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Abstract
The coarse-to-fine hypothesis posits that, in the Human visual
system, a coarse representation of visual information is propa-
gated quickly through the retina to the cortex, whereas a finer,
more detailed representation is propagated more slowly. In a
previous study we showed that recurrent synaptic connections
help predict low intensity EFEs. Furthermore, a feedback loop
coming from coarser information processing is postulated to
influence later processing of finer features. In this paper, we
intend to examine the value of coarser information and recur-
rence in the processing of dynamic Emotional Facial Expres-
sions (EFE). In a step forward in studying the importance of
recurrent connectivity in the coarse-to-fine model, we tested
its advantage for discriminating emotions for different spatial
frequencies and facial expression intensities. Using Artificial
Neural Networks, we modeled recurrent synaptic connections
with a recurrent feedback loop. Using a Gabor filter bank, we
computed different levels of spatial frequency features. Our re-
sults replicate the advantage of recurrence at first facial expres-
sion intensities. Our main finding is that the recurrent model is
also better when predicting high spatial frequencies features.
Additionally, mid-to-low spatial frequencies are more useful
to the prediction of EFEs. We conclude that feature process-
ing feedback has a significant effect in disambiguating facial
expressions when information is particularly complex, i.e., at
high spatial frequencies and low EFE intensities.
Keywords: Proactive Brain, Neural Network modeling,
Emotional Facial Expressions, Spatial Frequencies.

Introduction
The proactive brain hypothesis (Bar, 2007; Trapp & Bar,
2015) models the use of fast but coarse information streams,
which are necessary to react quickly to stimuli and events
by making predictions that are refined as finer information
is propagated through the brain (Bar et al., 2006). It has been
postulated that the existence of top-down cortical informa-
tion feedback loops improves this proactive system and this
is one explanation for the high density of the top-down recur-
rent connections found in the brain (Bullier, 2001; Sherman
& Guillery, 2002). At the level of the lateral geniculate nu-
cleus, the magnocellular pathway represents a fast but coarse
route in the brain, whereas the parvocellular pathway repre-
sents a slower but fine route (Peyrin et al., 2010; Kauffmann,

Ramanoël, & Peyrin, 2014; Kauffmann, Chauvin, Guyader,
& Peyrin, 2015). With the help of artificial neural networks
we intend to study the importance of recurrent connections
for the prediction of dynamic Emotional Facial Expressions
(EFE).

EFEs are complex stimuli which play an important role
in our society. Multiple studies have shown that face
identification (Vida & Maurer, 2015) and EFE detection
(Mermillod, Bonin, Mondillon, Alleysson, & Vermeulen,
2010; Bayle, Schoendorff, Hénaff, & Krolak-Salmon, 2011)
can be achieved without high spatial frequencies. The antici-
pation of dynamic stimuli such as EFEs is assumed to rely on
neurological systems involving bottom-up and top-down pro-
cesses related to visual processing (Kveraga, Ghuman, & Bar,
2007; Beffara et al., 2015). In this study our intention is to
demonstrate the usefulness of plausible recurrence strategies
in the processing and prediction of dynamic emotions.

Mermillod et al. (2019) implemented feedforward and re-
current artificial neural network models that took EFE fea-
tures as inputs and the next EFE intensity in an emotional se-
quence (neutral to apex) as target. Recurrent models are char-
acterized by the re-injection (along with input vector) of the
hidden layer state provided by a previous intensity step. The
authors demonstrated that such a feedback loop of processed
data (i.e., hidden layer state reinjected) enhanced the predi-
cion of facial emotions, in particular at initial intensities. In
the present work, the inputs were Gabor magnitude responses
obtained with a Gabor filter bank of different spatial and ori-
entation frequencies. We segregated spatial frequency pro-
cessing in order to measure which frequencies, high or low,
are the most useful for predicting early EFE intensities.

Previous studies have shown that low spatial frequencies
are more useful for object, scene and face categorization (e.g.,
Mermillod, Guyader, & Chauvin, 2005; Mermillod, Vuilleu-
mier, Peyrin, Alleysson, & Marendaz, 2009). As such, we ex-
pect models to perform better when the inputs are low spatial
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Figure 1: EFEs were organized in a star configuration with a
neutral expression in the center. Stimuli increased in intensity
until reaching apexes by means of a morphing transformation.

frequencies. We expect a recurrent model to be more efficient
at predicting EFE features in complicated situations such as
early emotion intensities (Mermillod et al., 2019).

Mermillod et al. (2019) have previously shown the impor-
tance of recurrence for recognizing dynamic emotions. In this
article, we extend these investigations in an attempt to val-
idate the coarse-to-fine feedback loop hypothesis with com-
putational models.

Method
Stimuli
In this study, we used the Pictures of Facial Affect database
(POFA, Ekman & Friesen, 1993). It consists of photographs
of 10 actors (six women and four men) displaying six emo-
tions (anger, disgust, sadness, joy, fear, and surprise) as well
as a neutral state. This facial emotion database has been ex-
tensively used in the scientific literature, and more particu-
larly in previous computational studies on facial expression
processing.

We used the POFA database to create a continuum from
neutral to an emotional expression apex (10 intensities) As
depicted in Figure 1, EFEs of any given actor share the same
neutral state. After preprocessing (described below), images
in the database were presented as vectors of average energy
responses obtained with a Gabor filter bank.

Processing
We obtained EFE intensities via morphing, by performing a
linear interpolation between neutral and emotional apex pic-
tures. In a second step, we extracted significant information
related to spatial frequency and orientation similar to the first
stages of human visual processing (DeValois & DeValois,
1990; Mermillod, Guyader, & Chauvin, 2004).

The POFA has the advantage of including neutral emo-
tional faces which we can use as starting points in an emo-
tional continuum. To obtain this continuum we used an in-
house C++ tool tasked with automatically detecting 68 facial
fiducial landmarks (face, eye, nose, mouth contour). Thanks
to these points, we obtained a set of triangles mapping fa-
cial features. We interpolated between the positions of the
vertices of these triangles and the pixel content within trian-
gles via affine transformations and alpha blending, respec-
tively. The interpolation was performed between triangles
corresponding to the same fiducial points in a neutral and an
apex picture. We obtained a ten-step interpolation from neu-
tral to emotion apex.

We constructed a Gabor filter bank and projected pictures
and filters in the spectral domain with a fast Fourier trans-
form. Pictures and filters, were then multiplied together, as
a fast alternative to convolution. This operation ensured that
we could control the information provided at the level of the
perceptual layer, which would not have been possible using
convolutional layers. For each stimulus and Gabor filter, we
obtained a measure of average energy response. The filter
bank consisted of seven spatial frequencies and eight spatial
orientations. With this method we transformed each stimu-
lus into a vector of 56 average energy responses. The seven
spatial frequencies were chosen so they spanned low to high
frequencies (increasing by one octave on each step) as per-
ceived by the human visual system:

• Low: 0.35 cycles per degree of field of view, 0.72 cy./deg.
• Medium: 1.4 cy./deg., 2.81 cy./deg., 5.62 cy./deg.
• High: 11.25 cy./deg., 22.5 cy./deg.

Artificial Neural Networks
In order to study whether information feedback loops are
plausible in the human visual system we modeled three Arti-
ficial Neural Networks (ANNs, PyTorch Paszke et al., 2017).
To do this, we used a simple Multi-Layer Perceptron similar
to that used in Mermillod et al. (2019) in order to ensure a fair
comparisons of the different spatial frequencies:

1. MLP: a Multi-Layer Perceptron.
2. SRN: a Simple Recurrent Network.
3. MLPaug: an MLP augmented with the same number of

parameters as the SRN, taking three time-steps’ worth of
emotion intensity at once as input.

The MLP is a feedforward ANN with an input layer, a
hidden layer, and an output layer. It represents a baseline
performance, in order to predict emotion vectors on a single
information step. The SRN is based on the Elman network
(Elman, 1990). It is similar to the MLP, with the exception
of the hidden layer, which is considered as a context layer,
whose content is used alongside the input layer content as
input to the next time-step. The MLPaug has three times as
many inputs as the MLP. It therefore has the same number of
parameters as the SRN and does not rely on feedback loops,
since it receives three time-steps’ worth of intensity at once.
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Figure 2: EFE stimuli were multiplied in the Fourier domain with a Gabor filter banks. This figure shows one of the eight
orientations used in our experiment. This operation was repeated for all stimuli with the entire Gabor filter bank to obtain a
vector of 56 average energy responses.

The input data of the network is an energy response vector
at an intensity step t, while the target is the energy response
vector at time-step t + 1 To measure performances with dif-
ferent spatial frequencies, the input vector consists of eight
spatial orientations extracted from the 56-element energy re-
sponse vector described above. Because the input layer of
MLPaug receives three intensities, the first intensity vectors
are filled with zeros for non-existent intensities (intensities -2
and -1 at time step 0 and intensity -1 at time step 1). In all
three models, the size of the hidden/context layer is twice that
of the input layer as implemented by Elman (1990).

The purpose of the models is to predict the energy response
vectors at the next time-step (emotional intensity). The loss
is the root-mean square error (RMSE) between the expected
energy response vector and that predicted by the network.
Therefore, the models predict the evolution of the emotion
on a continuum, rather than classifying the emotion itself. A
classification accuracy measure is obtained by comparing the
RMSE of a model’s prediction with all six emotion vectors at
the predicted intensity (for the same actor). If the predicted
value is closest to the emotion vector of the expected class,
then the prediction is labeled positive, otherwise the predic-
tion is negative.

Training methodology

A set of ANN models was trained for each of the seven spatial
frequencies separately. The database for a training instance
was thus made up of 600 eight-element vectors (ten actors by
six emotions by ten intensities). This data subset was normal-
ized between 0 and 1 (min-max range normalization) for each

spatial frequency independently in order to fit the range of the
activation function (sigmoid) at the output of the network.

We used the Adam optimizer to update the model’s param-
eters with a learning rate of 0.0005 (other parameters: be-
tas=(0.9, 0.999), epsilon=1e-8, weight decay=0). This num-
ber is lower than the default value suggested by the authors
of the optimizer in order to avoid overfitting.

The ANNs were trained for 10,000 epochs (one epoch is
one pass over the training dataset).At each iteration, one emo-
tion intensity was passed through a model starting from neu-
tral data up to intensity n−1 (predicting the tenth one). Since
the first prediction was based on the neutral face, which was
common to all the emotions, we expected the first time-step
prediction to be equal to chance level (1/6).

In a leave-one-out strategy, one actor’s data was set aside
for testing. It was therefore kept independent from the learn-
ing protocol and served to measure the generalization perfor-
mances of the networks.

Analyses

In this study, we analyzed prediction success rates as a func-
tion of ANN types and emotion intensity across the informa-
tion for the seven spatial frequencies extracted as described
above. For each spatial frequency, our statistical models an-
swered two questions: 1) is there a main effect of ANN types,
2) is there an interaction effect between ANN types and emo-
tion intensity.

The results of this experiment were analyzed with Gener-
alized Linear Mixed Models (GLMMs Jaeger, 2008) in or-
der to model the binomial nature of the binary data (success

1319



rates) and the random effects inherent to our set-up. As well
as determining significance levels, the results of the analysis
of main and interaction effects were not trivial. We there-
fore adopted the method used by Nuthmann and Malcolm
(2016) by comparing different multi-level statistical models
using likelihood ratio tests.

Three GLMMs were specified: an intensity model includ-
ing solely the emotion intensity as a fixed effect, a net-
intensity model including the ANN type and emotion inten-
sity as fixed effects and a full model including these two vari-
ables and their interaction as fixed effects. If the full model
has a better fit than the intensity model this would lead us to
believe that network type had an effect (main or interaction);
if the full model has a better fit than the net-intensity model
then there would be an interaction effect. The complexity of
the models by inclusion of random effects (actor, emotion)
was reduced until they converged. Unless specified otherwise
in the following section, the main effect of ANN type and the
interaction effect are significant.

We planned post-hoc comparisons with the least mean
squares method (R, R Core Team, 2018; package lsmeans,
Lenth, 2016) to study interaction effects. Planned contrasts
compare emotions of the same intensity step across ANN
types. Post-hoc tests have been corrected with the Tukey
method.

Results
As shown in Figure 3, prediction accuracy was lowest for
high spatial frequencies but plateaued with medium to low
frequencies. Th main effect of ANN types was significant
across all spatial frequencies (p < 0.0001) and an interac-
tion effect between ANN types and spatial frequencies also
emerged (p < 0.0001). The average SRN performances were
better than that of the MLP in the case of spatial frequencies
2.81 cy./deg. and above (ps < 0.0001), but below that of the
MLPaug for the three highest spatial frequencies (ps< 0.001).

Our results show that a feedback loop significantly im-
proves performances. The feedback loop gave the SRN the
opportunity to carry information over from previous time-
steps. As was expected, the accuracy of the MLPaug shows
that processing multiple intensity steps at once was also ben-
eficial.

Results of Figure 3 are averaged over emotion intensities.
To learn more about the difference between models at emo-
tion onset particularly, we present in Figure 4 the perfor-
mances of the models as a function of emotional intensities
and spatial frequencies.

Learning from the lowest spatial frequencies considered in
this study (0.35 cy./deg) the SRN converged to a non-optimal
solution and showed a small but significant accuracy decrease
when predicting intensities six to nine (p < 0.01). Overall
the performances of the models are quite similar at this low
frequency.

The second low spatial frequency set of data (0.7 cy./deg)
had the SRN in a better position compared to the alter-
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Figure 3: Average model performances as a function of spa-
tial frequencies (from lowest to highest). Error bars denote
95% Confidence intervals (95%CI)

native models when predicting the third emotion intensity
(p < 0.0001). The intensity prediction of the MLPaug showed
a significant increase in accuracy compared to the MLP and
SRN (p < 0.01); at intensity five the MLPaug and SRN per-
formed similarly and better than the MLP (p< 0.01). Beyond
this point, the models had similar performances. Considering
the medium to low spatial frequency (1.4 cy./deg), the SRN
had an edge over the MLP and MLPaug when predicting the
third intensity (ps < 0.005). The models performed at a sim-
ilar level after that.

Results with the next medium spatial frequency step (2.81
cy./deg.) still showed an advantage for the SRN over the
other networks in predicting the third intensity (ps < 0.005),
though the performances of the three networks did not differ
significantly after that: they increased with the intensities and
reached a plateau before the last five intensities. The interac-
tion effect between intensity and network type failed to reach
a significant level here.

Predicting from the next medium spatial frequency data
(5.62 cy./deg.), the SRN was significantly more accurate in
predicting the third intensity (ps< 0.05) and its performances
were similar to those of the MLPaug for the rest of the inten-
sities, whereas the MLP scored lower in the cases of the third
and the last three intensities (ps < 0.05).

The spatial frequency data for 11.25 cy./deg. showed that,
globally, the MLPaug had an advantage when predicting emo-
tion intensities. It was more accurate than the MLP at all
intensity steps (ps < 0.02) and was better than the SRN at
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Figure 4: Average model performances as a function of spatial frequencies (from lowest to highest) and emotion intensity
(neutral to apex). Emotion intensity starts at two because the first intensity is used as input to the model to predict the second.
Error bars denote 95%CI

predicting intensities five, nine and ten (ps < 0.05). While
the SRN’s prediction accuracies appeared to be better than
those of the MLP, they were only significantly so for the last
three intensities (ps < 0.02).

When the models predicted the highest spatial frequency
data (22.5 cy./deg.), the SRN displayed a significant advan-
tage (ps < 0.02) compared to other the models when pre-
dicting the third emotion intensity. On the other hand, the
MLPaug demonstrated the best performances over the last
four emotion intensities (ps < 0.02) and the SRN was sig-
nificantly better at the task than a simple MLP for the last
two intensities (ps < 0.005).

Discussion

We replicated the results of Mermillod et al. (2019) show-
ing that recurrent connections are particularly useful in the
first stages of recognizing dynamic EFEs when signs of emo-
tion are subtle. Our most important finding indicates that the
positive effect of recurrent connections when processing am-
biguous information also applies to specific spatial frequen-
cies. Indeed, the SRN model performed better than the MLP
models when presented with higher spatial frequencies (11.25
and 22.5 cy./deg.). As demonstrated by the high accuracy ob-
served with all networks, peaking at first emotion intensities,
we show that mid-to-low spatial frequencies are the most use-
ful for predicting emotion, a finding which is consistent with
humans performances (Bayle et al., 2011). The results val-
idate our hypotheses that recurrent connections provide an
advantage when processing stimuli that are ambiguous due
to their poor perceptual features (high spatial frequencies) as

well as at early stages of EFEs. The high performances of the
MLPaug, a non-recurrent ANN receiving three intensity-steps
at once as input, indicates that the SRN probably does not
consider information prior to t − 2. Indeed, the augmented
MLP performs comparably or better as soon as three emotion
intensities are available for processing. The results for the
MLPaug do not challenge the usefulness of recurrent connec-
tions, but instead help identify the nature of the process the
recurrent model converges to.

Future works
To expand on this study we intend to implement an MLP with
as many parameters as the SRN by increasing the number of
neuron units in the hidden layer but without modifying the
content of the input layer (contrary to the procedure used to
obtain the MLPaug). This will serve to test whether the superi-
ority in performances of the SRN stems from an advantage in
using recurrent connections or is simply due to in an increase
in computational power.

While the POFA database guaranteed that the emotions
evolved linearly from a neutral point to the apex, we plan in
future works to replicate these results using other databases
such as ADFES (van der Schalk, Hawk, Fischer, & Doosje,
2011). ADFES is a database of videos in which actors dis-
play EFEs starting from a resting state. It is interesting as it is
free from morphing artifacts and because EFEs do not evolve
linearly and do not reach apex at the same speed (Schmidt
& Cohn, 2001; Cohn & Schmidt, 2004). As the continuum
evolves naturally rather than linearly, the task should be more
complex but should also shed further light the proactive role
of feedback loops for fast EFE recognition. Additionally,
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we will rely on morphing again to perform testing using the
KDEF (Lundqvist, Flykt, & Öhman, 1998). This will allow
us to verify if our findings persist when there is more facial
diversity (images from 40 actors are used). In this context we
will study the usefulness of recurrent connections on a per-
emotion basis.

Moreover, in order to continue testing the coarse-to-fine
hypothesis, we intend to replicate this study but vary the spa-
tial frequencies along with emotion intensity. We will test
if processing low emotion intensities with coarse data helps
predict higher intensities presented with fine data.

Conclusion
We have demonstrated that a model with recurrent connec-
tions processing new visual information along with previous
information performs significantly better than a non-recurrent
model, in particular when it comes to ambiguous stimuli. Our
results support interpretations of top-down recurrent connec-
tions in the brain as a way to refine predictions as cortical ar-
eas receive more recent or finer visual information. However,
the important conclusion of this article is that the computa-
tional advantage of recurrent connections seems to be related
to specific spatial frequency channels, as it has been previ-
ously assumed for humans (Bar, 2007; Beffara et al., 2012;
Trapp & Bar, 2015).
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Salmon, P. (2011). Emotional facial expression detection
in the peripheral visual field. PloS one, 6(6).

Beffara, B., Ouellet, M., Vermeulen, N., Basu, A., Morisseau,
T., & Mermillod, M. (2012). Enhanced embodied response
following ambiguous emotional processing. Cognitive pro-
cessing, 13(1), 103–106.

Beffara, B., Wicker, B., Vermeulen, N., Ouellet, M., Bret,
A., Molina, M. J. F., & Mermillod, M. (2015). Reduc-
tion of interference effect by low spatial frequency infor-
mation priming in an emotional stroop task. Journal of
vision, 15(6), 16–16.

Bullier, J. (2001). Integrated model of visual process-
ing. Brain Research Reviews, 36(2), 96–107. Re-
trieved 2016-05-26, from http://www.sciencedirect
.com/science/article/pii/S0165017301000856

Cohn, J. F., & Schmidt, K. L. (2004). The timing of fa-
cial motion in posed and spontaneous smiles. International
Journal of Wavelets, Multiresolution and Information Pro-
cessing, 2(02), 121–132.

DeValois, R. L., & DeValois, K. K. (1990). Spatial vision
(2nd ed ed.) (No. 14). New York: Oxford Univ. Press.

Ekman, P., & Friesen, W. (1993). Pictures of facial affect.
Consulting Psychologists Press, Palo Alto: CA.

Elman, J. L. (1990). Finding structure in time. Cog-
nitive science, 14(2), 179–211. Retrieved 2016-04-
25, from http://www.sciencedirect.com/science/
article/pii/036402139090002E

Jaeger, T. F. (2008). Categorical data analysis: Away from
anovas (transformation or not) and towards logit mixed
models. Journal of memory and language, 59(4), 434–446.

Kauffmann, L., Chauvin, A., Guyader, N., & Peyrin, C.
(2015). Rapid scene categorization: Role of spatial fre-
quency order, accumulation mode and luminance contrast.
Vision Research, 107, 49–57.
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