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Abstract

How a word is interpreted depends on the context it appears in.
We study word interpretation leveraging deep language mod-
els, tracing the contribution and interaction of two sources of
information that have been shown to be central to it: context-
invariant lexical information, represented by the word embed-
dings of a model, and a listener’s contextual expectations, rep-
resented by its predictions. We define operations to combine
these components to obtain representations of word interpre-
tations. We instantiate our framework using two English lan-
guage models, and evaluate the resulting representations in the
extent by which they reflect contextual word substitutes pro-
vided by human subjects. Our results suggest that both lexi-
cal information and expectations codify information pivotal to
word interpretation; however, their combination is better than
either on its own. Moreover, the division of labor between ex-
pectations and the lexicon appears to change across contexts.

Keywords: expectations; word meaning; language models;
distributional semantics; deep learning; ambiguity

Introduction

The ability to convey a potentially unbounded number of
meanings is a central property of natural language. One
prominent way to convey meaning is through composition,
by forming composite meaning based on the meaning of con-
stituents and their syntactic combination (Partee, |1995)). For
instance, the interpretation of red box is contingent on the
meaning of red and on that of box. However, the seman-
tic contribution of constituents themselves can also vary as
a function of the context they appear in: the hue of red can
differ when combined with either wine, light, or blood; the
subject in the mouse fled is likely interpreted differently in
the mouse broke; and show fulfills a different function in /
show a picture than in I went to the show. Whether in terms
of discrete or nuanced distinctions among senses, lexical am-
biguity is pervasive in language (Cruse, |1986).

The way context affects a word’s interpretation has been
characterized in many ways, depending —among others and
non-exclusively— on whether lexical meaning is taken to be
rich in information (e.g., Pustejovsky, [1995) or rather under-
specified (e.g., Frisson, 2009); on whether it is taken to be re-
trieved (e.g.,|Foraker & Murphyl 2012)), modulated (e.g., Re-
canatil 2004) or instead constructed on the fly (e.g.,|Casasanto
& Lupyan, [2015); and on whether the underlying process
is taken to be driven by prediction (e.g., [Kutas, DeLong,
& Smith, 2011} Pickering & Garrod, 2007), relevance (e.g.,
Wilson & Carston, 2007), or reasoning about language use

(e.g., Kao, Bergen, & Goodman, 2014). These differences
notwithstanding, most analyses of contextualized word mean-
ing share two assumptions (see [Rodd|2020 for a review): (1)
Some context-invariant lexical information comes into play
when interpreting words; and (2) contextual expectations in-
fluence interpretation through an anticipation of what the in-
terlocutor will (intend to) convey.

Taking up these leads, we use computational data-driven
methods to explore how much headway into contextualized
word meaning can be made by a concrete instantiation of
these assumptions. To this end, we leverage two compo-
nents of state-of-the-art language models: deep learning mod-
els trained to predict a word given its linguistic context. On
the one hand, we model word expectancy in context through
language models’ probabilistic output (Armeni, Willems, &
Frank| 2017). Intuitively, this component stands in for a lis-
tener’s expectations (over words) given the context of utter-
ance. On the other hand, we represent lexical information
via the distributed word representations of the model, as an
instance of Distributional Semantics (Boleda, 2020). Intu-
itively, this is a listener’s lexicon: word-related knowledge
abstracted over many instances of language use. We obtain
representations of expectations and lexical information in the
same multi-dimensional space from these two components.
We then define operations over them to obtain representations
of contextual word meaning, requiring neither ad-hoc training
nor top-down specifications (e.g., of semantic features). Fig-
ure [Tl sketches out our models’ architecture.

This operationalization of the interaction between expected
and lexical information bears strong ties to (1) pragmatic ac-
counts in which a listener’s interpretation is contingent on ex-
pectations about a speaker’s language use, such as the Ratio-
nal Speech Acts model (Goodman & Frankl [2016) and Rel-
evance Theory (Wilson & Carston, 2007)), and (2) process-
ing accounts that factor in word expectancy (Surprisal The-
ory; [Levy, [2008); for instance, due to the need of adjusting
pre-activated expected information to the actual input (Pre-
dictive Coding; |[Huang & Rao) 201 1J).

In order to elucidate whether and to which degree our com-
putational models of expectations; or of the lexicon; or of
their combination can capture word interpretation, we evalu-
ate them on a large-scale word substitution task (Kremer, Erk,
Pado, & Thater,2014). Our analysis shows that the combina-
tion of both information sources is best at representing con-
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v : show

¢ : I went to the

Figure 1: The context of utterance c is processed by the lan-
guage model to yield an expectation e, which defines a dis-
tribution over the vocabulary given the context, p(V | ¢;LM).
The context-invariant word embedding of a word v, 1,,, repre-
sents lexical information. Both information sources are com-
bined to yield a word’s contextualized interpretation iy, .

textual meaning. This suggests that these components capture
complementary information. However, the optimal degree to
which weight is put on one component over the other changes
across cases. This, in turn, hints at a flexible division of labor
between expectations and the lexicon, raising the question of
which factors drive this variation.

Word intepretation: Context & Lexicon

Contextual expectations. That listeners’ contextual expec-
tations come into play when interpreting a word is clearly il-
lustrated by garden path sentences such as the old man the
boat, where a word’s likely disambiguation given its preced-
ing context — here, old as an adjective and man as a noun
— can lead to a conflicting parse of the sentence (e.g., Fine,
Jaeger, Farmer, & Qianl 2013). Expectation-driven effects
can also be more subtle. For instance, N400 effects, com-
monly associated with interpretability issues, can be caused
by semantically unexpected items (e.g., the object in the cat
picked up the chainsaw; see (Cosentino, Baggio, Kontinen,
and Werning| 2017} [Filik and Leuthold 2008; Nieuwland and
Berkum| 2006, a.o.). Crucially, such effects disappear when
sentences are embedded in supportive contexts (e.g., a story
about an anthropomorphized lumberjack cat). Overall, this
body of work suggests that contextual expectations are facili-
tatory for processing, appearing to guide interpretation. This
idea is also found in pragmatic theories. Expectations of ra-
tional language use are central in the Gricean tradition (Good-
man & Frankl [2016;|Gricel |1975), with listeners and speakers
reasoning about each other’s language use. Within Relevance
Theory (e.g.[Wilson & Carston, 2007) a listener is taken to in-
fer occasion-specific meanings based on the stand-alone con-
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cept encoded by a word and expectations about what is rele-
vant for the speaker to convey.

We here use language models (LMs) to represent contex-
tual listener expectations. LMs are trained on unstructured
text corpora to predict a word given a linguistic context. As a
result, they form expectations in terms of distributions over a
vocabulary conditioned on a context (Figure [I). LMs have
been used to derive estimates of word expectancy (or sur-
prisal), shown to correlate with measures of cognitive cost
like reading times (Smith & Levy, 2013) and N400 ampli-
tude (Frank, Otten, Galli, & Viglioccol 2013). In this study,
we employ state-of-the-art neural network models. Their
probabilistic output has been shown to be sensitive to vari-
ous aspects of linguistic knowledge (such as syntax; |Linzen,
Dupoux, and Goldberg 2016/ and subsequent work). More-
over, internal representations of these models have been em-
ployed as contextualized word representations (Peters et al.}
2018)). In this work, we also make use of internal represen-
tations from LMs. However, since we use them to represent
expectations, we do not focus on states that reflect how the
model processed a word — derived when it is inputted — but
rather on those that are involved in its predictions (current
vs. predictive states in|Aina, Gulordava, and Boleda/[2019)).

Lexical information. By the lexical information of a word,
we mean stored context-invariant information that provides a
basis to infer its meanings in context. As mentioned above,
while lexical information is commonly assumed to play a role
in language interpretation (Rodd, 2020), there is little consen-
sus about its precise nature (Falkum & Vicentel 2015): for
instance, on whether each word sense is separately stored in
the mental lexicon, or how sense frequency affects a lexical
entry and its access.

We model lexical information using the distributed word
representations, or embeddings, in a LM. Word embeddings
can be seen as the module of a LM that functions as the lex-
icon. They are learned as a byproduct of the word predic-
tion task: the more similar the distributional patterns of two
words, the more similar their representations are optimized to
be. Hence, they are one of many possible instantiations of dis-
tributional semantic models of word meaning (Boledal |2020),
equivalent for our purposes to other distributional models of
the lexicon such as Latent Semantic Analysis (Landauer &
Dumais, [1997). Our choice to represent lexical information
through word embeddings is mainly motivated by (1) their
empirical success at capturing lexical information in a vari-
ety of tasks, amply shown in computational linguistics (e.g.,
Mikolov, Yih, & Zweig, 2013), and (2) the fact that this al-
lows us to represent lexical and contextual information in a
compatible manner, such that we can examine the contribu-
tion of each component both in isolation and combination. In
other words, our use of LMs’ word embeddings to represent
lexical information is a modeling choice. It does not neces-
sarily imply our endorsement of Distributional Semantics as
a cognitive model of the lexicon (see |Giinther, Rinaldi, and



Marellil[2019| for discussion).

Word embeddings, once learned, are static across con-
texts, and thus conflate all uses of a word form into a single
rich representation (Camacho-Collados & Pilehvar, 2018).
Several methods to contextualize the information in distri-
butional representations have been proposed (Erk & Pado,
2008, a.o.,). Following this lead, we consider vector opera-
tions that combine the word embeddings with contextual in-
formation (here: a LM’s expectations). Our proposal is close
in spirit to the framework motivated by Rodd (2020). We
share the interactive view put forward by many “constraint”-
based models in assuming expectations to drive comprehen-
sion; and also work with distributed representations of lexi-
cal meaning. However, while Rodd envisions a one-to-many
relation between forms and sense representations, we assign
one representation to each word form and let senses emerge
in context.

Computational models

As suggested by Figure [I] a neural network language model
LM is trained to output a probability distribution over the vo-
cabulary V given a context. Generically, p(V | ¢) = LM(c).
Each word is typically encoded as a vector — a word em-
bedding — learned as part of training and static across con-
texts. These word embeddings are stored in an input matrix
W; (n x |V|, where n is the size of the embedding). The vectors
of the words in ¢ are processed to yield intermediate represen-
tations within the hidden layers of LM, with details varying
across architectures (e.g., RNN, Transformer). After process-
ing ¢, given an activation vector y of size m, an output proba-
bility can be obtained by multiplying it with an output matrix
W, (V| x m), followed by softmax; p(V | ¢) = so ftmax(W,y).

In the following, we consider LM architectures where W,
is the matrix transpose of W; (thus, n = m), meaning that
the weights of the input and output matrix are shared (Inan,
Khosravi, & Socher, 2017; [Press & Wolfl, [2017). This tech-
nique reduces the size of the model while often enhancing
its quality. More central to our purposes, it enforces a cor-
respondence between the input and the output space, which
enables us to represent lexical information and expectations
in a shared space.

Lexical information. We take a pre-trained LM’s input ma-
trix W; to represent a lexicon: the lexical content of word v, 1,,,
is then a row-vector of W;. The similarity between word rep-
resentations is reflected by the geometric proximity of their
vectors (e.g., as measured by their cosine). Words that appear
in similar contexts will have similar embeddings pointing —in
a graded manner — toward shared features (e.g., semantic or
morpho-syntactic). As mentioned earlier, such embeddings
are abstraction over all uses of a word and thus may codify
information relevant to different word senses. This informa-
tion on its own — out of context — is unlikely be an adequate
model of contextual word interpretation. Notwithstanding, it
constrains the information that a word could potentially con-
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vey, and it subsumes the kind of ambiguity that listeners are
faced with when encountering a word form in context.

Contextual expectations. To represent expectations so that
we can combine them with lexical information, our desidera-
tum is a multi-dimensional representation in the same space
of word embeddings, such that its proximity relations to word
embeddings reflect how expected, or predictable, a word is in
a certain context; that is, its probability. We devise a method
that satisfies these criteria, leveraging activations from a pre-
trained LM with weight sharing between the input and output
matrix. In this case, the multiplication between y and W,
resulting in the output scores, is equivalent to the dot prod-
uct between y and each word embedding in W; — our lexicon.
This implies that the output probabilities are dependent on
the similarity — in terms of dot product — between y and the
word embeddings (Gulordava, Aina, & Boledal 2018). Thus,
the position of y in the space is optimized to reflect the extent
to which a word is expected by the LM, through the simi-
larity to its embedding. For this reason, y meets our criteria
for a vectorial representation of contextual expectations; we
henceforth refer to it as e.. Its position in the word space
encodes not only which words are highly expected, but also
which features of them are: if an animate noun is expected, e,
will be closer to animate nouns. However, on its own, it may
not be an adequate model of word interpretation. In forming
expectations, the LM has not “seen” the target word: it con-
sequently harbors uncertainty about its identity and meaning.

Operations. We define two operations that combine lexical
information 1, about a word v with contextual expectations
e, into representations reflecting v’s contextual interpretation:
iv’CE] Both operations are parametrized by the degree to which
they rely on either source of information:

(1) Weighted average (avg): i, = (1—a)e.+al,

Intuitively, this operation blends expected and lexical infor-
mation, highlighting what is common between the two: the
part of the lexical information that is relevant to the context.
Depending on o € [0;1], the resulting vector is influenced
more by one information source than the other: if o = 0, con-
textualized interpretations are just expectations; conversely,
if oo = 1, interpretation relies solely on lexical information.

(2) Delta rule (delta): i, =ec— VD, , where

D =1-cos(el,)

This operation reduces the distance D between the vectors by
shifting e, in the direction of the negative gradient of D with
respect to €. (VDeg,). o regulates how close expectations are
pulled towards lexical information. If a0 =0, i, = e.. As o
approaches infinity, the contribution of 1, grows and that of e,
shrinks. Intuitively, this operation is a form of “expectation
revision”, adapting formed expectations to the actual input.

I'The vectors are normalized before these operations.



Our framework can be seen as modeling the way contextual
expectations, as a result of top-down processing, are com-
bined with word-level information, associated to the bottom-
up input. Due to the way our model is designed, the geo-
metric distance between the output of the interpretation pro-
cess — i, — and the expected information that was activated
without seeing the word — e, — is proportional to the surprisal
relative to the word, as estimated by the LME] The more sur-
prising a word is, the further i, . is to e.: this can be seen
as the extent that expectations need to be “changed” in or-
der to accommodate the bottom-up input, which can be con-
strued as a measure of cognitive cost associated with inter-
pretation. Crucially, in our model, the magnitude of such dis-
tance is also modulated by the o parameter. This aspect of our
model shows a strong tie with surprisal-based account of pro-
cessing (Zarcone, Van Schijndel, Vogels, & Demberg, [2016),
as well as to pragmatic accounts factoring in processing ef-
forts in the comprehension of an utterance (Wilson & Sper-
ber, |2006). In this study, we focus on evaluating the ability
of our framework to account for the output on interpretation
processes (i.e., how words are understood in context). How-
ever, we plan to investigate how our model relates to aspects
of processing in future work.

Analysis

Data. To evaluate our models’ components (lexical and ex-
pected information) and ways of combining them, we use
Kremer et al.['s (2014) Concepts in Context (ColnCo) dataset,
an English corpus annotated for lexical substitution. It con-
tains 15.5K content words in context (at most 3 sentences),
with at least 6 crowd-sourced paraphrases per word. In other
words, this corpus lists alternatives that could appropriately
substitute a target word in the context it appears in. They
are proxies for word meaning in context and can be seen as
the output of an offline interpretation task (Table[I]shows ex-
cerpts of ColnCo). This dataset enables us to test our frame-
work: (1) on a large scale and a relatively natural distribu-
tion of words and meanings, and (2) on nuanced differences
among word usages, without appeal to predefined lists of
senses.

Models. We use two English language models to check the
robustness of our methods and the trends we report. The first
model is an LSTM, adapted from |Aina et al.| (2019). The
second is the transformer-based BERT model in its large ver-
sion (Devlin, Chang, Lee, & Toutanova, 2019). Both LMs
employs the left and right context of a word when predicting
it (bidirectional); have a weight tying mechanism; and e, is
the result of a non-linear transformation on the last hidden

2 The distance between iy and e, depends, in the first place, on
the distance between e. and 1, (e.g., if they are close, their weighted
average will remain close to them). As mentioned earlier, the dot
product between these two is what the probability of v depends upon,
and consequently its surprisal (—logP(v|c;LM)).
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stateE] The models are pre-trained and their weights are not
updated during our evaluation. Besides the different archi-
tectures, these models differ in size and amount of training
data. Since BERT drastically surpasses the LSTM with re-
spect to both, we expect it to be better at word prediction,
and consequently to have better representations of expecta-
tions. The choice of using bidirectional models is motivated
by the data considered in this study, collected as an offline
task where both the left and right context of a word were ac-
cessible. However, our framework can also be instantiated
using unidirectional LMs, taking into account only one side
of a context; this suggests potential links to incremental pro-
cessing to be explored in future experiments.

Evaluation. Given a representation, we use cosine similari-
ties between this and a word’s embedding to estimate its plau-
sibility as a substitute. Following previous research, we con-
sider two tasks to assess the quality of a representation. The
first task concerns ranking: we order all substitutes of a word
type across the dataset by cosine to the evaluated vectors and
compare the ranking to the datapoint’s gold standard — GAP
(Thater, Dinu, & Pinkall, 2009)). The second task concerns
retrieval: we take our 10 highest ranking word lemmas in
terms of cosine and measure their overlap with substitutes
provided by annotators — RECALL-10 (McCarthy & Nav-
igli, 2007). Both GAP and RECALL-10 factor in the num-
ber of annotators that provided a particular substitute, with
more weight put on those with higher agreement; for both
scores, the higher the better. ColnCo comes with a dev/test
split (10K/5K, filtered by coverage of the LMS)E] We use
dev data to inspect the influence of o in modulating between
expectations and lexical information. For each LM and oper-
ation, we evaluate the data at 10 o-values, ranging over [0, 1]
for avg and over [0, 3] for delta. We report: (1) mean perfor-
mance over o-values with constant o across data points and
(2) mean performance for optimal o per datum. We take an
a-value to be optimal if it yields the highest sum of RECALL-
10 and GAP score. Through (1), we identify the optimal
constant o — the best across all data — for each combination
of an LM with an operation. We then use this o for evalua-
tion on test data. (2) is instead indicative of whether o better
works as a datum-dependent or -independent parameter.

Results. Figure [2] shows how different ways of combining
and weighting expectations and lexical information impact

3Differently from |Aina et al. (2019), we weight-tie the LSTM’s
input and output matrices and add a non-linear transformation be-
tween the last hidden layer and the output layer (BERT already
comes with these features). This transformation reduces the confla-
tion of expected words’ representations and other information, such
as the context (Gulordava et al.,2018). In the LSTM, the last hidden
state is obtained processing the left and right context of a word; in
BERT the whole text chunk is processed but with the target word
masked. We refer to the aforementioned papers for details.

4We cover data points whose target word and at least one substi-
tute are in our models’ vocabularies. For BERT we also skip words
split into subwords. This yields BERT: ~ 90%; LSTM: ~ 95%.



o Abridged context (target word boldfaced) Human substitutions Model substitutions
0.0 (1) He accepts his role with a club and he’s ateam guy  player, man, dude, member, per- player, manager, man, captain,
son leader
0.5 (2) Some critics already say “Waking With Tasha” is masterpiece, enterprise, artwork, erformance, painting, produc-
! y say g production, endeavor P inee, - p & P

Malaquez’s finest work ’ tion, project, job

1.0  (3) [He] had his own Jeep and went to the beach shore, coast, dock, oceanfront, shore, coast, waterfront, shore-

sand line, coastline
Table 1: Abridged CoInCo datum with example LSTM outputs for weighted average .
Expectation Combined - constant a Exp vs. Lex :Delta rule Weighted average
Lexical Combined - optimal a
1.20
1.15 LSTM

%1.10 P

) o

&1.05 S BERT

; 1.00 ;

3 S 0 1 2 3 0.0 04 0.8

i 0.95 i

0.90 . C . . . .
Figure 3: Distribution of optimal per-datum o. Dotted lines
00 02 04 06 08 10 00 06 12 18 24 30 mark whether a given o yields a representation that is closer
avg-a delta-a

Figure 2: Results on dev-data for BERT. Dotted lines mark
whether a given o yields a i, . that is closer to e (to the line’s
left) than to 1, (to its right).

the performance on dev data, zooming in on BERT (simi-
lar trends are obtained for the LSTM). In a nutshell, relying
solely on either expectations or lexical information is worse
than combining them; this holds for both avg and delta. For
the two operations, the best constant ¢ values are interme-
diate ones where both sources of information play a role to
some degree; performances degrade when using higher or
lower values. With BERT, we observe a slight preference for
expectations: the best constant ®-values result in interpreta-
tions that are closer to e, than to l,,. Nevertheless, factoring in
lexical information does substantially improve our contextu-
alized representations. Lastly, note that the optimal a-values
per datum far outperform any constant o, meaning that the
balance between the optimal contribution of e, and 1, varies
across words and contexts. Figure|3|shows the distribution of
optimal o. This result suggests that the extent expectations
or the lexicon are to be trusted is a contextual matter. In fu-
ture work, we plan to investigate which factors of a context
and of a word drive this variation, and possibly extend our
framework in order to dynamically modulate o.
Table 2] summarizes performance across models and opera-
tions on fest data. On the one hand, since expectations harbor
much uncertainty about the target, they often fail to have sub-
stitutes as the closest words (RECALL). However, when rank-
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to e, (to the line’s left) than to 1, (to its right).

ing word-specific candidates (GAP) their contextual respon-
siveness is more advantageous than pure lexical information
about the target. As with dev data, the best contextual rep-
resentations are obtained when lexical and expected informa-
tion are combined, using either avg or delta. Both RECALL-
10 and GAP increase, speaking to the relative appropriate-
ness of the point in (vectorial) space in which our combined
representations end up. In terms of overall results, avg and
delta do not differ much in BERT, and are even identical in
the LSTM. We leave the exploration of their differences for
future investigation. More generally, the difference between
the LSTM and BERT are largely attributable to the fact that
BERT is a better LM and therefore has more sensible expec-
tations, leading to higher reliance on them and better overall
performance (Table 2). We hypothesize that, at least in this
setup, the best constant o0 may decrease as a measure of the
LM’s quality (dependent on size; data; architecture), but also
that it is unlikely to ever reach the value 0, where lexical infor-
mation is ignored. It is clear from sentences like (3) in Table
E] that, while contexts provides hints and constraints with re-
spect to what a word may convey (e.g., a location), knowing
that beach was uttered and the information this word comes
with is crucial for comprehension, due to the pervasive un-
certainty that underlies in communication. Additionally, the
setup of this study may impact what observed about the best
constant o.. First, providing both the left and right context
of a word may largely reduce the uncertainty over expecta-
tions. Instantiating our framework with a left-to-right model
may shed a different light on a.. Second, as observed earlier,



expected lexical avg delta
BERT (avg: 0=0.3; delta: a=0.6)
GAP 0.52 046 0.54 0.53
RECALL-10 0.34 043 049 0.51
LSTM (avg: 0=0.5; delta: 0=0.9)
GAP 0.45 045 048 0.48
RECALL-10 0.13 0.34 038 0.38

Table 2: Test results in ranking (GAP) and retrieving
(RECALL-10) substitutes, with best constant Q.

the extent that expectations are to be trusted for interpreta-
tion is better modeled as a contextual matter (Fig[2} constant
vs. optimal @); a preference for expectations over lexical in-
formation does not hold for all situations.

Conclusion

Both lexical information and the expectations that a context
gives rise to influence how words are interpreted. In this
study, we proposed a computational model of word interpre-
tation that makes use of deep language models’ components:
A listener’s lexicon is represented using distributed word rep-
resentations, and a listener’s expectations as a function of a
language model’s probabilistic output. In our operationaliza-
tion, the two draw from the same data-driven machinery — a
language model — and operate in the same multi-dimensional
representational space. An important benefit of our approach
is that it can be flexibly applied to different combinations of
words and contexts. This is possible due to (1) its reliance on
pre-trained deep language models to obtain representations
of expectations and the lexicon, and (2) the general method
of obtaining interpretations through vector operations. Our
framework resonates with various proposals on ambiguity
resolution and processing, providing a methodology to in-
stantiate and test some of their assumptions through compu-
tational data-driven modeling. We hope that the ideas we put
forward will inspire new applications of deep language mod-
els in Linguistics and Cognitive Science

We instantiated our framework using two English language
models, and used it to investigate the interaction between
the lexicon and expectations in word interpretation, consid-
ering a large-scale lexical substitution task. Our results sug-
gest that these two sources codify (at least partially) com-
plementary information, with representations drawing from a
combination of both performing best. More broadly, we find
that the degree to which each source contributes to contex-
tualized representations changes across contexts and words.
That is, the division of labor between expectations and lex-
ical meaning appears to be dynamic, shifting as a function
of the context and word in question. These trends hold for

SWe release the code to use our framework with the LSTM and
BERT language models:
https://github.com/amore-upf/exp_lex_interpretation
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the two architectures and modes of combination we studied.
However, differences among them indicate that a language
model’s quality influences the degree to which one source
is preferred over the other, with the higher quality language
model relying more on expectations.

We see two major venues for future research. The first con-
cerns extensions of our framework, in particular aimed at un-
derstanding which properties of expectations and words can
be used to predict the weight of the contribution of each infor-
mation source (). The second concerns further evaluations
of our approach. On the one hand, we plan to explore its ex-
planatory breadth as a processing model, using unidirectional
language models and data related to online processing (such
as reading times and ERP amplitude effects). On the other
hand, while our model relies on a single mechanism for in-
terpretation (avg or delta operations), we are interested in the
extent that this can account for different types of ambiguity
resolution. In particular, it could be interesting to establish
the explanatory capacity of this framework by breaking down
its performances into different interpretation tasks, from in-
ferring the correct part of speech of a word to understanding
figurative uses of language.
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