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Abstract 

Research on human collaboration has suggested that 
knowledge diversity improves group performance in complex 
tasks such as design, problem solving and forecasting. 
However, in educational settings it is important to also ask 
whether learning and transfer for individuals within the group 
is enhanced or hindered by diversity in collaborative work 
groups. We compare performance in a transportation network 
design task for two types of collaborative groups, and 
compare their performance to that of individuals. In one 
group condition (Distributed Knowledge) each dyad member 
has been trained on a different subtask of a complex joint 
design problem in advance of the collaborative activity. These 
different training tasks should predispose the two dyad 
members to adopt different perspectives, issues, and design 
strategies, thus generating greater cognitive diversity for the 
group. In the other group condition (Shared Knowledge) both 
dyad participants experienced the same training involving 
both subtasks. Task performance results show a group versus 
individual advantage in performance, but a non-significant 
difference in performance between the two group knowledge 
diversity conditions. The group knowledge manipulation did 
affect group process, as measured by time spent 
collaborating, number of turns taken, and number of words 
spoken. The findings suggest that group diversity can 
promote individual learning and transfer when sufficient time 
is allowed for discussion and group work. 

Keywords: diversity; network design; collaboration; problem 
solving; performance; innovation; transfer 

Introduction 
Previous research has established that groups outperform 
individuals on a variety of tasks: from retention tasks 
(Johnson, Maruyama, Johnson, Nelson & Skon, 1981), to 
measures of academic achievement (Smith, Johnson & 
Johnson, 1981; Johnson, Johnson, Roy & Zaidman, 1985), 
to problem solving (Fawcett & Garton, 2005). A growing 
body of research has shown that groups produce more 
innovative solutions than individuals (Paulus & Nijstad, 
2003). Diverse groups are more likely to develop innovative 
solutions (Gabbert, Johnson & Johnson, 1986; Page, 2010). 

Thus, it is understood that relatively diverse collaborative 
groups have greater potential to discover or design the best 
solutions. 

Group diversity is strongly associated with innovation 
because diversity provides groups with a variety of differing 
perspectives ahisnd heuristics (Page, 2007). According to 
Page, an individual perspective is a solution subset of what 
is possible. Multiple perspectives occur in a group when 
individual members possess different sets of ideas of what is 
possible. Page notes that two people with different 
perspectives may emphasize different aspects of a problem 
and conceptualize the same problem differently. The net 
result is what we will term knowledge diversity, although 
other differences, e.g. in values, strategies, and 
communication behavior, might be relevant. 

These prior findings suggest that collaborative task design 
in educational settings should focus on selecting groups 
with diverse members, diverse specifically in task-relevant 
knowledge and perspectives. But this is not always possible; 
sometimes groups already exist, or are formed by self-
affiliation, or assessing prior knowledge to manage group 
diversity is impractical. Thus, it would be helpful to have 
methods or tasks that can create knowledge diversity in 
randomly composed or preexisting groups.  

An additional consideration arises in educational settings, 
namely that collaborative activities are often implemented 
primarily to improve individual learning outcomes, rather 
than to maximize group task performance. So far, existing 
research has not fully delineated the relationship between 
task performance (and the factors that facilitate it) and 
individual learning (and the factors that promote it). In 
education settings, many of the positive learning effects of 
cooperative activities have been reported from studies that 
implemented task design or other measures to ensure that 
participants engaged in effective collaboration (Dillenbourg, 
2007; Kirschner, Paas, & Kirschner, 2009). Often these 
collaboration activities are highly structured or scripted 
(Dillenbourg, 2002; Koller, Fischer, & Hesse, 2006). In 
contrast, studies using less regulated interactions show 
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varied and, in some cases, negative findings regarding 
collaborative learning (Gregor & Cuskelly, 1994; Heath, 
1998). While groups may be able to consider more possible 
solutions, and thus develop more innovative solutions, 
students who have worked in groups are often less able to 
transfer the relevant knowledge. This finding suggests that 
collaborative activities that foster group performance may 
not necessarily maximize individual learning and skill 
transfer (Kirschner, Paas, & Kirschner, 2009). 

Thus, of particular interest in our research is the question 
of whether the established benefits of group knowledge 
diversity are replicated when individual learning is the 
prioritized outcome measure. What relationship does 
individual learning have with the knowledge diversity of the 
group? Are group performance and individual transfer aided 
or hindered by the collaborative processes evoked by 
knowledge diversity? 

Some relevant data is provided by studies of the jigsaw 
collaborative learning technique, which was shown to have 
a positive effect on individual learning (Aronson et al., 
1978) and in many subsequent empirical studies (e.g., Chu, 
2014; Oakes et al., 2019) with some exceptions (Souvignier 
& Kronenberger, 2007). As with our knowledge diversity 
manipulation, the jigsaw creates a diverse- or 
complementary-knowledge condition (Johansson et al., 
2005; Nokes-Malach et al., 2015), in which partners have 
knowledge or expertise that can contribute different 
components of a solution that the group needs. However, 
the jigsaw is cumbersome in that it requires an individual’s 
participation in multiple groups, meeting sequentially, to 
establish knowledge diversity within the final work group. 
We are interested in determining if similar knowledge 
diversity can be achieved while simplifying the jigsaw 
manipulation, using differentiated individual training tasks 
as a kind of macro-script (Dillenburg, 2007) to optimize the 
collaborative work group experience.  

Thus, our first aim was to determine if we could generate 
different skills, knowledge, and perspectives across the two 
dyad members with a differentiated training-task 
manipulation designed to enhance knowledge and 
perspective differences in groups, effectively “engineering” 
better knowledge diversity in a dyad. These diverse-
knowledge dyads are hypothesized to perform better than 
homogenous-knowledge dyads. Our main goal was to 
determine whether these two group conditions lead to 
improvements over the individual condition and whether the 
knowledge diversity manipulation improves group 
performance, collaboration process, and individual learning 
/ transfer for the diverse-knowledge groups. 

Empirical Study 
Our investigation was conducted in the context of a 
collaborative design optimization task, dubbed the “Relief 
Aid” game. This “game” is based on two simultaneous 
network design problems. One network design problem 
participants faced is commonly referred to as the traveling 
salesman problem. The problem is to design the shortest 

route among a set of points on a map. The route must follow 
a path that visits all points exactly once, returning to the 
starting point. This task suited our purposes because it 
permits a variety of possible solutions, affords space for 
diverse perspectives, and allows multiple design strategies. 
 
 

 
1A 

 
1B 

Figure 1: Two example solutions for the joint problem of 
designing the minimal road network (indicated using a blue 
marker) and route networks (directional route indicated by 
arrows, in pencil) on a map in the plane. Panel A presents a 
solution that does a good job of minimizing the road 
network length. Panel B depicts a solution that achieves a 
relatively short route network by reducing the retracing of 
arcs, but at the expense of (minimizing) road network 
length.  

A layer of complexity was added to the basic traveling 
salesman problem by imposing the additional task of 
designing a minimal-length road network upon which the 
delivery route must travel. This subtask, in isolation, 
corresponds to another formal problem in network theory, 
the problem of finding the minimal Steiner tree connecting a 
set of points. Thus, the task involved two distinct subtasks: 
attempting to design a minimal-length road network and a 
minimal route or tour using this same road network (see 
Figure 1). These two subtasks can work at cross-purposes, 
therefore simultaneously trying to optimize (minimize) the 
length of the road network and the length of the tour route is 
challenging, and can present interesting (or frustrating) 
trade-offs and potentially cause controversy between group 
members. In essence, short road networks make the tour 
routes less efficient and short route networks often require 
lengthening the road networks underneath them.  

Method 
To address our research questions, we randomly assigned 
participants (n = 104) to one of three conditions: Dyadic 
Distributed Knowledge (induced by varying training tasks) 
(DDK condition), Dyadic Shared Knowledge (induced by 
common training tasks) (DSK condition), or Individual 
work (IND). Participants in the Individual condition worked 
as individuals on the joint design problem, simultaneously 
designing the shortest road network and the shortest tour, 
for two maps: a pre-task or training task and a main 
(criterion) collaborative task. In the Dyadic Shared 
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Knowledge (DSK) condition, participants worked as 
individuals to complete the joint design task on the training 
task, and in dyads for the main task. In the Dyadic 
Distributed Knowledge (DDK) condition, participants 
worked as dyads for the main task; but the two individuals 
experiences different training-task instructions and subtasks: 

 
2A 

 
2B 

Figure 2: Sample participant solutions for the main 
collaborative task. Both figures show examples of solutions 
that used both a loop and a Steiner point. The Steiner point 
is circled with a dotted line in each example. 
 
one participant was tasked with constructing the shortest 
road network (only), and the other individual was tasked 
with constructing the shortest tour or route connecting the 
points (only). Thus, when participants in the Dyadic 
Distributed Knowledge condition came together as a dyad to 
work on the main collaborative task, their differing prior 
experiences presumably created different perspectives on 
the joint task.  

The progression of tasks began with the pre-task, 
followed by the criterion task, and concluded with a post-
task questionnaire. The pre-task was always completed 
individually, then followed by the main criterion task, which 
was completed collaboratively or individually depending on 
the condition. After the dyad (or individual) completed the 
criterion task, all participants completed a questionnaire 
with specific transfer questions that prompted them to apply 
certain key design insights or innovations. Here, we use 
transfer as our measure of individual learning because it 
suits the study design. Transfer learning occurs when 
knowledge or insights gained while solving a problem are 
successfully applied to a different but related problem in the 
post-task. 

In pilot studies, we had identified two design features, 
Steiner points and loops, as potential innovations to be 
discovered by participants that usually improve the network 
design by shortening total network length. A Steiner point, 
identified and discussed by Jakob Steiner in 1826, is an 
added node in a graph, which shortens one or more paths. 
Using a Steiner point on the present task essentially creates 
a new “road intersection” not located at one of the 
“villages” on the map. Depending on its placement, this 
added intersection enables shorter road or route networks 
(Figure 2). The second type of innovation we have 
identified is the use of loops. Loops often enable shorter 

routes or tours, though they cannot occur in a minimal road 
network. The loop innovation permits routes to avoid 
traveling back along previously traveled roads; thus using a 
loop can result in a much shorter tour (Figure 2).  

Criterion task performance was determined using the 
proposed network solution for the main task. The objective 
performance criterion (to be minimized) was the total 
summed length of both the road and the route networks 
(measured in cm, using Adobe Illustrator SC3 Line and 
Measure tools). We also coded use of the two target 
inventions or insights (use of a Steiner point and/or a loop) 
on the training task, main task, and post-task questionnaire. 
Individual learning and transfer of innovations was inferred 
using questions from the post-task questionnaire. If a 
participant used a loop or Steiner point in answering the 
relevant post-test questions, it was counted as a successful 
transfer of learning. Thus we were able to compare the three 
conditions as to task performance and transfer of 
innovations.  

Note that the map design task is essentially a discovery 
learning activity. During the pre-task, participants may 
discover the key design features and generate an optimal 
solution, but they may not. No feedback or guidance, 
beyond the rules of the task, were given to participants, 
neither during the training nor during the main criterion 
task. Thus, this task differs from highly scripted 
collaborative learning activities in which participants follow 
a structured or scaffolded script to guide their interactions. 
Instead, our collaborative task may best be described as a 
macro-script (Dillenbourg & Tchounikine, 2007); here, 
collaborative communication processes, such as negotiation 
and argumentation, may occur as a result of the task design, 
but it is not guaranteed. 

Results 
The results show, first, that we were successful in our 
efforts to “engineer” varying experience and perspectives 
via variants of the training task. Individuals (in the Dyadic 
Distributed Knowledge condition) whose training task had 
asked them to design routes used the loop innovation with 
greater frequency on the training task than participants who 
were not predisposed to it by their training task (road 
designers): χ2(1, N = 38) = 13.328, p < .001. This suggests 
that route designers found the loop a valuable addition to 
their network design, while road designers did not, meaning 
that our manipulation of participant prior experience to 
create differing perspectives regarding these useful design 
insights was at least partially successful. However, there 
was not a significant difference in the use of the Steiner 
point insight between road and route designers on the 
training task, χ2(1, N = 38) = .991, p < .319. 

In general, dyads outperformed individuals in the criterion 
task. As shown in Table 1, dyads of both types, Dyadic 
Distributed Knowledge (DDK) and Dyadic Shard 
Knowledge (DSK), created designs with shorter total 
network length (M=135.73 versus M=140.96), t(64) = 
5.226, p = .015, d = .642.  This difference in total distance 
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seems to be due to the fact that dyads designed shorter route 
networks than individuals (M=74.62 cm versus M=81.36 
cm), t(64) = 6.739, p = .013, d = .624. 

Qualitatively, dyads tended to use different road network 
designs than individuals. Road networks designed by 
individuals tended to use a tree or lattice network (as in  

 
Table 1: Mean distance (cm) of road, route, and total 

network for the main task group work, by condition (SD 
shown in parentheses). 

 
Condition N Road  Route  Total  
Individual (IND) 27 59.60 81.36 140.96 
Dyad: Shared (DSK) 19 61.32 74.32 135.63 
Dyad: Distributed (DDK) 19 60.90 74.93 135.83 
Total 65 60.48 77.42 137.90 

 
Figure 1A), which often result in relatively long travel 
routes because of the need to trace and retrace each branch. 
Dyads tended to design networks that minimized route 
length by minimizing the amount of re-tracing needed, 
accomplished by including loops and Steiner points in their 
road network designs, as in Figure 1B. 
    Figure 3 presents a box-and-whiskers plot of the 
distribution of total network length by condition. This plot 
shows that differences among the conditions in mean 
network length arise largely because very poor performance 
is relatively rare in dyads. Participants in the individual 
condition (IND) submitted designs with a wide range of 
network lengths, while dyads submitted designs with a 
distribution of total network lengths that is more uniform 
(the interquartile range is much more compact). However, 
five outlying dyads did not seem to show benefits of 
collaborative learning; these are case numbers 191, 182, 
116, 107, and 110.  In addition, two outlying dyads 
performed better than the typical dyad in the Dyadic 
Distributed Knowledge condition. These are case numbers 
134 and 152 in Figure 3. 
 

 
Figure 3: Total network distance by experimental condition 
(error bars = 95% CI). 
 

Is there any aspect of group process that can explain why 
groups tend to perform better than individuals (or less often 
perform badly)? To investigate this question, we analyzed 
group process variables measured from the dyadic 
conversations. Table 2 presents descriptive summaries of 
several group process variables, including the amount of 
time spent collaborating (Collaboration), the number of 
words spoken (Words Spoken) and turns taken (Turns 
Taken) during the collaborative group work. In order to 
identify process variables that may be associated with high 
or low performance, this table compares aggregate group 
process variables from low performing outlier dyads and 
high performing outlier dyads (as defined by the box-and-
whiskers plots of Figure 3) to the mean group performance 
of the lumped Dyadic Distributed Knowledge (DSK) and 
Dyadic Shard Knowledge (DSK) conditions. 

 
Table 2: Means of group process variables used during the 
collaborative task (Map 2) for poor and high performing 
outlier groups, compared to the overall group condition 

means for DSK and DDK (N=104). 
 
Process 
Variables 

Poor Perf. 
Outliers  

DSK  DDK  High Perf. 
Outliers  

Road Network 
Length (cm) 

58 59 61 55 

Route Network 
Length (cm) 

94 75 75 72 

Total Network 
Length (cm) 

151 134 136 127 

Collaboration 
Time (min) 

7 11 11 12 

Number of 
Turns Taken 

93 91 90 164 

Number of 
Words Spoken 

631 643 699 1222 

Freq. of 
Steiner Point 

0% 35% 40% 100% 

Freq. of Loop 50% 75% 65% 100% 
     

Table 2 offers several hints as to possible reasons why 
groups tend to outperform individuals. First, use of key 
insights, such as the loop or the Steiner point, seems 
especially common among high performing outliers. 
Second, high performing dyads talked almost twice as much 
as low performing dyads (as measured by mean number of 
turns taken and number of words spoken). This suggests that 
the more a group engages in discussion, the more likely they 
are to develop insights that can improve their solution. 

We then proceeded to inferential tests of whether our 
knowledge diversity manipulation affected group (dyad) 
performance on the main criterion task; essentially seeking 
to determine whether the knowledge diversity manipulation 
positively impacted the outcome variables. The three 
analyzed performance variables were road network distance, 
route network distance, and their sum, i.e., total network 
distance. We found no significant differences for these 
criterion variables: dyads whose members were predisposed 
by the training task to differing perspectives (the Dyadic 
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Distributed Knowledge condition), did not develop better 
(or worse) network design solutions than dyads predisposed 
to shared perspectives (Dyadic Shared Knowledge): road 
network, t(36) = .281, p = .780; route, t(36) = -.233, p = 
.817; total network,  t(36) = .929, p = .929.  

We also found that the two dyadic conditions (DDK and 
DSK) do not significantly differ in measures of group 
process (Table 2): Collaboration Time, t(36) = .086, p = 
.932, Number of Turns Taken, t(37) = .077, p = .939, 
Number of Words Spoken, t(37) = -.574, p = .569. Overall, 
dyads tended to discuss the problem using relatively the 
same amount of time with the same amount of conversation, 
regardless of their knowledge diversity condition. 

Finally, the knowledge diversity manipulation did not 
have a significant effect on learning and transfer. 
Participants in the Dyadic Distributed Knowledge condition 
transferred insights to the post-task questionnaire with about 
the same frequency as participants in the Dyadic Shared 
Knowledge condition: for loops, χ2(1, N = 78) = .412, p = 
.521; for Steiner points, χ2(1, N = 78) = .412, p = .521. 
Additionally, dyads did not show greater transfer than 
individuals: loop, χ2(1, N = 104) = 1.902, p = .168, Steiner 
point, χ2(1, N = 104) = .004, p = .950. This finding supports 
doubts raised by Gregor and Cuskelly (1994), and Heath 
(1998), suggesting that collaborative group work may not 
benefit individual learning and transfer, even when it 
improves task performance. Our findings suggest that even 
knowledge diversity of the group may not help boost 
learning and transfer for individual group members. 

Returning to the collaboration process variables presented 
in Table 2, we asked if any of these process variables were 
correlated with criterion task performance. We found that 
several were. Table 3 displays these relationships. There is a 
significant negative relationship between the amount of time 
a dyad spends collaborating during the main task 
(Collaboration) and the length of their route, R2 = -.333, p = 
.041, as well as the length of their total network, R2 = -.337, 
p = .038. As dyads spend more time collaborating, the 
length of the route and total network decrease, indicating 
better performance on the criterion task. 

In contrast, the length of the road network was 
significantly and positively correlated with the number of 
turns taken, R2 = .358, p < .001, and the number of words  

 
Table 3: Correlations between group process variables 

and criterion performance variables. Lower values of the 
criterion variables (4-6) indicate better performance. 

 
 Group Process Criterion Performance 
 2.  3.  4. 5. 6. 
1. Collaboration .59** .64** .10 -.33* -.34* 
2. Turns Taken -- .78** .36**  .04  .14 
3. Words Spoken  -- .26*  .04  .13 
4. Road Length   -- -.48**  .08 
5. Route Length    -- .84** 
6. Total Length     -- 
** p<.01l (2-tailed)       * p<.05 (2-tailed) 
 

spoken, R2 = .260, p = .011, but not with collaboration 
time, R2 = .097, p = .563.  This seems to indicate that more 
dyadic conversation was associated with worse performance 
in minimizing road length.  However, note that road length 
and route length are negatively correlated, indicating the 
tradeoffs required in this dual-network design task. Thus, 
more conversation tended to result in shorter routes and total 
network length, but this optimization seems to have required 
some lengthening of the road network (perhaps to enable 
routes incorporating loops). 

Regarding the relationship between group process and 
individual learning and transfer, we found no significant 
difference in collaborative processes between participants 
who transferred the loop insight to their post-task 
questionnaire and those who did not: Collaboration Time, 
t(74) = -1.466, p = .147, Number of Turns Taken, t(76) = -
1.344, p = .183, or Number of Words Spoken, t(76) = -.871, 
p = .386. Nor were there significant differences for Steiner 
point use: Collaboration Time, t(74) = -.561, p = .577, 
Number of Turns Taken, t(76) = -.039, p = .969, or Number 
of Words Spoken, t(76) = -.601, p = .550.  

However, when we filtered the data to examine only 
participants who successfully transferred the Steiner point 
insight, in order to identify what collaborative processes 
these successful learners used, we found a significant 
difference between the Dyadic Distributed Knowledge and 
Dyadic Shared Knowledge conditions in the number of 
words spoken during the collaborative process (DSK µ = 
403, DK µ = 633), t(26) = -2.820, p = .009, d = 1.087 (Table 
4). We found a similar relationship regarding number of 
turns taken, (DSK µ = 59, DK µ = 76), t(21.558) = -1.869, p 
= .075, d = .670, approaching significance with equal 
variances not assumed. This suggests that individual group 
members who successfully transfer this insight tend to show 
a greater amount of communication (more words exchanged 
and possibly more turn taking) in groups with distributed 
knowledge compared to groups with shared perspectives. 
We conclude that conditions of knowledge diversity may 
require more communication than homogeneous knowledge 
in order to achieve successful transfer. 

Table 4: Dyadic task process variables for individuals who 
successfully transferred valuable insights. 

 Group Process Variables 
Transfer of Loop Collab. 

(min) 
Turns 
Taken 

Words 
Spoken 

Dyad: Shared (DSK) 11.13 74 502 
Dyad: Distributed (DDK) 11.37 67 539 
Total 11.25 71 519 

Transfer of Steiner Point    
Dyad: Shared (DSK) 10.41 59 403 
Dyad: Distributed (DDK) 11.72 76 633 
Total 11.14 68✢ 526** 
✢.05<p<.10 (2-tailed), *p<.05 (2-tailed), **p<.01 (2-tailed) 
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Conclusions 
We found that groups outperform individuals in the network 
design task, adding to the literature showing performance 
advantages for collaborative groups in various STEM tasks.  

We have also demonstrated that it is possible to 
“engineer” dyad knowledge diversity via task design, using 
a short training task to promote different predispositions in 
team members to particular insights on a problem-solving 
task. Yet, our two knowledge diversity conditions (DDK 
and DSK) did not significantly differ in the group task 
performance nor in individual learning and transfer. 

However, engineered knowledge diversity did seem to 
impact the group collaborative process. First, we established 
that group performance on the criterion task benefits from 
more collaboration; there was a negative correlation 
between collaboration time and total network length (the 
criterion was to be minimized). When we examined 
collaborative indicators by participants who did successfully 
demonstrate transfer, we found that those in the knowledge 
diversity condition (DDK) tended to communicate 
significantly more than participants with shared common 
knowledge (DSK). This suggests that diverse groups, with 
members who are predisposed to different perspectives, may 
need more communication time in order to understand and 
learn, as compared to groups whose members have similar 
perspectives. 

Regarding learning, the results suggest that successful 
transfer may be mediated by different group processes 
depending on the diversity of prior experience of the group. 
Homogeneous-knowledge groups, whose members share 
prior knowledge and perspectives, seem able to transfer 
insights when the collaborative process is relatively short, 
defined by fewer words and fewer turns taken. However, 
groups with diverse knowledge are best able to transfer 
insights when the collaborative process involves more 
discussion and more turn taking. It may be that as regards 
learning and transfer, knowledge diversity in groups is a 
“desirable difficulty” (Bjork, 1994). Transfer may be 
influenced by the conversations, shared opinions, or 
arguments that arise as a result of the diverse or shared 
perspectives of group members. Further research is needed 
to more deeply examine the effects of communication 
processes on learning in collaborative work. 

Discussion 
Groups that discuss and selectively process information 
have shown accelerated learning in many studies, and may 
be more likely to find useful abstractions (Schwartz, 1995). 
The participants in our study who successfully transferred 
design insights seemingly benefited by engaging in more 
extensive dialogue. Indeed, the process of explaining one’s 
knowledge to one’s partner may have benefited both 
members of the dyad, since generating explanations has 
been shown to positively impact learning (Webb et al. 1995) 
and receiving information may trigger selective information 
processing, which has also been shown to positively affect 
learning (Voiklis & Corter, 2012). It is a truism that a need 

for communication is created by asymmetries of 
information. Our knowledge diversity manipulation is one 
way of introducing asymmetrical experiences, thus 
presumably motivating more extensive dialogue between 
partners, which can in some case have a positive effect on 
learning and transfer.  

Our results are consistent with two cognitive and social 
models of collaborative learning: namely, complementary 
knowledge (Johansson et al., 2005; Nokes-Malach et al., 
2015) and collaborative controversy (Smith, Johnson, & 
Johnson, 1981). Complementary knowledge is a cognitive 
mechanism that is engaged when partners have knowledge 
or expertise that may contribute different components of the 
solution. This is essentially a parallel processing model of 
cognition, in which needed information is distributed among 
the group so as to avoid burdening any one member with 
cognitive overload. Instead of attempting to understand all 
relevant information, one partner can simply ask the other 
partner (e.g., the “expert”) instead of attempting to 
internalize the information. Because the information is 
distributed, communication is essential to fully processing 
and understanding and solving the problem.  

Our knowledge diversity manipulation created an 
opportunity for complementary knowledge by distributing 
the information needed to perform well in the criterion task 
among the members of a dyad. In such situations, 
communication processes may serve as critical links 
allowing the group access to distributed information. For 
this reason, it makes sense that we found that 
communication processes play a more important role among 
dyads with distributed knowledge (i.e. complementary 
knowledge) who successfully transfer information, as 
compared to dyads with shared (not distributed) knowledge. 
Shared knowledge does not create an opportunity for 
complementary knowledge and thus a lesser need for 
communication (as all group members are in possession of 
all relevant information and do not need to seek it from 
others). Our finding that the shared knowledge diversity 
condition promoted less communication supports this 
understanding. 

The present findings may also relate to controversy in 
collaborative groups, which has been shown to promote 
higher retention and more accurate understanding of 
multiple perspectives as compared to collaborative groups 
that avoid controversy (Smith, Johnson & Johnson, 1981). 
Controversy exists in a dyad when one partner’s ideas, 
information, or perspectives are incompatible with those of 
their partner, and the two seek to reach an agreement 
(Johnson & Johnson, 1979). In situations such as these, the 
negotiations necessary to reach agreement are only possible 
through communication. Thus, it is the shared goal of 
determining a shared solution that motivates dialogue 
despite controversial perspectives. 

Our knowledge diversity manipulation not only 
introduced differing perspectives, it introduced perspectives 
that were at odds with each other; each participant entered 
the collaborative activity with the goal of combining their 
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prior-experiences, yet their prior-experiences involved 
conflicting strategies. This introduced a degree of 
controversy, essentially creating situations in which 
negotiation and compromise were needed for partners to 
settle on a final solution. Yet, participants in our 
controversy laden condition did not outperform or transfer 
learning to a greater degree than participants who 
collaborated without this kind of controversy. While this 
null finding does not support the Smith et al. (1981) results, 
it is important to note that the collaborative processes of our 
two conditions significantly differed. Participants more 
likely to experience controversy as a result of our 
manipulation communicated to a greater degree than those 
who were less likely to experience controversy, because it 
was not induced. This suggests that emphasizing 
independent or conflicting goals to different group 
members, may facilitate learning and transfer, but only 
when mediated by collaborative communication. Situations 
where this additional time is not available may even lead to 
process loss, cases where collaboration leads to worse 
performance, learning, and transfer than individual work 
(Kerr & Tindale, 2004). 
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