Do We Need Neural Models to Explain Human Judgments of Acceptability?

Wang Jing (wangjingrs @bisu.edu.cn)
Beijing International Studies University, Beijing, China

M. A. Kelly (mak582@psu.edu)
David Reitter (reitter @google.com)
The Pennsylvania State University, University Park, PA, USA

Abstract

Native speakers can judge whether a sentence is an acceptable
instance of their language. Acceptability provides a means of
evaluating whether computational language models are pro-
cessing language in a human-like manner. We test the ability
of language models, simple language features, and word em-
beddings to predict native speakers’ judgments of acceptabil-
ity on English essays written by non-native speakers. We find
that much sentence acceptability variance can be captured by a
combination of misspellings, word order, and word similarity
(r =0.494). While predictive neural models fit acceptability
judgments well (r = 0.527), we find that a 4-gram model is
justas good (r = 0.528). Thanks to incorporating misspellings,
our 4-gram model surpasses both the previous unsupervised
state-of-the art (r = 0.472), and the average native speaker
(r = 0.46), demonstrating that acceptability is well captured
by n-gram statistics and simple language features.

Keywords: acceptability judgments; language models; neural
networks; word embeddings; statistical models

Introduction

Proficient language users, when given a sentence in their lan-
guage, are able to judge the acceptability of the sentence
when asked whether the sentence is natural, well-formed, or
grammatical. Acceptability is of interest to cognitive scien-
tists because it provides a means for evaluating whether com-
putational models of language are processing language in a
manner similar to humans.

At the same time, models of acceptability have applica-
tions in natural language processing. For example, they can
be used to evaluate the fluency of machine translation outputs,
of answers produced by question answering systems, and au-
tomatically generated language snippets quite generally (Lau,
Clark, & Lappin, 2015). In computer-assisted learning, ac-
ceptability models can help grade essays and provide feed-
back to native speakers as well as language learners. Accept-
ability may also be a more precise training signal for general-
purpose language models (albeit a costly-to-obtain one).

Recently, great progress has been made in language model-
ing. But do the models process language in a manner similar
to humans? And are the models good at discriminating be-
tween acceptable and unacceptable language, or are the mod-
els merely sensitive to the distinction between probable and
improbable language? Is acceptability statistical in nature, or
best understood through the rules of a formal grammar?

In this paper, we investigate what models and language fea-
tures can capture the acceptability judgements of native En-
glish speakers on sentences of English. We train different

word embeddings to investigate the role of semantic features
in acceptability. We train n-gram models, simple recurrent
neural network language models (RNN), and long-short term
memory language models (LSTM), to obtain sentence-level
probabilities. We explore how individual word frequency, n-
gram frequency, spelling errors, the order of words in sen-
tences, and the semantic coherence of a sentence, contribute
to human judgments of sentence acceptability.

Acceptability exhibits gradience (Keller, 2000; Lau, Clark,
& Lappin, 2014). Accordingly, we treat acceptability as
a continuous variable. We evaluate model performance by
measuring the correlation between each model’s acceptability
prediction and a gold standard based on human judgments.

We are concerned with models that learn in an unsuper-
vised fashion. Supervised training requires copious labelled
data and explicit examples of both acceptable and unaccept-
able sentences. Conversely, we use only the type of data that
is most available to a human learner. Humans learn mainly
through exposure to a language. While explicit training on
what is and is not acceptable often occurs in school, this train-
ing is unnecessary for native language competence.

In what follows, we describe how we calculate an accept-
ability estimate from the models, the English-language train-
ing corpora for the models, and the test data set we use to
assess the ability of the models to judge acceptability, before
presenting the results of our experiments with word embed-
dings and language models.

Related Work

Prior work has focused on predicting sentence acceptability
using syntactic parsing (Blache, Hemforth, & Rauzy, 2006;
Wong & Dras, 2010; Ferraro, Post, & Van Durme, 2012;
Clark, Giorgolo, & Lappin, 2013a), statistical language mod-
els (Clark et al., 2013a; Lau et al., 2015), and linguistic
features (Heilman et al., 2014; Clark, Giorgolo, & Lappin,
2013b). Neural language models have shown evidence of ac-
quiring deeper grammatical competence beyond mere n-gram
statistics (Gulordava, Bojanowski, Grave, Linzen, & Baroni,
2018), suggesting that the models are a good basis for mod-
elling human acceptability judgements (Lau et al., 2015).
Vecchi, Marelli, Zamparelli, and Baroni (2017) use word
embeddings to predict human judgements of semantic ac-
ceptability on adjective - noun pairs (e.g., remarkable onion
vs. legislative onion). Similarly, Marelli and Baroni (2015)
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Measures Equation
Mis Score(&)m+®)
NormMul  Mis x P, (&)
NormSub ~ Mis— P, (&)
SLOR Nongsub

Table 1: Measures for predicting the acceptability of a sen-
tence. Notation: Score is an estimate produced by a model
(i.e., semantic coherence or sentence log probability), and
normalized to [0,1]; & is the sentence; || is the sentence
length; m is the number of misspelled words in a sentence; O
is a fitting parameter; Pu(&) is the unigram probability of the
sentence. We train the unigram model on English Wikipedia.

compose morpheme embeddings to model the acceptability
of novel word forms (e.g., undiligent vs. unthird). However,
little work has been done on using distributional semantic
models to predict sentence acceptability.

Methodology
Acceptability Measures

To estimate acceptability using word embeddings, we take
the cosine similarity between word embeddings in a sentence
and normalize to the range [0,1] to get the model’s Score. For
language models, we exponentiate a sentence’s log probabil-
ity to yield a probability, which we use as the Score. We then
convert the Score into an acceptability measure using one of
the methods in Table 1. We introduce one more variable: mis-
spellings (Mis), which reflects the effect of misspellings.

Because Lau et al. (2015) found that sentence acceptabil-
ity is invariant with respect to sentence length or word fre-
quency, we normalize to produce a set of final scores based
on the measures proposed by Lau et al.. The Syntactic Log
Odds Ratio (SLOR) measure, proposed by Pauls and Klein
(2012), normalizes both word frequency and sentence length.
To estimate acceptability, SLOR takes the probability of a
sentence, subtracts out the frequency of the individual words
in the sentence, so that sentences are not penalized for us-
ing rare words, and divides by sentence length, so that sen-
tences are not penalized for being long. Lau et al. (2015)
found that SLOR was the best predictor of acceptability. But,
as we find that SLOR does not perform well using our models,
we include NormMul, and NormSub, variants of the measures
proposed by Lau et al.. We normalize by word frequency in
the NormMul (normalized multiply) and NormSub (normal-
ized subtract) measures. We compute each measure’s Pear-
son correlation coefficient with the sentence’s gold standard
to evaluate effectiveness in predicting acceptability.
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Training Corpora

We train our models on two large corpora of “acceptable”
English: the British National Corpus (BNC: 130K unique
words, 100M tokens; British National Corpus Consortium,
2007) and on a corpus of novels (NC: 39K unique words,
145M tokens; Johns, Jones, & Mewhort, 2016). The corpora
are tokenized using NLTK! and all words are lower case.

The GUG Dataset

To test the ability of the models to predict acceptability, we
need a collection of sentences that exhibit varying degrees of
acceptability with ratings from native speakers. We use the
Grammatical versus Ungrammatical (GUG) data set built by
Heilman et al. (2014). The GUG data set contains 3129 sen-
tences randomly selected from essays written by non-native
speakers of English as part of a test of English language pro-
ficiency (see Table 2). Heilman et al. (2014) crowd-sourced
acceptability ratings for the sentences on a 1 (incomprehen-
sible) to 4 (perfect) scale, obtaining five ratings for each sen-
tence. Each sentence also has an “expert” rating from a lin-
guist. Heilman et al. (2014) randomly split the data into train-
ing (50%), development (25%), and test (25%) sets.

In order to compare to Lau et al. (2015), we only use the
GUG test set. We remove 23 sentences from GUG that have
less than 5 words, lower-case all words, and extract 744 sen-
tences for our test set. We take the average of the crowd-
sourced ratings (across 5 workers) as the gold standard. To
evaluate the models, we compute the correlation of the pre-
dicted ratings and the gold standard ratings. We correct mis-
spelled words using the PyEnchant® spell-checker. We use
PyEnchant’s first suggestion as the corrected spelling. We
count the number of misspelled words in every sentence,
which serves as a feature for the Mis measure (see Table 1).

To illustrate the difficulty of predicting acceptability, we
compute the Pearson’s correlation coefficient between the rat-
ings of each human rater and the mean acceptability rating.
We find that the correlations for crowd workers range from
0.440 to 0.485. However, the correlation between the expert
and the average of all non-expert ratings is high, » = 0.753.
The high correlation could be an artifact of crowd worker se-
lection. Crowd workers were screened using a qualifying test
that assessed the agreement between their ratings and the ex-
pert ratings on a set of trial sentences, which could force a
correlation. Conversely, the higher correlation for the expert
and the average of the workers could reflect the expert’s lan-
guage expertise and the wisdom of the crowd.

In sum, to achieve non-expert performance at predicting
acceptability, computational models need a correlation to the
mean acceptability rating of at least » = 0.440, but to achieve
expert performance may require a much higher correlation.

Uhttps://www.nltk.org
2http://pythonhosted.org/pyenchant/



Table 2: Example sentences from Heilman et al. (2014)’s GUG data set with acceptability ratings.

sentence

expert workers mean

For not use car.

I would like to initiate, myself, whatever I do on my trip to get much out 2

1 [3,4,3,4,3] 3.0
[4,3,2,3,3] 2.8

of my trip.
These kind of fish can’t live so long in water that contain salt. 3 [3,3,4,3,4] 3.3
So if you want me to choose right now, I will choose ordinary milk 4 [3,4,3,4,4] 3.7

instead of that special kind.

Experiments
Acceptability as Semantic Coherence

Measures of semantic coherence are used in models of
document-level topic generation (Mimno, Wallach, Talley,
Leenders, & McCallum, 2011) and visual scene generation
(Vertolli, Kelly, & Davies, 2018) to ensure, respectively, that
the topics and scenes “make sense.” We hypothesize that
more acceptable sentences have higher semantic coherence.
We propose a novel metric for the semantic coherence of
an individual sentence. We quantify semantic coherence be-
tween a word and its context as the cosine similarity between
the word’s embedding and the sentence’s embedding without
the word. The semantic coherence of the sentence as a whole
is then computed as either the minimum or average of each
word’s similarity to the rest of the sentence.

The word embeddings we train are Word2Vec (skip-gram,
i.e., SK, and continuous bag of words, i.e., CBOW; Mikolov,
Chen, Corrado, & Dean, 2013; Mikolov, Sutskever, Chen,
Corrado, & Dean, 2013), the GloVe model (Pennington,
Socher, & Manning, 2014), and the Hierarchical Holo-
graphic Model (HHM; Kelly, Reitter, & West, 2017),

Word2Vec Using CBOW, Word2Vec predicts the current
word from a window of surrounding context words, while in
SK, Word2Vec uses the current word to predict the surround-
ing context (Mikolov, Chen, et al., 2013; Mikolov, Sutskever,
et al., 2013). We use Gensim Word2vec to train CBOW and
SK models with 300 dimensions and a window size of 5.3

GloVe GloVe takes aggregate word-word co-occurrence
statistics from a corpus (Pennington et al., 2014) and per-
forms a dimensional reduction on the co-occurrence matrix
to produce a set of word embeddings. We build 300 dimen-
sional GloVe embeddings on the BNC and NC corpora®*.

Hierarchical Holographic Model GloVe and Word2vec
treat sentences as unordered sets of words. In English, word
order conveys much of the meaning of the sentence, and is
critical in constructing a grammatical sentence. To account
for this, we include in our analysis the Hierarchichal Holo-
graphic Model (HHM; Kelly et al., 2017), a model sensitive

3Gensim Word2vec from:
gensim/

40ur GloVe implementation comes from https://github
.com/stanfordnlp/GloVe. Other parameter values of the GloVe
vectors: X;qy = 100; window _size = 10;iter = 100

https://radimrehurek.com/
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to the order of words in a sentence. HHM generates multiple
levels of representations, such that higher levels are sensitive
to more abstract relationships between words, such as part-
of-speech relationships (Kelly et al., 2017). We trained three
levels of HHM representations with 1024 dimensions and a
context window of 5 words to the left and right of each target
word. Dimensionality, level, and window size are HHM’s
only hyper-parameters, and as such, the number of hyper-
parameters is comparable to the other word embeddings.

Semantic Coherence The semantic coherence of a sen-
tence is either:

Score = min(cosine(word;, context;)) (D)
Score = avg(cosine(word;, context;)) 2)

where min is the minimum, avg is the average, w; is the
i-th word’s representation in a sentence and context; is the
context representation of the sentence without w;. If a word
in the GUG test set is not in the corpus (169 test set words not
in NC, 0 words not in BNC), we use a random embedding
instead. We have two methods for computing the context
representation context; of word w;. One method is to sum:

context; — Y (Wi, ooy Wi, Wit 1y ... Wn) 3)
n

We can also get the context by building a holographic repre-
sentation using HHM’s environment vectors via a method de-
scribed in Jones and Mewhort (2007) and Kelly et al. (2017).
By using aperiodic convolution to combine environment vec-
tors into bigrams, trigrams, tetragrams, etc., up to n-grams
of sentence length, we can construct a representation of the

sentence that accounts for the ordering of the words within it.

Results Table 3 shows that semantic coherence, by itself,
correlates weakly with acceptability when the sentence con-
text is computed as a sum (as in Eqn. 3). Correlations for the
Score range from r = —0.181 (CBOW on BNC) to r = 0.185
(SK on NC) with an average correlation across word embed-
dings and corpora of only r = 0.058.

We can improve the correlation by incorporating mis-
spellings and unigram probability. GloVe is the best per-
forming model when using the combined measures. We ex-
periment with different values of the fitting parameter o for
the Mis measure and find the highest correlation for o = 0
and using the minimum (rather than average) semantic coher-
ence of the sentence (GloVe, r = 0.449 on NC and r = 0.446



on BNC), which can be further improved using NormMul by
multiplying by the unigram probability (GloVe, r = 0.464 on
NC and r = 460 on BNC). However, an o of zero indicates
heavy reliance on the misspellings to predict acceptability.

When the context vector is computed holographically, such
that the ordering of the words in the sentence is preserved, we
find that the semantic coherence score is a stronger predictor
of acceptability then when using a sum to construct the con-
text (see Table 4). Score ranges from r = 0.140 to r = 0.314
and an average of r = 0.201. By incorporating misspellings
(o0 = 0.3), the correlation for average coherence increases to
r=0.471 (NC) and 0.457 (BNC) for Level 1 of HHM and to
0.467 (NC) and 0.494 (BNC) for Level 2 of HHM.

In sum, while semantic coherence is not a strong predictor
of acceptability, when combined with sensitivity to the order
of the words in the sentence and the number of misspellings,
it can act as an effective predictor of acceptability (r = 0.494).

Acceptability using Language Models

Language models can predict the probability of a sequence
of words. Lau et al. (2015) compared acceptability judg-
ments against predictions by language models including n-
gram models, Hidden Markov Models, latent Dirichlet allo-
cation, a Bayesian chunker, and a recurrent neural network
language model (RNNLM). Lau et al. (2015) obtained ac-
ceptability scores using crowd-sourcing and a corpus of sen-
tences using round-robin machine translation from English to
a second language, and back. On this (unpublished) data, the
neural language model (RNNLM) performed best.

However, a 4-gram model trained on the British National
Corpus (BNC) beat the RNNLM when tested on the GUG test
data (r = 0.472; Lau et al., 2015).

We take the 4-gram model’s performance (r = 0.472) as
the baseline in the following experiments. The primary dif-
ference between the translation dataset and the GUG dataset
is that sentences in the translation dataset are produced by
Google Translate automatically, while sentences in the GUG
dataset are produced by a non-native speaker. We suspect
that a language model may perform better on a dataset pro-
duced by machine translation than on a naturalistic dataset
comprised of essays from L2 speakers, which may contain
greater linguistic variability.

Training Using the BNC and NC corpora, we produce
lexical 4- and 5-gram language models using Kneser-Ney
smoothing (Stolcke, 2002), and a basic RNNLM 5 (Elman,
1998; Mikolov, 2012). We also train the RNNLM and an
LSTMLM on NC using Tensorflow. The embedding layer
is initialized either to a Gaussian distribution of values with
1024 dimensions or a pre-trained embedding with 3072 di-
mensions (we use a concatenation of HHM1, HHM?2 and
HHM3 here). We set the LSTM’s hidden layer size to

5We use the Mikolov, Karafiat, Burget, Cernocky, and Khu-
danpur (2010) implementation for the RNNLM: http://www.fit
.vutbr.cz/~imikolov/rnnlm/. Meta-parameter values of the
RNNLM included the following: number of classes = 550; bptt =
4; bptt-block = 100, hidden = 600.
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1024, the projection layer size to 128, and the maximum se-
quence length to 25. In the GUG test set, we replace out-
of-vocabulary words (i.e., words not in the corpora) and low-
frequency (< 5) words with the <unk> token. Sentences with
less than 8 words are removed.

Results Score_C in Table 6 equals the log probability of
sentences in the spell-corrected test data and Score_O is the
log probability of sentences in the original test data.

Setting the Mis score’s fitting parameter o, = 1.3 (see Ta-
ble 1) yielded best results for the lexical 4-gram model on
BNC. The 4-gram model’s correlation of r = 0.528 improves
notably upon Lau et al.’s best correlation of 0.472. The
RNNLM trained on NC performs similarly, at » = 0.527.

Table 5 shows the performance of the LSTM and RNN
trained on NC with an embedding layer. We find that the best
performing model is the LSTM with a pre-trained embedding
layer that is not fixed and can be trained further.

Table 6 shows that the correlation of Mis exceeds the orig-
inal log probability no matter whether the log probability is
computed on corrected test data or the original test data. The
Mis score’s high correlation shows that using misspellings al-
lows for a better translation of log probability to acceptability.

Unlike Lau et al. (2015), who found SLOR to be the best
measure, we find that NormSub performs better than other
measures across all models (Table 6). NormSub removes the
influence of unigram probability from the acceptability score.
Word frequency has little influence on acceptability (r = 0.2
between acceptability and unigram probability), but greatly
affects the log probability computed by the language models.

To test the robustness of our methodology on the test data,
we also test the models on the GUG’s development set (747
sentences after preprocessing) and find that a 5-gram model
trained on the BNC gets the best correlation at r = 0.467.

Discussion

Modeling acceptability provides a window into the human
brain’s language engine. We explore what aspects of lan-
guage are important to account for what people consider ac-
ceptable, well-formed sentences. In particular, we examine
the importance of misspellings, semantic coherence, and n-
gram probability using simple features, word embeddings, n-
gram models, and predictive neural language models.

We find that accounting for misspellings considerably im-
proves the ability of unsupervised models to capture accept-
ability judgments. Prior work by Heilman et al. (2014) with
supervised models found that the number of misspelled words
was an important feature for their models. We develop a tech-
nique for incorporating misspellings into unsupervised mod-
els by correcting all spelling errors so that the model works
with clean data, and then raising the model’s acceptability
estimate to the power of the number of misspelled words.
Our Mis measure is not, itself, intended to be a cognitive
model, but rather an indication that cognitive models of hu-
man judgements of acceptability need to be highly sensitive
to misspellings.



measure CBOW (NC) SK (NC) GloVe (NC) CBOW (BNC) SK (BNC) GloVe (BNC)
min avg min avg min avg | min avg min avg min avg
Score 0.029 -0.176 0.I85 -0.028 0.089 -0.071 | 0.035 -0.I8T 0.I73 -0.029 0.064 -0.068
Mis 0444 041 0427 0397 0449 0426 | 0445 041 0425 0399 0446 0426
NormMul | 0458 044 0445 0436 0464 0445 | 0459 0440 0444 0437 0460 0.445
NormSub | 0.346 0.273 0332 0238 0.356 0.339 | 0348 0275 0327 0.243 0351 0.339
SLOR 0.288 0.239 0.298 0.242 0.323 0.276 | 0290 0.240 0301 0.248 0318 0.276

Table 3: Pearson’s r between semantic coherence and acceptability with oo = 0 for Mis. Semantic coherence computed using
minimum and average similarity between word and context representations. Context representation obtained via Equation 3.

Word embeddings were trained on NC (left) and BNC (right).

Boldface indicates the best performing measure.

measure HHM1 (NC) HHM2 (NC) HHM3 (NC) HHM1 (BNC) HHM2 (BNC) HHM3 (BNC)
min avg min avg min avg min avg min avg min avg
Score 0.153  0.198 0.19 0.27 0.19T 0.232°| 0.097 0.129 0217 0314 0.14 0.278
Mis 0454 0471 0459 0467 0447 0462 | 0435 0457 0475 0494 0425 0.482
NormMul | 0.457 0476 0453 0462 0436 0455 | 0438 0459 0463 0479 0432 0.464
NormSub | 0.346 0.36 0.365 0.38 0.363 0378 | 0308 0318 0.381 0404 0274 0.409
SLOR 0239 0.176 0243 0204 0.293 0.219 | 0.131 0.096 0.183 0.169 0.155 0.24

Table 4: Context representations obtained via the holographic method for HHMs. Measures computed with oo = 0.3. Boldface
indicates the best-performing measure. Trained on NC (left) and BNC (right).

measure | LSTM LSTM RNN LSTM
fixed train random random
Score 0.42 0.408 0.307 0.344
Mis 0.493 0.49 0.418 0.445
NormMul | 0.453 0.447 0.385 0.406
NormSub 0.509 0.522 0.453 0.489
SLOR 0.38 0.4 0.339 0.374

Table 5: Pearson’s r between model predictions and mean
acceptability for language models trained on the NC corpus
with oo = 2.1. The models are an LSTM with fixed, pre-
trained HHM embeddings, an LSTM with trainable HHM
embeddings, an RNN with Gaussian, randomly initialized
trainable embeddings, and an LSTM with randomly initial-
ized trainable embeddings. Boldface indicates the best per-
forming models and measures.

measure 4-gram 5-gram RNN
BNC NC BNC NC BNC NC

Score_ O 0.284 0.250 0.252 0311 0.337 0.284
Score_C 0.315 0302 0315 0302 0.295 0314
Mis 0465 0460 0464 0459 0448 0461
NormMul | 0.424 0.418 0423 0417 0410 0421
NormSub | 0.528 0.518 0.527 0.518 0.510 0.527
SLOR 0.469 0457 0474 0460 0472 0.485

Table 6: Pearson’s r between model predictions and mean ac-
ceptabiliy for language models trained on BNC and NC with
o = 1.3. Boldface indicates best models and measures.

We propose a novel metric of the semantic coherence of
a sentence and we examine the contribution of semantic co-
herence with respect to acceptability. By itself, semantic co-
herence correlates poorly with acceptability, providing ev-
idence that meaning constitutes only a small part of what
makes a sentence acceptable or unacceptable, in keeping with
Chomsky (1956)’s arguments for a distinction between syn-
tactic and semantic well-formedness.

However, when semantic coherence is combined with mis-
spellings and unigram probabilities (i.e., word frequencies),

we can account for much of the variability in acceptability
(r =0.46). We can further improve the correlation by in-
corporating the order of the words in the sentence into our
measure of semantic coherence (r = 0.49). These results sug-
gest that acceptability is not wholly independent of seman-
tics. The role of semantic coherence in linguistic acceptabil-
ity warrants further investigation. The validity of metrics of
semantic coherence need to be assessed against human judge-
ments, but we leave such explorations for future work.

Language models provide a means of estimating the prob-
ability of a sentence, which in turn can be used to predict
acceptability. We replicate prior work (Lau et al., 2015) in
finding that the RNNLM is a good language model for ac-
counting for acceptability (r = 0.53). Yet, a simple 4- or
5-gram model with statistical smoothing is just as good as
an RNNLM. So, 4- or 5-gram frequencies may be what the
neural network model primarily learns to rely upon to model
human language with respect to acceptability judgments.

We replicate Lau et al. (2015)’s finding that the log proba-
bilities produced by language models need to be normalized
by subtracting the unigram probability. This normalization,
NormSub, prevents the models from underestimating the ac-
ceptability of sentences with low frequency words. Lau et al.
(2015) find that the Syntactic Log Odds Ratio (SLOR; Pauls
& Klein, 2012), which further normalizes by dividing by
sentence length, is the best method for converting language
model log probabilities into predicted acceptability. How-
ever, we consistently find that SLOR performs less well at
predicting acceptability than NormSub (see Tables 6 and 5).

The difference between our findings and Lau et al.’s (2015)
may be due to the different datasets we use: Lau et al. primar-
ily report results for a machine translation dataset, whereas
we evaluate results on a dataset of sentences produced by sec-
ond language speakers. The appropriateness of normalizing
by sentence length thus may be dependent on the characteris-
tics of the language being evaluated for acceptability.
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In sum, the best and simplest model of acceptability judg-
ment consists of only three statistical language features: 4- or
5-gram frequency (with statistical smoothing), misspellings,
and word (or unigram) frequency. The correlation of non-
expert human raters to mean acceptability ranges from 0.440
to 0.485. Thus, our models’ correlation with the mean ac-
ceptability exceeds the rater reliability.

Yet even our best model is not as good as the expert rater
(r=0.75). Do experts have more experience and thus, different
assumptions of lexical or syntactic distributions, or do they
just interpret the task differently, perhaps isolating grammat-
icality from the less well-defined acceptability? Do expert
judgments represent less dialectal variety, or are they corre-
lated with ease-of-processing? Future models will, hopefully,
capture expert-level performance.

We have considered only unsupervised models of accept-
ability on the assumption that unsupervised data best reflects
the learning environment of the average native speaker of the
language. However, supervised approaches may be appro-
priate for modelling expert performance, as language experts
have likely had the benefit of explicit training on what is and
is not acceptable and “proper” language. Though it remains
an open question whether capturing such expertise is even
desirable given that “proper” language is typically associated
with a specific region or class, rather than the population as a
whole (McArthur, 1992, pp. 984-985).

Conclusion

While more sophisticated neural language models may have
lower perplexity than simpler language models, we find that
simple n-gram models perform just as well at predicting ac-
ceptability. By incorporating a count of misspellings, our 4-
gram model (r = 0.53) surpasses the previous unsupervised
state-of-the art (Lau et al, 2015, r = 0.47), reducing the gap
to expert performance (» = 0.75) and surpassing the average
non-expert native speaker (r = 0.46). A high correlation to
acceptability can also be achieved without a predictive lan-
guage model, by combining number of misspellings, seman-
tic similarity, and word order information (r = 0.49).

Our results suggest that the layperson’s ability to judge
whether or not a given sentence is acceptable may be derived
from sensitivity to simple, statistical language features, with-
out necessarily requiring syntactic rules or even a complex
machine learning model. Cognitively, these results suggest
that humans may learn what is an acceptable sentence of a
language in a simple, statistical, rather than rule-based, man-
ner. However, no model considered here closely matches ex-
pert performance at judging acceptability. Closing the gap to
experts may yet require a more sophisticated language model.
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