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Abstract 
Eye tracking data can inform on cognitive processes. To date, 
the most common type of analysis corresponds to fixation data. 
Consequently, less is known about the potential utility of 
scanpaths, which are sequences of eye fixations. In the present 
paper, we analyzed scanpaths collected as participants solved 
basic arithmetic problems in two formats: a multiplication 
format and a division format. The results show that scanpaths 
do distinguish between the two formats, as reflected by varying 
similarity scores obtained through the MultiMatch scanpath 
tool. 

Keywords: scanpaths; eye tracking; mental arithmetic; 
strategies 

Introduction 
An objective measure informing on cognitive processes 
corresponds to visual attention measured by an eye tracker. 
Eye tracking data is commonly analyzed by considering 
fixations, which occur when the eye pauses over a region of 
interest. While informative, this measure ignores that 
fixations occur over time in a particular sequence. A 
sequence of fixations is called a scanpath. Recently, the 
availability of algorithms and tools for scanpath analysis have 
made this method more accessible, opening the door for 
research on what insight scanpaths add about cognitive 
processes over and beyond standard fixation analysis. Here, 
we add to this work by applying scanpath methods to data 
from a math cognition task, in order to analyze if scanpaths 
are affected by different problem formats. 

Background: Scanpaths, and Cognitive Processing 
To date, eye tracking analysis has predominantly relied on 
fixation data (e.g., Sharafi et al., 2015, Lai et al., 2013, 
Mayer, 2010) - for a comprehensive review, see Henderson 
& Ferreira (2004). Fixation data is popular because (1) it is 
simple to collect, as eye trackers include built-in algorithms 
for capturing it, (2) it contains informative features such as 
the location and duration of visual attention that can inform 
on cognitive processing, and (3) it is relatively 
straightforward to analyze (e.g., by comparing fixation 
counts between conditions). To illustrate some work with 
fixation data, Susac et al. (2014) reported a negative 
correlation between number of fixations and problem-solving 
expertise, indicating that as expertise increases, the number 

of fixations decreases. Other studies have also found this 
relationship, in diverse domains like chess (Reingold et al., 
2001), epilepsy diagnosis (Balslev et al., 2012), and computer 
program construction (Nivala et al., 2016).   

While fixation data is informative, detecting certain 
cognitive processes may require sensitivity to not only where 
fixations occur but also the order in which they occur. For 
instance, the order of fixations can inform on viewing 
patterns. Holmqvist et al. (2011) analyzed viewing patterns 
for multiple-choice questions on math problems, including 
overview and focused scanning. Overview scanning involved 
short fixations over the whole problem, while focused 
scanning involved longer fixations in a specific problem 
region. Since identifying the type of scanning requires more 
than fixation data alone, the analysis involved data on 
sequences of fixations, i.e., scanpaths. Holmqvist et al. 
(2011) found that high-ability students had significantly more 
focused scanning patterns as compared to low-ability 
students. 

A popular application for scanpath data pertains to image 
and scene analysis. For instance, Foulsham and Underwood 
(2008) examined if prior experience with a scene would 
impact scanpaths or if salience was the only predictor of 
where people would look. The results show that saliency 
alone is not a sufficient predictor of viewing patterns and that 
prior experience with a scene influences viewing behavior. 
Moreover, the results highlight a discrepancy between 
human-generated scanpaths and ones artificially generated 
from the saliency map theory, leading the authors to conclude 
that theories need to be supplemented with sequential aspects 
of oculomotor control. Coutrot et al. (2018) recorded 
scanpaths from individuals looking at scenes in three contexts 
(free viewing, saliency search, and cued object search). The 
scanpaths were used as input to hidden Markov models, 
which were subsequently fed to classifiers that predicted the 
type of viewing context. The results demonstrate that 
scanpaths can be used to distinguish the type of context with 
reasonable accuracy. 

In addition to scene analysis, scanpaths have been used in 
other contexts to distinguish experimental interventions 
and/or tasks. For instance, Zhou et al. (2016) analyzed 
scanpaths related to different decision-making tasks and 
conditions (e.g., one task involved choosing between risky 
options under two different conditions). The similarity of 
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scanpaths in a given decision condition was more similar than 
between the conditions. This indicates that attentional 
patterns, and possibly cognitive strategies, were affected by 
the intervention related to the decision-making condition. 

As a final example, research shows scanpaths can 
distinguish populations in a variety of cognitive tasks. For 
instance, French et al. (2016) found that the scanpaths 
produced while solving analogy problems identified with 
reasonable accuracy whether the participant was an adult or 
child. As a second example, Von der Malsburg et al. (2017) 
showed that in a reading task, older readers produced more 
inconsistent scanpaths compared to those produced by 
younger readers.  

While there may be benefits of taking into account the 
additional information afforded by scanpaths, a challenge 
relates to the analysis of scanpaths.  

Scanpath Analysis A common approach to scanpath 
analysis involves quantifying the similarity between pairs of 
scanpaths. Early methods, such as ‘Mannan Linear Distance’ 
(Mannan et al., 1995), provided a measure of scanpath 
similarity by calculating the absolute distance between the 
scanpaths’ fixation coordinates. This approach largely 
ignored the order of fixations, a shortcoming that was 
addressed by other methods, such as Levenshtein string edit 
(Levenshtein, 1966) and ScanMatch (Cristino et al., 2010). 
Both of these methods involved the use of ‘areas of interest’ 
(AOIs) on the target viewing area. Fixations were labelled by 
the AOI they appeared in and scanpaths were represented as 
strings of AOIs. This facilitated scanpath comparison, as 
similarity between two scanpaths could be measured by the 
minimal number of changes needed to render the two 
sequences identical. While ScanMatch improved the string 
edit method, both methods lack the ability to discern scanpath 
shape and used only a single measure to characterize scanpath 
similarity. 

In contrast to using AOI’s for fixation markers, the 
MultiMatch analysis tool (Jarodska et al., 2010; Dewhurst et 
al., 2012) represents scanpaths as a series of geometric 
vectors, allowing for comparison across five vector 
dimensions: shape, direction, length, position, and duration. 
For each dimension, a similarity score ranging from 0 to 1 is 
produced, where 1 indicates two scanpaths are identical and 
0 indicates no similarity between the scanpaths. For the 
record, we indicate how the dimensions are computed for 
each feature: shape is the difference in saccade vectors ui − 
vj, direction is the difference in angle between saccade 
vectors, length is the difference in amplitude of saccade 
vectors ||ui − vj ||, position is the distance between fixations, 
and duration is the difference in duration between fixations. 
Recently, analysis comparing MultiMatch and Scanmatch 
reported advantages for MultiMatch (Dewhurst et al., 2012; 
Foerster & Schneider, 2013; Gurtner et al., 2019). 

Summary As the description above highlights, scanpath 
analysis has been applied in a variety of contexts, such as 
reading, analogy making, and decision making. However, to 
date there is still relatively little work on scanpaths and so 

additional research is needed to determine the utility of 
scanpath data.  

Present Study 
In the present study, we investigated what scanpath data adds 
to standard eye tracking measures corresponding to fixations. 
We used data from a prior study (Tan, Muldner and LeFevre, 
2016) that we now describe to provide context for the present 
analysis. 

Problem Format and Previous Results 
The prior study by Tan et al. (2016) used basic arithmetic 
problems to explore the impact of two problem formats on 
solution latency and visual attention. In the traditional 
format, participants were presented with standard division 
problems (see Figure 1, rows a + b). In earlier work, LeFevre 
and Morris (1999) found that when these problems involved 
large dividends, participants reported first converting the 
problem into a multiplication format and then solving the 
recasted problem. This recasted format was the second type 
of format used in Tan et al. (2016), where the problem was 
already formulated in a multiplication format (see Figure 1, 
rows c + d). 

The study involved 33 participants who solved a total of 
144 problems (72 in the traditional format and 72 in the 
recasted format). For each format, factors that were 
controlled for included: (1) the position of the missing 
element (either in the 3rd or the 5th position in the equation for 
each format type, see Figure 1) and (2) operand size, with so-
called small problems containing dividends smaller than 25 
and large problems containing dividends equal to or greater 
than 25 (note: dividend is the first number in the equation for 
all formats, see Figure 1). The problems were randomly 
shuffled prior to being presented – details are in Tan et al. 
(2016). The problems were shown on a computer screen, one 
problem per screen, and participants were asked to state their 
response verbally for each problem. The time taken to solve 
each problem was measured from the onset of the problem to 
the onset of the verbal response. Once a response was 
recorded the current problem disappeared and the program 
moved on to the next problem. An eye tracker (SR Eyelink 
1000) recorded participants’ visual attention during the 
experiment. The experiment lasted approximately 50 
minutes. After the experiment, AOIs were created around 
each of the symbols and operators in preparation for analysis 
of visual attention (AOIs not shown in Figure 1).  

The goal of the Tan et al. (2016) study was to confirm prior 
proposals that participants engage in mental recasting, i.e., 
when presented with a traditional division-format problem 
that is facilitated by recasting, do they transform it to a 
multiplication format prior to solving it? The key method 
used to answer this question corresponded to analysis of 
where on the problem elements participants were fixating, as 
well as qualitative analysis of movements of those fixations 
over time. The results showed that fixations were affected by 
problem format. Recasted problems resulted in increased 
fixation time on the middle element in the problem equation 
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as compared to the other elements. In contrast, when 
participants were given a problem in the traditional format, 
their fixations were more evenly distributed across the 
problem elements (see Figure 2). Thus, analysis of fixation 
data showed that problem format influenced visual attention, 
which led the authors to speculate that mental recasting was 
taking place. 

Present Work: Scanpath Analysis  
The present work extends the Tan et al. (2016) results by 
analyzing the utility of scanpath data. For the scanpath 
analysis, we used an existing, freely available Python 
implementation of MultiMatch (https:github.com/adswa/ 
MultiMatch_gaze). Our primary aim was to investigate if 
there are differences in scanpaths between the traditional and 
recasted problem formats. If mental recasting is indeed 
occurring as previously hypothesized, we would expect the 
scanpaths to be affected by the problem format.  

Pre-processing In preparation for data analysis, we first 
extracted the scanpaths from the eye tracker file, as follows. 
For each problem, we extracted the sequence of fixation co-
ordinates and corresponding durations and stored them in a 
text file labelled with the participant and problem IDs (this 

 
1 Multimatch allows scanpaths to be grouped based on a number of 
parameters – this grouping parameter was set to false, as there 

step is a requirement of the MultiMatch tool). Thus, there was 
a single scanpath per problem. Scanpaths that had fewer than 
three fixations were not included (as required by the 
MultiMatch tool). Given that the vast majority of the small 
problems resulted in very few fixations, we only included the 
large problems in the present analysis. In summary, for each 
participant, we had multiple scanpaths for each problem 
format (on average about 30 scanpaths per format for each 
participant - the exact number varied slightly as even some of 
the large problems were solved in fewer than three fixations). 
Scanpath Comparison Once the scanpaths were extracted, 
we followed the standard approach (Zhou et al., 2016) to 
compare scanpaths. This approach involves comparing 
scanpaths within each condition to each other and also 
comparing scanpaths between conditions to each other. The 
rationale is that if condition affects scanpath similarity, then 
the within-condition comparisons should produce higher 
similarity scores than the between-condition comparisons. In 
our study, we had two conditions corresponding to the two 
problem formats, traditional and recasted. If there indeed 
existed a difference in visual patterns on how these formats 
were processed, one would expect to see higher similarity for 
scanpaths corresponding to a given problem format than 
scanpaths corresponding to different formats. To obtain an 
overall measure of scanpath similarity, we wrote a Python 
script that called MultiMatch to calculate scanpath similarity 
scores using the approach outlined above1. Specifically, 
similarity scores were obtained for each participant for the 
following three types of comparisons: 

(1) all unique pairwise comparisons of the traditional-
format scanpaths (referred to as Intratraditional scores);  
(2) all unique pairwise comparisons of the recasted-format 
scanpaths (referred to as Intrarecasted scores);  
(3) all unique pairwise comparisons of scanpaths between 
the two formats (referred to Intertraditional-recasted scores).  

To briefly illustrate the process, the intra comparison 
involves n choose k scanpath comparisons, where n is the 
number of scanpaths in that condition and k = 2 given we are 
interested in pairwise comparisons (e.g., if there were only 4 
scanpaths for a given format, this would produce 4!/4!(n-2)! 
similarity scores). The inter comparison involves n1 x n2 
scanpath comparisons, where n1 and n2 correspond to the 
number of scanpaths in each of the two collections. For every 
pair of scanpaths that were compared, MultiMatch produced 
five similarity scores, one for each MultiMatch feature 
(shape, direction, length, position, and duration). Scores were 
never averaged between features, due to the inherent 
difference in baseline similarity per feature and differences 
between methods used to measure the similarity. Once we 
had all the similarity scores for a given participant for each 
of the three types of comparisons (Intratraditional, Intrarecasted, 
Intertraditional-recasted), we obtained an average score for each 
feature and collection (i.e., there were five similarity scores 
for each participant for Intratraditional, and likewise for 

currently is not sufficient understanding of when it is appropriate to 
use it. 

 
Traditional division format 

(a) 72 ÷ [ ] = 9 
(b) 72 ÷ 9 = [ ] 

Recasted multiplication format 
(c) 72 = [ ] * 9 
(d) 72 = 9 * [ ] 

      
 

Figure 1: Equation formats for division problems in 
traditional format (a & b) conditions and recasted format 

(c & d). The missing “blank” element labelled as [ ]  
alternates between 3rd and 5th position in the equation. 
 

 
Figure 2: Mean gaze durations (total dwell time) for each 

symbol by format and problem size. 
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Intrarecasted and Intertraditional-recasted). This approach is standard 
for scanpath comparison in a within-subject experimental 
design where participants are exposed to each study condition 
(Zhou et al., 2016).  

Random Scanpaths To obtain a baseline for scanpath 
comparisons, we created a series of random scanpaths. In 
order to approximate the experimental setup, the following 
factors were taken into account when creating the random 
scanpaths: fixation coordinates, fixation duration, and 
scanpath length. Since each MultiMatch feature is calculated 
differently, random scanpaths demonstrated what similarity 
scores for each feature might resemble. With this purpose in 
mind, fixations were chosen across the entire visual space 
(rather than within the experimental AOIs). As per the 
average range found in the experimental scanpaths, we 
randomly varied the number of fixations for each random 
scanpath from 3 to 10. Fixation coordinates were assigned 
randomly for X(1 to 1600) and Y(1 to 1300), as per the 
coordinates of the screen on which experimental problems 
were presented. Fixation duration was assigned randomly 
from a range of 1(ms) to 3500(ms). This range of fixation 
durations corresponded to the range observed in experimental 
fixation durations. Thirty-three sets of data, each containing 
60 randomly generated scanpaths (30 randomly labelled 
traditional format, 30 randomly labelled recasted format) 
were created to represent the number of participants in the 
study (n=33). These scanpaths were subject to the same 
comparison method as the participant scanpaths (for details, 
see Scanpath Comparison section). 

Results 
Unless otherwise stated, the results are based on data from 
the 33 participants in the original study. Results are only 
reported if they are significant (p < 0.05).  

Does Problem Format Impact Scanpath Similarity? 
As described above, data for the present analysis was 
obtained from division problems presented in the traditional 
and recasted formats. Did problem format influence patterns 
of visual attention? To answer this question, we analyzed the 
similarity of scanpaths, using the methodology outlined 

above. Recall that we had three collections of scanpath 
similarity scores, for each of the three comparison types 
described in the Scanpath Comparison section. If cognitive 
processes are indeed more similar within a condition, we 
would expect the intra comparison scores to be higher than 
the inter comparison scores. 

Recall that MultiMatch produces a similarity score, which 
is a value between 0 and 1, for five different features per 
scanpath comparison. The descriptives for each feature are in 
Table 1, including the similarity scores for the random 
scanpath analysis, as well as the three types of comparisons 
(Intratraditional, Intrarecasted, Intertraditional-recasted). The random 
scores serve as the baseline – their average similarity score 
ranges from .44 (position) all the way to .69 (length). Thus, 
MultiMatch produces fairly high similarity scores even when 
random scanpaths are compared. This was also reported by 
Dewhurst et al. (2012), who found that similarity for 
randomly generated scanpaths was high (0.64). This 
highlights the need for including a baseline benchmark in the 
analysis to ground the results, as we do here.  

We followed up the descriptives with inferential statistics, 
using a one-way ANOVA with comparison type as the three 
level within-subject factor corresponding to the three types of 
similarity scores (Intratraditional, Intrarecasted, Intertraditional-recasted); 
the corresponding average similarity score was the dependent 
variable. Thus, in this analysis for each participant we had 
three similarity scores (i.e., Intratraditional, Intrarecasted, 
Intertraditional-recasted). Sphericity violations were corrected 
using the Greenhouse-Geisser adjustment. Significant effects 
were followed up with pairwise comparisons with Bonferroni 
correction. 

There was a significant effect of comparison type on 
scanpath similarity for three MultiMatch features: 

• shape, F (1.5, 49.3) = 13.28, p < 0.01, ηp
2 = 0.29 

• length, F (1.2, 38.6) = 11.29, p < 0.01, ηp
2 = 0.26 

• position, F (1.6, 50.7) = 7.53, p < 0.01, ηp
2 = 0.19 

These results show that comparison type had a significant 
effect on scanpath similarity scores, but to see where that 
effect lies, follow up comparisons are needed. Here, the 
primary comparisons of interest are the two between 
condition comparisons (i.e., Intratraditional  vs. Intertraditional-recasted 

and Intrarecasted vs. Intertraditional-recasted), because these tell us if 

 
Table 1: Descriptives showing the similarity score for each MultiMatch feature, for the randomly generated scanpaths, 

followed by the two within-collection comparisons (traditional, recasted) and the between-collection comparison 
(traditional-recasted). Only one column is shown for the randomly generated scanpaths since as expected, the average 

similarity was virtually identical for all three comparisons. 
 
  Similarity 

random 
 Intra Condition 

traditional 
 Intra Condition 

recasted 
 Inter Condition 

traditional-recasted 
  M SD  M SD  M SD  M SD 
Shape  0.6598 0.0128  0.9448 0.0160  0.9387 0.0151  0.9391 0.0139 
Direction  0.6391 0.0144  0.7687 0.1012  0.7707 0.0871  0.7599 0.0952 
Length  0.6929 0.0176  0.9296 0.0184  0.9226 0.0149  0.9222 0.0145 
Position  0.4389 0.0185  0.9004 0.0213  0.8965 0.0170  0.8918 0.0153 
Duration  0.4983 0.0279  0.6256 0.0566  0.6370 0.0628  0.6287 0.0569 
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visual processing was affected by problem format. 
Specifically, if problem format affected scanpaths we would 
expect the intra scores to be higher for the target features than 
the inter scores. This is because the intra scores involve 
comparisons of scanpaths belonging to the same problem 
format (i.e., only traditional or only recasted), while the inter 
scores involve comparisons of scanpaths belonging to 
different formats (i.e., traditional vs. recasted). For the 
traditional format, this turned out to be the case for all three 
features, with the intra scores significantly higher than the 
inter scores (shape: p < 0.01; length: p < .01; position: p < 
.01). For the recasted format, this pattern held for one feature 
only, namely position, with the intra score significantly 
higher than inter score (p < .01). 

The other pairwise comparison not yet reported analyzes if 
the average scanpath similarity within the traditional 
collection is different from the average scanpath similarity 
within the recasted collection. This can occur, for instance, if 
there is more variability in the scanpaths, leading to lower 
similarity scores. Prior work has indicated that lower 
similarity scores are obtained for more complex cognitive 
phenomena (Dewhurst et al., 2018). For the present data, the 
traditional format potentially requires the additional recasting 
step and so could be more complex than the multiplication 
problems that are already recast. If that were true, we could 
expect the similarity scores within the traditional format to on 
average be lower than the recasted format. On the other hand, 
the recasted format is less common and thus arguably more 
challenging – if that is the case, we could expect the similarity 
scores within this collection to on average be lower than 
within the traditional collection. The latter turned out to be 
the case for two of the three features under consideration, 
where the similarity scores for the Intrarecasted were 
significantly lower than the Intratraditional scores (shape: p < 
.01; length: p < .01).  

In summary, we found that scanpath similarity was 
affected by problem format for three MultiMatch features, 
namely shape, length, and position.  

Follow-up Analyses  
We conducted several follow up analyses. First, we verified 
that there were no significant differences between the three 
comparison groups for the random scanpaths. As expected, 
none of the main effects between condition comparisons were 
significant (p > .14), providing credibility for the MultiMatch 
approach. Second, we verified that the presentation format 
did not influence results.  

The traditional and recasted problems in the original study 
varied the position of the missing element in the equation, 
i.e., “blank”. which was the placeholder for the solution (see 
[ ] in Figure 1). To identify if the position of the blank 
influenced outcomes, we labelled the scanpaths with the 
location of this element and re-ran the similarity MultiMatch 
analysis. We then added a second two-level factor to the 
ANOVA (position_1, position_2 corresponding to the 
position of the blank) and re-ran the inferential statistics. The 
main effect of blank position was not significant for any of 

the five features (p > .139), while the effect of condition 
remained significant and held the same pattern as above 
(effect of shape, length, and position features resulted in 
significant main effects, p < 0.05).  

Third, we checked the effect of latency. In the original 
experiment, participants were asked to generate their 
solutions as “quickly and accurately” as possible. If 
participants answered quickly, it was more likely they were 
retrieving the solution from memory directly as opposed to 
recasting it (in theory, retrieval is possible even in recasted 
format). If participants solved problems primarily using 
retrieval, then there would be no differences in scanpath 
similarity scores between traditional and recasted formats, 
because retrieval does not require scanning and/or shifting 
visual attention between problem elements, 

To check the effect of solution latency, we first identified 
the median solution time. Based on a median split, we then 
labelled scanpaths’ as slow (longer than 1 second) or fast 
(equal to or slower than 1 second). Because not all 
participants had both types of scanpaths, we conducted two 
separate one way ANOVAs with comparison type as the 
factor, one ANOVA for “fast” scanpaths and one for the 
“slow” scanpaths. We then aggregated the data as for the 
primary analysis, by obtaining for each similarity collection 
(Intratraditional, Intrarecasted, Intertraditional-recasted) the mean score 
for slow scanpaths and the mean score for fast scanpaths. 

As we anticipated, none of the three main effects were 
significant for the fast scanpath analysis.  For the slow 
scanpath analysis, we were left with 25 participants (as some 
participants only had fast responses). We found the similar 
pattern of results as for the primary analysis; with significant 
main effects for shape, length, and position, the being caveat 
that some of the follow up comparisons were no longer 
significant.  

Discussion 
The goal of the present study was to analyze whether 
scanpaths are affected by problem format. Two types of 
formats were included, namely a traditional division format 
(72 ÷ 9 = [ ]) and a recasted multiplication format  (72 = 9 × 
[ ]). Prior work suggests that when participants are given a 
problem in the traditional format, they first mentally recast 
the problem into the multiplication format and then produce 
the answer (this is particularly the case if the division format 
includes large values). In contrast, for problems in the 
recasted format, participants directly solve the problem 
without mental recasting. Thus, the proposal is that problem 
format affects the strategy used to solve the problem. 
Evidence for this conjecture in prior work came from (1) 
latency differences, namely that problems in the traditional 
format took longer to solve (because they require the 
recasting step) and (2) fixation analysis of eye data, which 
showed that the distribution of dwell time over the 
corresponding problem elements was different between the 
two formats. This provides some indication that, as 
hypothesized, there are strategy differences between the two 
formats. We provide further evidence that problem format 
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may affect strategies, by showing that format elicited 
significantly different scanpaths for three MultiMatch 
features (shape, length, and position). Shape and position 
features capture the similarity related to the order of fixation 
locations within a scanpath. The higher similarity scores for 
the traditional problem-format scanpaths suggest increased 
consistency of scanning patterns for traditionally-formatted 
division problems. Traditional division problems follow a 
standard presentation of the equation (see Figure 1), which 
may encourage a left to right reading pattern. In contrast, the 
recasted multiplication format presents the solution on the 
left-hand side of the equation. This atypical presentation 
could impact the default reading strategy and result in 
increased variation of viewing patterns, reducing similarity 
scores (this is indeed what we found for the shape feature). 
Higher similarity for the length feature for the traditional 
format scanpaths also suggests a standard reading pattern is 
present, since saccade distances, if the eye is moving from 
one symbol to the next in the equation, should remain 
relatively similar in length.  

The duration and direction features were not informative 
in the present analysis, perhaps because there was not a great 
deal of variability in terms of these variables in the scanpaths 
due to the experiment’s relatively simple stimuli. These two 
features might be of more value in studies that use more 
complex visual stimuli. For instance, prior work has indicated 
differences between novices and experts for fixation duration 
and perhaps these differences would also show up in the 
duration scanpath feature (Reingold et al., 2001; Balslev et 
al., 2012; Susac et al., 2014). In general, as noted in (Jarodzka 
et al., 2010; Dewhurst et al., 2012), there currently do not 
exist formal guidelines about the usage and interpretation of 
MultiMatch features, and so work is needed in this area.  

Our research makes both a theoretical and practical 
contribution. On the theoretical side, we provide additional 
evidence that problem format produces different patterns of 
visual attention. Specifically, here we extend prior work 
using fixation data (Tan et al., 2016) with scanpath analysis. 
On the practical side, our results are aligned with previous 
studies reporting differences in scanpaths between 
experimental conditions (Zhou et al., 2016). However, to the 
best of our knowledge, our work is the first to target basic 
arithmetic problem solving in the context of scanpath 
analysis. Our results provide initial evidence towards the 
utility of scanpath analysis in math cognition domains but 
more work is needed. 

We do acknowledge that scanpath analysis is not without 
limitations. One limitation, highlighted by our overview of 
related work, is that scanpath analysis can tell us whether 
differences in scanpaths exist between conditions but not 
much beyond that, rendering the underlying cognitive 
processes as a black box. A step in addressing this limitation 
relates to identifying representational scanpaths to see what 
patterns of visual attention look like, as was done in by Zhou 
et al., (2016). The challenge with this approach is that the 
scanpaths quickly become unintelligible as the number of 

fixations in them increases. Thus, visualization tools are 
needed to shed light on the structure of scanpaths.  

Another challenge and associated limitation pertains to the 
methodology underlying scanpath analysis. This analysis is 
inherently relational in nature, meaning that conditional 
differences can only be identified by comparing two or more 
groups of similarity scores. Doing so becomes more 
complicated if a condition involves multiple trials, for 
instance to control for variability, as was the case in the 
decision-making studies reported by Zhou et al. (2016) and 
the math cognition task used here. Including multiple trials 
requires a great deal of scanpath comparisons to generate the 
corresponding similarity scores.  

In conclusion, while we are cautiously optimistic about the 
utility of scanpath analysis, given that this approach is 
relatively new, guidelines on choosing appropriate 
methodologies and tools for various cognitive domains are 
needed.   
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