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Abstract

People seem to infer each others’ beliefs and desires when nav-
igating social interactions, perhaps because such a “theory of
mind” can guide cooperation and coordination. However, such
strategic, altruistic interactions fall naturally out of evolution-
ary game theory without invoking any theory of mind; so why
is theory of mind useful? Here we show that the interactions
studied in game theory have been too impoverished to require
theory of mind, but when interacting in variable games, agents
with theory of mind have a clear advantage. We use simulated
tournaments to demonstrate that traditional action-level strate-
gies such as tit-for-tat fare miserably in variable games, that
goal-based agents can adapt to new games instantly, and that
having a theory ofmind is increasingly helpful for copingwith a
variety of opponents as the variability in games increases. Our
work suggests that variable games merit further investigation
in game theory and social sciences.
Keywords: repeated games; theory of mind; social value ori-
entation

Introduction
Theory of mind refers to one’s ability to impute mental
states—desires and beliefs in particular—to oneself and oth-
ers, in order to explain and predict behavior (Premack &
Woodruff, 1978). It is considered universal in human adults,
plays an important role in social development (Wellman,
1992), and its deficiency is associated with profound social
impairments (Baron-Cohen, Leslie, & Frith, 1985; Brüne,
2005).

Despite its prominence in psychology, theory of mind has
not been adequately studied in game theory, a formal frame-
work for studying social interactions. To our knowledge, two
lines of research in game theory relate to theory of mind. The
first approach deals with games with incomplete information,
i.e., in which the payoff functions of other players are un-
known. It follows the central theme in classic game theory,
which is to reduce the infinitely recursive reasoning about the
players’ beliefs (“I think that you think that I think. . . ”) to
a solvable equilibrium. A classic solution to this problem
is the Bayesian game, in which “theory of mind” refers to
the inference of others’ payoff functions and a Bayesian Nash
equilibrium can be derived (Harsanyi, 1968; Aumann, 1987;
Robalino & Robson, 2012).

The second approach begins with the observation that peo-
ple do not play at the theoretical equilibrium in many games
and tend to operate on a very shallow level of recursion
(Hedden & Zhang, 2002; Goodie, Doshi, & Young, 2012).
This pattern of behavior is characterized by different recur-
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Figure 1: A fixed repeated game (2 × 2 normal form). More
specifically, this is an iterated Prisoner’s Dilemma. In each
round of game, player - chooses either row � or row �,
and player . chooses either column � or column �. They
make simultaneous choices, and the payoff for either player is
determined by the values in the resulting cell. They repeatedly
play games with the same payoff structure.

sion depths across individuals (Stahl, 1993; Camerer, Ho,
& Chong, 2004; Yoshida, Dolan, & Friston, 2008; Mohlin,
2012). On this account, theory of mind pertains to a general
belief about the recursion depth of opponents a given player
may face. A common limitation of these two approaches is
that they are not concerned with learning a model of other
players or adapting to a particular opponent, which humans
often do, and which the psychological notion of theory of
mind seems particularly well-suited for. We will examine this
limitation more closely for Bayesian games in the Discussion.

What remains unanswered is why evolution has endowed
humans with theory of mind. A natural place to seek an evo-
lutionary explanation in game theory is repeated games, in
which different agents with different strategies play games
with each other repeatedly. One of the most studied re-
peated games, iterated Prisoner’s Dilemma (IPD, Figure 1),
has been used as an explanation for the emergence of cooper-
ation among selfish agents (Axelrod, 1984; Nowak, 2006). In
Prisoner’s Dilemma, the two possible actions for each player
are usually designated as cooperation and defection. Tit-for-
tat (TfT)—a strategy that starts with cooperation and then re-
peats the opponent’s action from the previous turn—is a strong
and robust strategy in evolutionary IPD (Axelrod, 1984).

The majority of repeated games studied thus far are fixed
games, where the game is repeated with exactly the same pay-
off structure. Fixed repeated games do not incentivize theory
of mind because simple action-level strategies like TfT are
already unbeatable in such games. Moreover, real-world in-
teractions, although often repeated with the same players, are
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Figure 2: A variable 2 × 2 game. The payoff structure is
changing across different rounds of games, and the colloquial
names of the three sample rounds are given below. Although
the examples are all symmetric games and the payoffs for ��
are all greater than ��, such constraints do not hold generally
in variable games.

far from fixed in their payoff structures. For instance, two
PhD students collaborating on a research project may become
direct competitors on the job market. We call this class of
repeated games with variable payoff structure variable games
(Figure 2; Kleiman-Weiner, 2018, Chapter 2). In this work,
we use variable games (2 × 2 normal form) to provide a natu-
ral account of the advantage of having a theory of mind. Our
work shares the spirit in Axelrod’s pioneering work and the
tradition of evolutionary game theory: identifying what con-
ditions favor a particular behavioral capacity. People seem to
cooperate even in one-shot Prisoner’s Dilemmas that penalize
cooperation, and Axelrod showed that cooperation is advan-
tageous when the game is played repeatedly. People seem to
have theory of mind, but fixed repeated games do not require
or reward theory of mind, and we show that having a theory
of mind is advantageous when the games vary.
The paper is organized as follows. First, we define goal-

based agents with or without theory of mind that can play
variable games adaptively. Second, we add variability to IPD
in three steps and use a simulated tournament to demonstrate
that having a theory of mind is beneficial as the variability in
games increases. Finally, we discuss alternative explanations
for theory of mind and implications of our work.

Goal-based Agents in Variable Games
From a cognitive science perspective, the strategies in game
theory can be seen as defined on Marr’s algorithmic level
in terms of the raw actions (� or � in 2 × 2 games; Marr,
1982). In variable games, it is tricky, if not impossible, to
define strategies on this level, since the payoffs corresponding
to the actions, and thus the meaning of those actions, vary
from game to game. This problem is obviated if we define
strategies on the computational level. Concretely, each agent
makes its decision by maximizing its expected utility in each
round of the game. We call this type of agents goal-based
agents.
An agent’s utility function can take various forms. Here we

draw inspiration from the literature on social value orientation

(Van Lange, De Bruin, Otten, & Joireman, 1997), social dis-
counting (Jones & Rachlin, 2006) and welfare tradeoff ratios
(Delton & Robertson, 2016), in which one’s utility function
is a weighting of payoffs between self and others. We use a
single parameter _ to account for this weighting, i.e., different
degrees of altruism or spite directed toward the other player.
In each 2 × 2 game, player -’s utility function is

D- (G, H) = E- (G, H) + _E. (G, H) ,

in which E- and E. are the two players’ actual payoffs in the
game determined by their choices G and H, and _ remains the
same through the sequence of games. For example, in the
second game of Figure 2, E- (�, �) = 2 while E. (�, �) = 6.
The definition of D. is similar. This utility function captures
both (i) every creature’s desire tomaximize its own payoff, and
(ii) the consideration of other’s payoffs as an altruist (_ > 0),
an egoist (_ = 0), or a nemesis (_ < 0).

Now that we have a utility function, we can define theory
of mind (ToM), which essentially means having a model of
the opponent to help predict its choices. A level-0 agent
is equivalent to having no theory of how the opponent will
behave, so it assumes its opponent will choose � or � with
equal probability. A level-1 ToM agent treats its opponent
as a level-0 agent and does iterated Bayesian inference on its
_ from its choices. In this way, we can define higher-level
ToM, but we do not do that in the current work for three
reasons. First, our main goal here is to show that having ToM
is beneficial, and level-1 ToM is sufficient in this respect.
Second, higher-level ToM introduces the problem of infinite
recursion as in traditional game theory (Nash, 1951), and does
not match people’s tendency to use lower-level ToM (Hedden
& Zhang, 2002). If we assume people’s behavior is well
adapted to the environment and the computational constraints
(i.e., rational in the sense of Anderson (1990)), we can expect
lower-level ToM to perform nearly as well as higher-level
ToM, but with much less computational burden. Third, the
parameters in higher-level ToM models are much harder to
infer from the sparse information in 2 × 2 games (at most
one bit of information in each round). In reality, people play
much more complex games that provide rich information, and
higher-level ToM would be more plausible in those situations.

To simplify the terms, we call a level-0 agent a “_ agent”,
and a level-1 ToM agent a “ToM agent”. To describe the
behavior of these agents in 2 × 2 normal-form games, we
parameterize such games as in Figure 3a. A_ agent’s expected
utility for making either choice as player - is then

D_ (�) =
1
2
E- (�, �) + 1

2
E- (�, �)

=
1
2
[(F1 + F3) + _(F2 + F4)

]
,

and similarly for D_ (�). In the deterministic case, the agent
would choose �whenever D_ (�) > D_ (�) and vice versa. But
to account for a noisy, and potentially imperfect maximizer, a
_ agent uses a softmax function to determine its choice. Given
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Figure 3: Parameterization of 2 × 2 normal-form games. (a)
General form. (b) Symmetric games.

_, its probability of choosing � is

?�(_) =
exp

[
UD_ (�)

]
exp

[
UD_ (�)

]
+ exp

[
UD_ (�)

] , (1)

in which U > 0 is the softmax parameter. Likewise, ?� (_) =
1 − ?�(_). Note that this is the same decision rule as in the
quantal response equilibrium in game theory (McKelvey &
Palfrey, 1995).

A ToM agent treats its opponent as a _ agent and does
Bayesian inference on _. Its goal is to maximize its own utility
function parameterized by _s (“s” for “self”). In each round
of the game, the ToM agent samples a _̂o (“o” for “opponent”)
from its posterior distribution of _o and uses Equation 1 to
compute the likelihood ?�(_̂o) and ?� (_̂o) for its opponent
to choose either action1. Then it computes its own expected
utility (assuming it is player . )
DToM (�) = ?�(_̂o)D. (�, �) + ?� (_̂o)D. (�, �)

= ?�(_̂o) (F2 + _sF1) + ?� (_̂o) (F6 + _sF5) ,
(similar for DToM (�)) and uses softmax to sample a choice.
After its opponent makes a choice G and the game is played,
it updates the posterior using G and the likelihood function
(Equation 1).

Simulation
To compare the two goal-based agents with the action-level
strategies, we pit them against an agent that plays the tit-
for-tat strategy, the epitome of action-level strategies, named
“TfT agent”. To give TfT some advantage at the beginning,
we start from IPD and add variability to it in three steps
to form three game spaces: Variable Prisoner’s Dilemma,
Symmetric Games, and All Games2. We use a computer-
simulated tournament to compare the performance of the three

1Calculating ?� and ?� via the sampled _̂o yields an unbiased
estimate of the expectation of these quantities using the full poste-
rior distribution over _o. Moreover, as the posterior becomes more
concentrated through iterated Bayesian inference, there is less Monte
Carlo variability in the samples.

2Other action-level strategies, such as “win-stay, lose-shift”, out-
perform TfT in some variants of IPD (Nowak & Sigmund, 1993),
and yet other strategies are tailored for other specific games. Each
of these specialized strategies would maximize returns in a specific
type of game, but these same strategies would fail to generalize across
game types. For our present purposes it is sufficient to show this fail-
ure of generalization for TfT, but similar simulations can be done for
other specialized games and strategies.

agents.

Variable Prisoner’s Dilemma
The first step is to make the payoff values variable across
rounds of games while ensuring that each game is a Pris-
oner’s Dilemma. A symmetric 2 × 2 game is parameter-
ized by 0, 1, 2, 3 (Figure 3b). Prisoner’s Dilemma requires
2 > 0 > 3 > 1 and 20 > 1 + 2 3. In order to generate each
game in the sequence, we sample 4 numbers independently
from the uniform distribution between 0 and 1 (* (0, 1)), sort
them in descending order, and assign them to 2, 0, 3, 1. If
20 > 1 + 2 is not satisfied, we repeat the sampling until it is
satisfied. We then apply a linear transformation to 0, 1, 2, 3 to
satisfy the normalizing constraints

0 + 1 + 2 + 3 = 0 , 02 + 12 + 22 + 32 = 1 .
We call such a distribution of games Variable Prisoner’s
Dilemma.

Simulation Details We include a TfT agent, _ agents with
_ = 0, 1,−1, and ToM agents with _s = 0, 1,−1 in the tour-
nament, let each pair of agents (including pairs of the same
type) play 100 rounds of games sampled independently from
Variable Prisoner’s Dilemma, and repeat it 20 times. We
set the softmax parameter U = 10 everywhere. We set the
ToM agents’ prior distribution of _o to be uniform between
−2 and 2, a range wide enough to include the nicest and the
nastiest agents that are plausible. We discretize the posterior
distribution with a grid step of 0.02.

Results Figure 4a shows the average per-game payoff each
agent gains when playing against each agent. The scores
shown are relative to the baseline score earned by a random-
choosing agent when playing against each agent (because,
e.g., playing against a _ = 1 opponent will yield a higher
score for all agents as compared to playing against a _ = −1
agent). We are only comparing the three agents with _ = 0,
for whom the average payoffs they gain reflect their ability to
reach their goal. TfT can be seen as having an effective _ = 0,
because it is an evolutionarily selected strategy, where agents
maximizing their own payoffs survive in the long run.

From the “Mean” panel in Figure 4a, we can get a general
idea of how well the three types of agents perform in an evo-
lutionary sense. For Variable Prisoner’s Dilemma, the three
types of agents have similar performance. Note that this result
is specific to the uniform distribution of the 7 types of agents
in the environment. If, say, the distribution of agents is dom-
inated by TfT, TfT would perform much better than the other
two types of agents, who behave like defectors in Prisoner’s
Dilemma. On the other hand, if the distribution is dominated
by _(1) or ToM(1), TfT would perform much worse, because
it cannot exploit a generous agent. In other words, in Variable

3This latter constraint is not required in the broad sense of Pris-
oner’s Dilemma, but previous work on IPD usually imposes it to
make mutual cooperation the only outcome with maximum total
payoff for both players (Axelrod, 1984).
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Figure 4: Simulation results for Variable Prisoner’s Dilemma. _(0) refers to the _ agent with _ = 0; ToM(1) refers to the
ToM agent with _s = 1; etc. (a) Comparison of performance of TfT, _(0) and ToM(0) when playing against the same type
of opponent. The plotted values are the average per-game payoff “Self” earns after 100 rounds of the game with “Opponent”,
relative to the baseline score earned by a random-choosing agent. In each panel, the payoffs earned by the three types of agents
playing against the same type of opponent are compared directly. Each value in the “Mean” panel is an average of the payoffs in
the other 7 panels. The error bars indicate the standard error of the means (SEM) resulting from 20 repetitions. (b) Evolutionary
process. This is a deterministic version of the Moran process that starts with equal proportions of the agents in the environment.

Prisoner’s Dilemma, the performance of TfT relative to the
other two types is contingent on the distribution of agents,
while _(0) and ToM(0) always have similar performance.

Based on the pairwise average payoffs for the 7 agents,
we also simulate an evolutionary process to compare their
performance (Figure 4b). Let E8 9 be the average payoff that
agent 8 gets when playing against agent 9 . The environment
starts with equal proportions of the 7 types of agents, and
evolves according to a deterministic version of the Moran
process (Moran, 1958). Let ?8 (C) be the proportion of agent 8
in the environment at iteration C. The fitness of agent 8, 58 (C),
is defined as

58 (C) =
7∑
9=1
E8 9 ? 9 (C) ,

i.e., the mean payoffs weighted by the proportion of the oppo-
nent. Then the proportions are updated as

?8 (C + 1) =
?8 (C) · exp 58 (C)∑7
9=1 ? 9 (C) · exp 5 9 (C)

,

which means each agent’s proportion is scaled by the softmax
function of its fitness, and normalized to sum to one. Note
that a thorough evolutionary analysis would require simula-
tion based on different initial proportions, but equal initial
proportions can serve as a good first-level analysis. As shown
in Figure 4b, for Variable Prisoner’s Dilemma, TfT domi-
nates the population, and _(1) and ToM(1), whose dominance
would put _(0) and ToM(0) at an advantage, die out very
quickly. This replicates previous findings that TfT is strong
and robust in IPD (Axelrod, 1984).

Symmetric Games
The second step is to consider all symmetric 2 × 2 games as
parameterized in Figure 3b. We introduce an inequality 0 > 3
to make TfT definable, since both players choosing � is better

than both players choosing �. This also eliminates one of the
redundant, symmetric halves of the game space. To generate
each game, we sample 4 numbers independently from* (0, 1)
and assign them to 0, 1, 2, 3. If 0 < 3, we reverse the order
of the 4 numbers. Then we apply the linear transformation
to 0, 1, 2, 3 as in Variable Prisoner’s Dilemma. We call this
distribution Symmetric Games.

Results Apart from the game distribution, the simulation is
identical to Variable Prisoner’s Dilemma, and the results are
shown in Figure 5. _(0) and ToM(0) significantly outperform
TfT in terms of the mean payoff across opponents. This is
the case because, unlike Variable Prisoner’s Dilemma, the off-
diagonal outcomes in Symmetric Games can change the ex-
pected value ordering of the two actions. Consequently, TfT’s
alternation between actions with no regard for the present
game’s payoffs yields systematically worse outcomes than
agents that consider the payoffs. ToM(0) does better than
_(0) when playing against _ agents, but worse against TfT
and, even more, ToM(0) and ToM(1). The primary reason is
that ToM agents do not have a correct model of TfT or ToM,
which results in an error in prediction.

Another factor contributes to the particularly large differ-
ence when playing against ToM(0) and ToM(1), which, when
computing the “Mean”, cancels out ToM(0)’s advantage over
_(0). Consider the comparison when the opponent is ToM(0).
It will be shown later in Figure 7 that ToM(0) infers a _ close
to 0 of ToM(0). It can be proved that it is a property of
symmetric games that when playing against another ToM(0)
agent, ToM(0) can never gain a higher score in any symmetric
game than _(0), provided that in the ToM–ToM rivalry either
ToM infers _ = 0 of its opponent. When we lift the constraint
of symmetry in the next game space, ToM(0) overtakes _(0)
even without an accurate model of the ToM opponent.
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Figure 5: Simulation results for Symmetric Games. (a) Comparison of performance of TfT, _(0) and ToM(0). (b) Evolutionary
process.

In the evolutionary simulation of Symmetric Games (Fig-
ure 5b), TfT quickly loses population share, even though we
tried to help it by setting 0 > 3; even nice agents like _(1) and
ToM(1) fare better than TfT. The evolutionary process con-
verges on a mixture of about 70% of _(0) and 30% of ToM(0).
_(0)’s advantage over ToM(0) is due to the ToM disadvantage
specific to symmetric games discussed above.

All Games
The third step in extending IPD is to lift the constraint of
symmetry. The game is then parameterized by the 8 payoff
values F1,F2, . . . ,F8 (Figure 3a). For each game, we draw
8 independent samples from * (0, 1), assign them to the 8
payoffs, and impose the normalizing constraints

8∑
8=1

F8 = 0 ,
8∑
8=1

F2
8 = 2 .

We call this distribution All Games.

Results Again, apart from the game distribution, the sim-
ulation is identical to Variable Prisoner’s Dilemma, and the
results are shown in Figure 6. In this game distribution, TfT is
no different from the random-choosing baseline, and ToM(0)
generally outperforms _(0). In the evolutionary simulation,

TfT still dies out first, and ToM(0) dominates in the end.

, inferred by ToM(0)
To verify that ToM agents’ superior performance stems from
having an accurate model of the opponent, we inspected
ToM(0)’s posterior of the opponent’s _ at the 100th round
for each type of opponent in each game space, as sketched in
Figure 7.

In Variable Prisoner’s Dilemma, the ToM agent can infer
_(0)’s and _(1)’s _s accurately and consistently, but not for
_(−1). This is because in a Prisoner’s Dilemma, a _ agent
will always defect as long as its _ < 0; therefore, consistent
defecting provides no information about the exact value of _.
When the opponent is TfT or ToM, a ToM agent does not
have an accurate model of it, but we can still interpret the
inferred _ as indicating how the opponent generally behaves
in a particular distribution of games. When playing against
ToM(0) in Variable Prisoner’s Dilemma, TfT behaves like a
selfish agent, ToM(0) and ToM(−1) behave just like _(0) and
_(−1), and ToM(1) behaves like a somewhat nice agent.

In Symmetric Games, the patterns of _ inferred by ToM(0)
for different opponents are similar to Variable Prisoner’s
Dilemma. TfT behaves slightly more nicely. The inferences
for _(−1) and ToM(−1) are much more accurate than in Vari-
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Figure 6: Simulation results for All Games. (a) Comparison of performance of TfT, _(0) and ToM(0). (b) Evolutionary process.
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able Prisoner’s Dilemma as the more varied payoff structures
differentiate degrees of spite.

Finally, in All Games, the _s inferred by ToM(0) is similar
to before, except being more symmetric as the game space
is completely symmetric (in a different sense than symmetric
games).

Discussion
We have presented a preliminary demonstration that action-
level strategies like tit-for-tat cannot adapt to the variability in
the games as opposed to goal-based agents, and that having a
theory of mind is beneficial as the variability increases, which
provides an explanation for why people have theory of mind.
This work also suggests that variable games are an important
setting to study in both theoretical and empirical game theory.

Bayesian games seem to explain people’s theory of mind
by suggesting that people use theory of mind to deal with
games with incomplete information (Robalino & Robson,
2012). However, Bayesian games are not concerned with the-
ory of mind in the sense of learning a model of other players.
In one-shot Bayesian games, there is no learning whatsoever
(Harsanyi, 1968). The likelihood function in Bayesian games

is the distribution of the other player’s type given one’s own
type, instead of the distribution of the other player’s choices
given its type as discussed in this paper. In repeated Bayesian
games, each player learns others’ payoff functions through re-
peated play (Kalai & Lehrer, 1993; Jordan, 1991). But since
the repeated games are fixed, the payoff function is learned on
the action level, which is not a very useful model for general-
ization.

Recent work by Robalino and Robson (2016) aims to pro-
vide a similar evolutionary explanation of theory of mind as
ours. In their work, however, learning still occurs on the ac-
tion level and does not generalize to truly novel situations.
Concretely, the “sequentially rational theory of preference”
player (SR-ToP, comparable to the ToM agent in the current
work) memorizes the other player’s preference over outcomes,
so when the subgame with the same two possible outcomes
occurs again, SR-ToP can predict its opponent’s choice. The
environment is “variable” in that new outcomes are introduced
gradually, giving SR-ToP an evolutionary advantage over a
naïve player that does not memorize its opponent’s prefer-
ences at all. In this framework, each new outcome has to be
learned anew, therefore still no parsimonious model of other
players is learned and the SR-ToP cannot adapt to brand-new
games instantly, which humans must do in a dynamic social
environment.
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