ=0.6885, σ 2 =0.0009

B(18.73, 19.86)
μ=0.4969, σ 2 =0.0213

B(33.73, 15.18)
μ=0.6738, σ 2 =0.0087

B(2, 2)
μ=0.5, σ 2 =0.05

B(52,47)
μ=0.5252, σ 2 =0.0025

B(19.37, 18.92)
μ=0.4924, σ 2 =0.0220

B(31.90, 16.05)
μ=0.6463, σ 2 =0.0101

B(2, 2)
μ=0.5, σ 2 =0.05

B(124,61.75)
μ=0.6675, σ 2 =0.0012

B(19.50, 18.54)
μ=0.5147, σ 2 =0.0227

B(29.66, 13.85)
μ=0.6616, σ 2 =0.0103
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Figure 4: Summary of model predictions (columns 1-2) and behavioural results (columns 3-4) for each condition (rows 1-3). For
our main analysis, we used the aggregate µ and σ2 parameters (plotted below each distribution) to make the interpretation of our
predictions and results more intuitive. ** = p < 0.01 refers to the comparison of the (log) Jensen-Shannon Divergence from
priors to posteriors between conditions (see model 4 in Table 2 and Fig. 5d for details).

conditions using two linear mixed-effects models with condi-
tion (i.e., social network set-up) as fixed effect and subject as
a random intercept. However, evaluating these separately may
miss dependencies that exist in how participants updated these
components of their beliefs. To address this, we computed
the Jensen-Shannon Divergence (DJS) between priors and pos-
teriors for each subject to determine whether the magnitude
of updating prior beliefs differed by condition. DJS allows
measurement of changes both in mean and variance between
distributions through a single symmetric distance measure
given by:

DJS (P||Q) = αDKL (P||Q)+(1−α)DKL (Q||P) (3)

where DKL is the Kullback-Leibler Divergence, a standard
asymmetric measure in information theory for measuring how
much a probability density P has moved compared to a ref-
erence distribution Q. By definition, DKL ≥ 0, being equal
to 0 if and only if P and Q are identical. A limitation of
DKL is its nonsymmetry, which is resolved by DJS if α = 0.5.
Having computed each subject’s DJS, we fitted two additional
mixed-effects models with condition as fixed effect and sub-
ject as random intercept to compare mean differences in DJS
(model 3) and the log-transform of DJS (model 4). The reason
for using logDJS in model 4 is that the distribution of logDJS
residuals was closer to a normal distribution than the distribu-
tion of DJS residuals (which showed a skew to the right). All
models were compared to a reduced model including only an
intercept as predictor variable and subject as random effect.
Models were implemented in R using the function lmer()
from the package lme4 (Bates, Mächler, Bolker, & Walker,
2015).

Following tests of our qualitative (directional) comparison
between conditions, we compared subject and model perfor-
mances across conditions to check in how far subjects aligned

quantitatively with our normative framework. Therefore, we
first computed DJS between subjects’ prior beliefs (Fig. 4,
column 3) and the normative prior (Fig. 4, column 1) across
conditions. Due to the skewed distribution of DJS for this
comparison, we conducted a Wilcoxon signed rank test (non-
parametric t-test; alternative hypothesis > 0) to check if sub-
jects integrated the asocial information as predicted by our
model. We also compared the difference between subjects’
prior mean and model prior mean and subjects’ prior variance
and model prior variance (using two-sided Wilcoxon signed
rank tests because the dependent variables did not follow a
normal distribution). The three comparisons were repeated to
contrast subjects’ posteriors with model posteriors.

Results
Sanity checks Five subjects were removed from our analy-
sis because they did not change the positions of sliders between
their prior and posterior judgments (i.e., logDJS = -Inf), result-
ing in a final sample size of 74. Levene’s test revealed that the
homogeneity of variance assumption was maintained for all
four dependent measures (all ps > 0.05) used between models
1-4. Inspection of residual plots confirmed that the residual
posterior means, posterior variances and logDJS residuals were
normally distributed. For DJS, residuals showed skew to the
right. Correlations between the three levels of our fixed ef-
fect (i.e., social network set-up) were moderate, ranging from
±0.470 to ±0.551. Comparing each model to its reduced
version revealed that inclusion of social network set-up only
contributed significantly to the proportion of explained vari-
ance in logDJS (see Table 2)2. The qualitative comparison in
the remainder of this paper will thus focus on interpreting the
results of model 4 (for completeness, regression coefficients

2BICdiff = BICfull - BICintercept-only; R2
m = proportion of variance

explained by the fixed effect (i.e., social network set-up).
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for models 1-3 are reported in the next section and in Fig. 5).

Table 2: Model fits for each dependent variable (DV).

Model DV BICdiff R2
m χ2 p-value

1 µ 6.14 0.009 4.69 0.096
2 σ2 9.10 0.004 1.65 0.439
3 DJS 6.40 0.012 4.52 0.105
4 logDJS -1.43 0.032 12.27 0.002

Qualitative comparison Fig. 4 summarises model predic-
tions and aggregate parameters across subjects for our three
experimental conditions. The directional shift from subjects’
prior distributions to their posteriors and the fact that subjects’
posterior distributions were more compressed than their priors
suggested that social information resulted in increased belief
and certainty ratings. As expected by our normative model,
the results of model 4 showed that subjects changed their prior
beliefs significantly less in the two dependent conditions as
compared to the independent case (Fig. 5d; b = -0.639, t(148)
= -3.07, p = 0.003 for sequentially updated beliefs and b =
-0.641, t(148) = -3.08, p = 0.003 for beliefs based on shared
information). This means that the magnitude to which people
updated their beliefs (i.e., changed both the belief and certainty
sliders) was in line with the predicted (directional) magnitude
of our normative model. In other words, people were sensi-
tive to differences in the statistical power of the information
between the independent condition (larger statistical power
implying stronger updating of prior beliefs) and the two de-
pendent conditions (smaller statistical power implying smaller
updating; see Fig. 4).
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Figure 5: Coefficients of the two dependent conditions com-
pared to the independent case (intercept in each model). Error
bars correspond to standard errors of the mean.

For the comparison between the two dependent conditions,
no significant effects emerged (all ps > 0.05; see Fig. 4 and
Fig. 5d). The results of models 1 (µ) and 3 (DJS) showed
that the comparison between sequentially updated beliefs and
independent beliefs was significant (b = -0.028, t(148) = -2.16,

p = 0.032 for model 1; Fig. 5a and b = -1.703, t(148) = -2.02, p
= 0.045 for model 3; Fig. 5c). For model 2 (σ2), no significant
differences emerged (all ps > 0.05; Fig. 5b).

Quantitative comparison Quantitative comparisons re-
vealed that subjects’ prior distributions differed significantly
from model priors in terms of DJS (V = 25425, p < 0.001).
Inspection of Fig. 4 suggests that this difference might be
driven by dissimilar variances, as subjects’ priors were less
diffused than model priors. The results of further comparisons
confirmed this observation, showing that the mean of subjects’
prior variance was significantly smaller than model prior vari-
ance (V = 1607, p < 0.001), despite finding no significant
difference between prior means (V = 13150, p = 0.652, see
Table 3). These findings might be attributed to an initial over-
estimation of certainty upon observing the outcomes of the
candidates’ test trials. Specifically, the average parameters
of subjects’ initial estimates of the candidates were equal to
B(19.2, 19.1), which was 9.58 times higher in magnitude than
the simple Bayesian model’s B(2,2).

Table 3: Means and SDs of the dependent variables (DV) used
for quantitative comparison.

Measure DV Mean SD
prior DJS 2.547 3.782
prior µsubj−µmodel 0.001 0.085
prior σ2

subj−σ2
model -0.027 0.023

posterior DJS 6.270 8.491
posterior µsubj−µmodel 0.033 0.132
posterior σ2

subj−σ2
model 0.008 0.012

Posterior contrasts revealed that model and subject distribu-
tions were significantly different from each other as measured
by DJS (V = 25425, p < 0.001). For posteriors, this difference
was driven by a mismatch both in terms of posterior means (V
= 17196, p < 0.001) and variances (V = 25183, p < 0.001).
These findings demonstrate that, overall, subjects changed
their posterior means more than expected by the normative
prediction (mainly due to a strong mismatch between posterior
means in the sequential belief updating condition, see Fig.
4, row 2). Subjects’ average posterior variance was signif-
icantly larger than model posterior variance (σ2

subj = 0.01;
σ2

model = 0.002). Compared to the average prior comparison,
this finding might be attributed to the fact that subjects down-
weighted the evidential value of social information obtained
from their peers. The average model posterior parameters
across conditions were equal to B(107.7, 58.4), which was
3.55 times the magnitude of subjects average posterior param-
eters B(31.8, 15.0).

Discussion and Further Work
We modeled a sequential belief updating process including
a target agent (i.e., the participant) and three social network
neighbors. The cover story describing the relationship between
network peers was varied in three within-subject conditions
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to investigate the effects of three statistical (in)dependencies
summarised in Fig. 1. Extending the findings of Whalen et al.
(2018), our behavioural results confirmed our prediction that
people update their beliefs significantly less when the provided
social information was coming from dependent sources (as
compared to the independent case). Thus, our result shows
that people are not simply combining their own beliefs with
the communicated beliefs of their network neighbors. Rather,
they are additionally sensitive to the origin of those beliefs and
to what extent they are redundant. This contributes another
empirical piece to the puzzle of how to counteract the spread
of false consensus effects and information cascades, which
have been suggested to occur in networks of agents forming
their beliefs in individually rational ways (Bikhchandani et al.,
1992; Pilditch, 2017).

We could not confirm whether people differentiated between
the evidential signals of shared information and sequentially
updated beliefs while revising prior beliefs (despite the trend
matching the predicted pattern; see Fig. 4). This might be
attributed to the context of the task: we assumed that sub-
jects would learn about political candidates based on binomial
“performance tests”; and we operationalized network peers as
locals being likely voters from a subject’s political party that
formed their beliefs based on attending debates in their local
town-hall. A more abstract experimental paradigm, such as
learning coordinating with others to estimate the proportion
of blue vs. red marbles in an urn (a common paradigm used to
study information cascades and sequential belief updating; see
e.g., Anderson & Holt, 1997) which does not require such con-
text specific assumptions might have resulted in a measurable
difference between the two dependent conditions. Despite
being unable to differentiate between the two dependent cases,
our task provides a valuable contribution to the field of social
learning in the context of (online) political belief formation
(see e.g., Bond et al., 2012).

To address the limitation of context, further experiments
need to test the ecological validity of the presented normative
framework across a variety of scenarios. These might involve
emotional decisions (e.g., in the context of moral dilemmas),
rational tasks, such as business decisions, and more general
scenarios that are abstract (e.g., urn-based tasks). An ad-
ditional limitation of our work is that we assumed additive
communication of evidence in the case of sequentially updated
beliefs (see Fig. 1). Generally, a more formal explanation of
how sources form their beliefs and a precise description of
the computational processes underlying evidence accumula-
tion between conditions are important issues that need to be
addressed in further work.

Relative to our simple Bayesian account, quantitative com-
parison between model predictions and subjects suggested that
subjects over-weighted the influence of asocial information
while they under-weighted the influence of social informa-
tion. This finding is in line with previous theoretical (Schöbel,
Rieskamp, & Huber, 2016) and empirical (Nöth & Weber,
2003) work demonstrating that people are more influenced by

their own private information as compared to social informa-
tion, though in our case this might be an artifact of simulated
social information (i.e., information coming from hypothetical
social network members rather than actual ones). Moreover,
we assumed that the shapes of the reported distributions re-
flect how subjects represent the distributions of their actual
beliefs. If this assumptions is not met, preferential weighting
of asocial over social information might also be attributed to
an initial misrepresentation (i.e., overestimation) of certainty.
Thus, further work using the proposed interface could include
a control measure of subjects’ ability to accurately report their
certainty. This might involve an initial assessment of beliefs
prior to engaging with any form of evidence.

To address some of the present limitations, we plan to repli-
cate the current experiment across a variety of contexts where
actual subjects come in pairs/triples to do the same task, en-
abling them to update beliefs dynamically. To generate a better
understanding of whether people appropriately down-weight
social evidence, further empirical work could also incorpo-
rate agent-based simulations contrasting normative accounts
with competing models of social influence (e.g., Schöbel et al.,
2016). This approach might enable measuring the empirical
degree of information degradation due to correlated sources
in realistic information networks. At the present stage, our
finding suggests that people are able to understand and report
probabilistic beliefs, which might be useful for calibrating be-
lief parameters in related agent-based models (ABMs) of echo
chambers (Madsen et al., 2018) and scientific belief formation
(Lewandowsky, Pilditch, Madsen, Oreskes, & Risbey, 2019).

In summary, our results suggest that while a Bayesian frame-
work provides a good qualitative account of how people update
their beliefs based on social information coming from sources
with different levels of independence, it cannot, in the current
form, account for the relative weights that people assign to
private and social information while updating their beliefs. We
acknowledge that these findings might depend on the specific
context of our experimental paradigm and plan further ex-
perimental validation of model predictions across alternative
scenarios.
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