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Abstract

There is large agreement among vision scientists that biolog-
ical perception is capacity-limited and that attentional mecha-
nisms control how that capacity is allocated. Despite the fact
that Bayesian models generally do not include capacity limits,
many researchers model perceptual attention as the result of
optimal Bayesian inference. This inconsistency arises because
vision science currently lacks a feasible and principled com-
putational framework for characterizing optimal attentional al-
location in the presence of capacity constraints. Here, we
introduce such a framework based on rate-distortion theory
(RDT), a theory of optimal lossy compression developed in the
engineering literature. Our approach defines Bayes-optimal
performance when an upper limit on information processing
rate is imposed. Here, we compare Bayesian and RDT ac-
counts in a visual search task, and highlight a typical shortcom-
ing of unlimited-capacity Bayesian models that is not shared
by RDT models, namely that they often over-estimate task-
performance when information-processing demands are in-
creased. In this study, we asked human subjects to find either
one or two targets in a collection of distractors in a single-
fixation search task. We predicted relative performance be-
tween one- and two-target conditions based on both RDT and
Bayesian models. Performance differed between conditions in
a way that was well accounted for by the capacity-limited RDT
model but not by the capacity-unlimited Bayesian model.
Keywords: Visual attention, visual search, rate-distortion the-
ory, resource rationality, information theory, Bayesian model-
ing, computational modeling

Introduction
Most publications on perceptual attention contend that atten-
tional mechanisms exist as a way to allocate a limited compu-
tational resource. There is ample evidence, for example, that
neural tuning curves can change (e.g., in response to a cue)
so as to afford higher signal-to-noise ratios in some recep-
tive fields at the cost of lower signal-to-noise ratios for other
receptive fields (Reynolds, Pasternak, & Desimone, 2000;
Desimone & Duncan, 1995; Spitzer, Desimone, & Moran,
1988). Experiments have also demonstrated that people can
voluntarily change the spatial range of their focus of atten-
tion, and that an increase in spatial range comes at the cost
of lower resolution (Carrasco, 2011). At the same time, how-
ever, there has been a debate within the visual search com-
munity about whether search times and detection accuracy
are best described by a noisy but unlimited-capacity pro-
cess (“data-limited”) versus a limited capacity process that
allocates more resource to some parts of a display. Results
have been mixed, with some experiments finding stronger
evidence for limited capacity, and others finding the reverse

(Shimozaki, Schoonveld, & Eckstein, 2012; Eckstein, Shi-
mozaki, & Abbey, 2002; Eckstein, Drescher, & Shimozaki,
2006; Davis, Shikano, Peterson, & Michel, 2003; Palmer,
Fencsik, Flusberg, Horowitz, & Wolfe, 2011; Eckstein, 2011,
2017). In additional experiments, data are found to be well-
explained by Bayesian or signal-detection models but these
models are not compared to capacity-limited models (Ma,
Navalpakkam, Beck, Van Den Berg, & Pouget, 2011; Eck-
stein, Thomas, Palmer, & Shimozaki, 2000; Eckstein, 1998;
Schoonveld, Shimozaki, & Eckstein, 2007). Similarly, there
are some experiments that support a role for capacity lim-
its and compression of information (e.g., Rosenholtz, Huang,
Raj, Balas, & Ilie, 2012).

Data from cueing-paradigm tasks (highly related to visual
search) are often explained in terms of capacity limits. In
these tasks, subjects are given a cue before the stimulus ap-
pears as to which of N locations is likely to contain the target
object. Then they report some aspect of that stimulus. Usu-
ally the cue indicates the correct location, but on some trials
it does not. It is generally found that the cue is helpful when
it is correct and hinders when it is incorrect. These results
have been explained by some form of attentional allocation,
e.g., lowering neural noise at the cued location while increas-
ing it at the uncued location(s). However, they have also been
explained without appealing to capacity limits, by stipulating
that the cue is incorporated as a Bayesian prior. An ideal ob-
server can treat a cue as indicating a high prior probability of
a target appearing at that location, and multiply this probabil-
ity by the likelihood of the target given the sensory measure-
ment. There are, however, clearly acknowledged limits to the
Bayesian account of cueing effects (Shimozaki et al., 2012).
For instance, a Bayesian account cannot explain “attentional
capture” (Folk, Remington, & Johnston, 1992), in which sub-
jects are unable to ignore cues to object locations even when
they are random.

The evidence just presented for a possible lack of capacity
limits in visual search would seem to fly in the face of other
well-established results within the attention literature, which
argue that capacity limits almost surely play a role. For exam-
ple, it is well-established that people can simultaneously track
only a limited number of moving objects, and that attending
to the moving objects makes it harder to detect changes in
other parts of the display (Alvarez & Franconeri, 2007; Al-
varez & Oliva, 2008, 2009; Tombu & Seiffert, 2008). In this
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paper, we present data suggesting previously unexplored lim-
itations to the capacity-unlimited approach to visual search.
But at the same time, we argue that a different kind of ideal
observer model, based on rate-distortion theory (RDT), can
reconcile the simultaneous successes of Bayesian ideal ob-
servers and capacity limits in explaining performance in per-
ceptual tasks.

RDT models often make similar predictions to Bayesian
models, because both are the result of optimizing accuracy
given noise and uncertainty. For example, both models tend
to predict a “regression to the mean” effect, whereby re-
sponses are biased toward the mean of a prior distribution
over stimuli (Huttenlocher, Hedges, & Vevea, 2000). How-
ever, RDT models are also constrained by a limit on mutual
information between stimulus and neural response (a measure
of how well one can predict one quantity, such as a stimulus,
from the other quantity, neural response), which causes them
to make very different predictions as information processing
demands are increased. Performance in a particular experi-
mental condition can often be fit just as easily by a Bayesian
model (with some level of noisiness given by σ) or an RDT
model (with a capacity parameter, C ). However, studies in
visual working memory illustrate an important way in which
they diverge. For instance, Bates, Lerch, Sims, and Jacobs
(2019) showed that performance in a change-detection task
increased as the entropy (roughly, uncertainty) of the stimu-
lus distribution decreased. They found that a single value of
capacity in an RDT model was sufficient to explain the data
across all conditions of the experiment, which varied along
stimulus entropy. By contrast, an alternative Bayesian model
could not explain the data without allowing sensory noise to
vary with stimulus entropy. To give another example, Orhan
and Jacobs (2013) found it necessary to allow sensory noise
to increase with set-size in their Bayesian clustering model of
visual working memory.

In the experiment presented here, we reasoned that if peo-
ple adaptively allocate their perceptual capacity, their perfor-
mance in an attentional task should be limited by the entropy
of the stimulus distribution they are exposed to. While most
visual search tasks use a single target, here we varied the
number of targets (either one or two). Subjects had to re-
port the direction of tilt away from vertical on all targets in
the display. We designed our stimuli such that the RDT and
Bayesian accounts made widely divergent predictions in the
one- versus two-target conditions so we could easily distin-
guish between them. As was the case in the memory experi-
ments mentioned above, the two models make different pre-
dictions because the RDT model is more sensitive to stimulus
entropy than the Bayesian model.

Rate-Distortion Theory and Lossy
Compression

This section provides an intuitive overview of RDT and lossy
compression in the context of visual perception. Readers
seeking additional information should see Bates and Jacobs

(2020), Bates et al. (2019), Sims (2016, 2018), and Sims, Ja-
cobs, and Knill (2012).

Consider the problem of communicating a signal or mes-
sage, denoted x. For instance, a signal might be a visual im-
age. In nearly all applications, one does not communicate x
directly. Rather one communicates a code for x, denoted x̂.
For example, a code might be a neural code such as a pattern
of neural activities. (In this case, the mapping x→ x̂ is known
as neural coding, and the mapping x̂→ x is neural decoding.)
Ideally, one might set x̂ = x so that a code conveys all the in-
formation about the signal, including all its fine details. That
might be what one would do if there were no capacity con-
straints on a communication channel.

But physically-realized channels, such as neural circuits,
always have limited capacity. It is therefore desirable to find
an “efficient” coding system that is both compressed (i.e., on
average, codes contain a small number of bits) and informa-
tive about messages (i.e., reconstructions of messages based
on codes are reasonably accurate). Importantly, compressed
codes can be “lossy”. For example, a lossy code for an image
might convey the coarse structure of the image, but not its fine
details. More relevant to the topic of attention, a lossy code
might convey the detailed structure of one portion of an image
(a portion within an agent’s focus of attention), but convey
only the coarse structure of other portions (portions outside
the focus of attention). A loss function quantifies the penal-
ties for mismatches between signals and their reconstructions
based on codes. RDT was developed in the engineering liter-
ature to characterize the trade-off between rate (or capacity)
and distortion (or loss).

RDT defines a constrained optimization problem. It seeks
a probability distribution over codes given signals, denoted
p(x̂|x), that minimizes the expected value of a loss function.
However, the mutual information between codes and signals
(i.e., the average amount of information x̂ conveys about x)
cannot exceed the capacity of the communication channel.
Formally, this constrained optimization problem is stated as
follows:

p∗(x̂|x) = argmin
p(x̂|x)

Ep(x,x̂)L(x, x̂)

subject to MI(x; x̂)≤ C .
(1)

where C denotes the channel’s capacity (in bits) and L(x, x̂)
denotes the loss function. The expected value of the loss func-
tion is taken with respect to the joint distribution p(x, x̂). Be-
cause p(x, x̂)= p(x) p(x̂|x), one typically specifies a prior dis-
tribution p(x) over messages, sometimes referred to as an in-
put or stimulus distribution. A maximum likelihood solution
to the constrained optimization problem can be found using
the Blahut algorithm (see Sims, 2016). Crucially, as indi-
cated above, it is through the constrained optimization prob-
lem that RDT models find lossy codes implementing optimal
attentional allocation in the presence of capacity constraints.
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Figure 1: Example stimulus from the one-target condition.
In the two-target condition, the two targets were always 180◦

apart, and the direction of the tilt for each target was chosen
randomly.

Stimuli and Procedure
We gave subjects a visual search task with either one or
two search targets. Displays consisted of N = 8 objects
evenly spaced on a circle centered relative to a fixation
cross. ‘Distractors’ were vertically-oriented Gabor-like ob-
jects1, whereas targets were tilted a small fixed amount in the
clockwise or counter-clockwise direction relative to vertical.

The stimulus on a given trial was generated as follows.
First, a set of tilt values and locations was chosen for each
target (either one or two). If there was just one target, the
location was picked at random over the N possible locations.
If there were two targets, the location of the first target was
picked at random over all N locations, but the second tar-
get was constrained to be 180◦ apart on the circle. Thus,
there were 8× 2 = 16 equi-probable unique stimuli in the
one-target case, and in the two-target case there were also
4× 4 = 16 equi-probable unique stimuli. Figure 1 shows a
sample stimulus from the one-target condition.

In the two-target case, the placement constraint for the sec-
ond target was introduced to disincentivize anticipatory sac-
cades away from the stimulus center and towards the ring of
objects. Placement of objects along the circle ensured that
visual acuity was approximately equal for all eight objects
(assuming subjects maintained fixation at the stimulus cen-
ter).

Amazon Mechanical Turk subjects were randomly as-

1Gabors patches were generated using a standard 2-D Gabor fil-
ter that was rectified so that values did not go below zero.

signed to the one-target condition (40 subjects) or the two-
target condition (41 subjects). In both conditions, subjects
were instructed to fixate on the cross in the center of the
screen, which came on for 500 ms prior to the stimulus. The
stimulus remained on the screen for 150 ms, and was fol-
lowed by a response screen, where subjects used the mouse
to select the location(s) and tilt(s) of the target(s). In both
conditions, subjects were paid $6.00 to complete 500 trials.
Most subjects took approximately 20-30 minutes to complete
the task. Below we analyze only the last 200 trials.

Models
We compared two classes of models to subjects’ responses:
RDT and Bayesian. Both model classes shared the same
(optimal) decision rule, but differed in how they calculated
the sensory response. The Bayesian models assumed sen-
sory responses were drawn from a von Mises (circular Gaus-
sian) likelihood given the stimulus, while the RDT models
assumed sensory responses were the outputs of an optimal
lossy information channel (see Sims, 2016). We assumed
subjects had exact knowledge of how their own sensory re-
sponses were produced given a stimulus, and that they had
accurate knowledge of the stimulus prior distribution in the
task when making a decision.

Decision rule: For both RDT and Bayesian models, the
decision rule is given by:

p(yθ,yloc|x̂) = ∑
x

p(yθ,yloc,x, x̂)/p(x̂) (2)

where

• yθ is either a scalar (in the one-target condition) or two-
element vector (in the two-target condition) indicating the
angle(s) of the target(s);

• yloc indicates the location index (or indices) of the target(s);

• x represents the visual stimulus. Because the stimulus con-
sists of eight Gabor patches, x is a vector with eight ele-
ments. Each element indicates the angle of its correspond-
ing patch; and

• x̂ is a model’s sensory response, code, or representation of
x;

The joint distribution can be factorized as p(yθ,yloc,x, x̂) =
p(yθ)p(yloc)p(x|yθ,yloc)p(x̂|x). Note that p(x|yθ,yloc) is de-
terministic, since the stimulus was always identical given val-
ues of target angle(s) and location(s).

RDT models: For the RDT models, p(x̂|x) was given by
the solution to the RDT constrained optimization problem de-
fined above (Equation 1). Optimal solutions were found using
the RateDistortion package in R (see Sims, 2016). The ex-
act form of the loss function (penalizing mismatches between
x and x̂) is described below.

Bayesian models: For the Bayesian models, p(x̂|x) was
given by

p(xs|x) =
∏

N
i e

1
σ

cos(x(i)s −x(i))

∑x′∏
N
i e

1
σ

cos(x′(i)−x(i))
(3)
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where i indexes over items in the display, and

x̂ = argmin
x′

Ep(x|xs)L(x,x′). (4)

That is, in the Bayesian models, sensory measurement xs has
a discretized von Mises distribution (discretized because x
takes one of 16 possible values in both one- and two-target
conditions), and x̂ is chosen to minimize the expected loss
given xs.

One-parameter models: We first tried modeling experi-
mental data with simple, single-parameter models: capacity
C for RDT models (Equation 1) and σ for Bayesian models
(Equation 3). The loss function for both was given by:

L(x, x̂) = ‖x̂− x‖2. (5)

However, neither of these models provided good fits with our
experimental data. Consequently, we extended the models
with two additional free parameters.

Full (three-parameter) models: First, in the two-target
condition, it seems plausible that subjects cognitively under-
stood that the two targets were 180◦ apart, but that this under-
standing did not influence their low-level sensory responses.
In the models, we implemented this intuition by using the
180◦-apart constraint in the decision-making part of a model
(Equation 2; for example, the constraint was used when cal-
culating p(yloc)). However, the full (three-parameter) models
did not use this constraint in the sensory part of a model. Cal-
culating Equations 1 or 4 requires consideration of a prior
distribution over sensory displays. A “legal” display is one
in which the two targets are 180◦ apart, and an “illegal” dis-
play violates this constraint. In the full models, we set the
prior probability of an illegal display, pillegal(x), to be based
on a value denoted τ. This was implemented so that if τ = 0,
then no probability mass was assigned to illegal values (cor-
responding to use of the 180◦-apart constraint), and if τ = 1,
then the distribution over all displays (illegal and legal) was a
uniform distribution.

Second, recall that subjects in our experiment indicated
both the target location(s) and direction(s) of tilt on each trial.
It seems plausible that subjects may have regarded either tar-
get location or tilt-direction as more important than the other.
In particular, our data indicated that subjects were more ac-
curate at identifying target location. Define the following two
loss functions, denoted LSE and Lloc, as follows:

LSE(x, x̂) =
‖x̂− x‖2

maxx′‖x′− x‖2 (6)

Lloc(x, x̂) =
∑

N
n=11(xn, x̂n)

Ntargets
(7)

where n indexes over target locations, Ntargets is the number of
targets, and 1(xn, x̂n) is an indicator function that equals one
when a subject’s response incorrectly identifies the Gabor at
location n as a target. LSE is the square-error loss between x

and x̂, whereas Lloc measures error based solely on subjects’
estimates of target location. The full models used the loss
function

L = (1−α)LSE +αLloc (8)

where α is a parameter governing how much the loss is based
on both target location and tilt-direction versus target location
alone.

In summary, the full RDT models have three parameters
(C , τ, and α), and the full Bayesian models also have three
parameters (σ, τ, and α).

Parameter fitting: For each model, we estimated its max-
imum likelihood parameter values based on trials from (i) the
one-target condition, (ii) the two-target condition, and (iii)
both conditions combined, using the optim function in the R
programming environment. The likelihood of a model was
given by

L(φ) = ∏
t

pyθ,yloc|x(x
(t)
resp|x(t)) (9)

where φ is the set of model parameters, t indexes over trials,
and x(t)resp is a subject’s response on trial t. The probability
pyθ,yloc|x is the probability of the decision under a model, and
was given by a probability matching rule (i.e., responses were
chosen with frequency proportional to the probability they are
correct; Da Silva, Victorino, Caticha, & Baldo, 2017; Wozny,
Beierholm, & Shams, 2010; Craig, 1976).

Results
To assess the models, we compared their predicted response
accuracies to subjects’ response accuracies. We examined
overall accuracy (both location and tilt correct), as well as lo-
cation and tilt accuracies, independently (Figure 2). We found
that subjects performed about 20 points worse in the two-
target condition in terms of overall (both target location and
tilt-direction) accuracy (79% versus 60% correct; see Fig-
ure 2, left panel). The full RDT model provides an excellent
quantitative fit to this experimental finding. By contrast, the
one-parameter RDT predicts identical performance in both
conditions (since the stimulus entropy is identical across con-
ditions), and the full and one-parameter Bayesian models pre-
dict a large increase in accuracy in the two-target condition.
Intuitively, this prediction can be understood as a result of
the constraint that the second target is fixed relative to the
first. Many sensory measurement errors can be “cleaned up”
given the constraint on target locations, since measurements
that would result in a constraint violation can be ignored. As
a result, the Bayesian models incorrectly predict better per-
formance in the two-target condition relative to the one-target
case.

We found that the full RDT model gave the best fit to
the overall accuracies, predicting subjects’ mean performance
nearly perfectly. Neither one-parameter model could explain
the data very well. The one-parameter RDT model clearly
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outperformed the one-parameter Bayesian model when pa-
rameter fits were based on all data, though the one-parameter
Bayesian model had an advantage in likelihood when param-
eters were fit separately for each condition. Both models
matched overall human performance well when allowed to
fit data from each condition separately.

The middle panel of Figure 2 presents the same models as
the left panel, except that only location accuracies are pre-
sented (that is, the percent of responses that indicated the
correct target locations, even if the tilt directions were re-
ported incorrectly). We find that the full RDT model better
predicts the location accuracies (compare blue and pink lines
for one-parameter and full RDT models, respectively). Be-
cause α in the full RDT model was estimated to be greater
than zero, it seems that subjects may have been slightly
more concerned with locating targets than identifying their
tilt directions. Similarly, we find that the tilt accuracies are
well-accounted for by the full RDT model, but not the full
Bayesian model (right panel).

Tables 1 and 2 report the results of our maximum like-
lihood fits for the full and one-parameter models, respec-
tively. We find that when comparing the full models, the
log-likelihood values favor the RDT model over the Bayesian
model when considering all experimental trials, and also
when considering only the one-target or two-target trials.

Comparing parameter values fit to one-target trials versus
two-target trials versus both sets of trials provides an op-
portunity for important sanity checks. Ideally, a single set
of parameter values should be able to explain data in both
conditions, as it is unrealistic to presume that, for instance,
channel capacity or sensory noise magnitude change across
conditions. For the full RDT model, we found that C and
α had very similar values regardless of whether these values
were fit to one-target trials or all trials (recall that τ does not
play a role in one-target trials). We found somewhat unex-
pected values when fitting the full RDT model to the two-
target condition alone, as they should ideally be close to the
values found when fitting both conditions together and when
fitting the one-target condition alone. We believe this can be
explained in part by the finding that there was higher inter-
subject variance in the two-target condition and performance
was non-normally distributed with a long tail toward poorer
performances. As a result, the optimizer required many more
optimization steps to converge and the gradients were very
small.

For the Bayesian models, we found a higher value for noise
parameter σ in the two-target condition relative to the one-
target condition when fitting a model to each condition sepa-
rately. When fitting to both conditions, the most likely value
was found to be between those values.

A blank entry in a table indicates that a parameter did not
impact model predictions for the given model (e.g., τ in the
one-target condition), or was not applicable. In addition, in
some cases, tables specify a range of values for the Bayesian
model parameters. This is due to the ‘min’ operator in those

models, which results in ranges of parameter space that give
identical predictions. We used a grid search over starting val-
ues of parameters used by the optimizer to compensate for the
fact that gradients are flat in those areas.

Discussion
We motivated the present experiment by noting an apparent
conflict in the attention literature between capacity-unlimited
Bayesian models and capacity-limited models. We argued
that RDT provides a natural reconciliation of the conflicting
viewpoints, because RDT models often make similar predic-
tions to Bayesian models while still being capacity-limited.
Our experiment provides further evidence for capacity limits
in visual search.

Fits of Bayesian and RDT models to the experimental data
show that Bayesian models over-estimated task performance,
particularly when information-processing demands were high
(e.g., the two-target experimental condition), whereas RDT
models provided highly accurate accounts of subjects’ re-
sponses. We conclude that capacity constraints played a sig-
nificant role in limiting subject performance when informa-
tion processing demands were high. We also conclude that
our RDT framework provides a useful computational formal-
ism for characterizing subjects’ allocation of attention in the
presence of capacity constraints.

We found that while the full RDT model strongly bene-
fited from two added parameters, the Bayesian model was not
as sensitive to these parameters. Future work could search
for other possible parameterizations that benefit the Bayesian
model, although this comes with the drawback that it be-
comes more difficult to compare the RDT and Bayesian ap-
proaches as their assumptions diverge.

Here, we presented just one experiment that was designed
to distinguish between capacity-limited versus capacity-
unlimited accounts. On the whole, we found stronger evi-
dence for capacity limits. Future experiments will seek to
further probe our primary thesis that attentional allocation in
visual search is capacity-limited. We have already conducted
experiments to extend these ideas to cued visual search to
complement the study just presented, as part of a longer
manuscript.
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