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Abstract

The action order of most everyday activities is only weakly
constrained: When setting the table, for example, the order
in which the items are placed on the table does not matter if
all required items are on the table eventually. Little is known
about how humans deal with weakly constrained sequences.
Consistent with research on local optimality of human behav-
ior and the “law of less work”, we propose that the order of
weakly constrained sequences is not chosen arbitrarily but due
to preferences, with the overall goal to minimize cognitive and
physical effort. We implement and validate a stepwise-optimal
model for table setting, revealing ordering preferences based
on distance, functional relations between items, and reachabil-
ity. The model’s success has implications concerning action
organization in weakly constrained sequences as well as con-
trol of action sequences and provides further evidence on the
question of global vs. local optimality of human cognition.
Keywords: everyday activity; spatial cognition; preferences;
optimality; action sequences

Introduction
Everyday activities such as cooking, cleaning up, and setting
the table, require a complex set of cognitive skills. The com-
plexity of seemingly simple everyday activities is evidenced
by the fact that (a) already mild cognitive impairment may
interfere with successful performance of highly familiar ev-
eryday activities (Gold, Park, Troyer, & Murphy, 2015), (b)
healthy adults also exhibit occasional errors such as the unin-
tended omission of subtasks (Cooper & Shallice, 2000), and
(c) artificial systems exhibiting mastery of everyday activities
remain to be achieved (Ersen, Oztop, & Sariel, 2017).

Given their complexity, the study of everyday activities
promises a deeper understanding not only of the involved
skills, but also of how these skills interact and are combined
in the human mind. Furthermore, a deeper understanding of
everyday activities potentially has great applied merit by al-
lowing to better support people to live independently, who
otherwise would require professional care to master their ev-
eryday life.

In this contribution we consider an important aspect of suc-
cessful everyday activities, which has not received sufficient
attention by previous research: Action sequence organization
under weak constraints. While certain actions are crucial for
the successful performance of everyday activities, the action
order is usually only partially (if at all) determined: If one
wants to set the table, the sequence in which the required
items are picked up and brought to the table is irrelevant,

as long as all items end up on the table eventually. We re-
fer to such action sequences with few or no constraints as
weakly constrained sequences. Existing research either treats
each possible sequence as equally likely (Botvinick & Plaut,
2004) or as idiosyncrasies of the person or situation (Cooper
& Shallice, 2000).

We propose that humans neither consider all possible se-
quences nor randomly instantiate a possible sequence under
weak constraints. Rather, we argue that people exhibit pref-
erences for certain action sequences. Specifically, based on
previous research, we assume that these preferences arise
from stepwise optimization of the movement distance subject
to functional relations between objects and their reachabil-
ity. We developed a computational model that implements
these assumptions and evaluated it on three datasets com-
prising human activities during table setting. The model fits
and generalizes well across the three datasets lending support
to our assumptions. Besides shedding light on the nature of
human action organization in weakly constrained sequences,
our model’s success also speaks to the debate on global vs.
stepwise optimality and raises questions concerning the con-
trol of action sequences.

The remainder of this paper is structured as follows: First,
we give an overview of the role of local optimality, mini-
mization of cognitive and physical effort, and space in the
context of everyday activities. Subsequently, we present and
validate our stepwise-optimal model for action ordering in
weakly constrained sequences. We conclude with a discus-
sion of our results and issues for future research.

Optimality, Minimization of Effort, and Space
Optimality
According to optimality theory, human behavior can be as-
sumed to approximate an optimal function when compared to
a mathematically determined ideal behavior (Chater, Tenen-
baum, & Yuille, 2006). While the paradigm of universal ra-
tionality postulates that prediction strategies for human be-
havior should be as general as possible, adaptive rationality
states that good prediction methods are adapted to the struc-
ture of a given local environment, providing highly efficient
solutions for a specific task (Schurz & Thorn, 2016). Adap-
tive rationality assumes that all successful cognitive methods
used by humans are locally optimal.
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Jones and Love (2011) propose that when trying to explain
human behavior through rational analysis, mechanisms such
as knowledge representation and cognitive processes have to
be taken into account. This is consistent with the concepts
of bounded rationality (Simon, 1955) and optimization un-
der constraints (Sargent, 1993), which both take limitations
in knowledge and processing capacity into account and have
been substantiated by other research, (see e.g. Icard, 2018).
To identify effective mechanisms that can plausibly be imple-
mented by a resource-bounded human brain, Bayesianism is
assumed to offer a useful analysis tool for specific cognitive
functions.

Research on sequential information search and planning
indicates that humans tend to use heuristic stepwise-optimal
strategies rather than planning ahead (Meder, Nelson, Jones,
& Ruggeri, 2019). Stepwise-optimal strategies can be con-
sidered as locally optimal, since they only try to optimize for
each action step rather than for the whole action sequence.

As everyday activities are complex tasks, we consider
strategies aiming to find the globally best task solution to
be computationally expensive and therefore unfeasible. Tak-
ing limitations in processing capacity and knowledge into ac-
count, we propose that humans deal with such activities by
using a locally optimal model (heuristic) to choose their next
action.

Minimization of Effort

According to Hull’s “law of less work” (Hull, 1943), physical
effort tends to be avoided, if possible. The concept has since
been expanded to include cognitive effort, arguing that phys-
ical and mental effort are equally aversive (Kool, McGuire,
Rosen, & Botvinick, 2010). This avoidance of effort is evi-
dent in people organizing their task environment by cluster-
ing task-relevant items and centralising frequently used items
(Solman & Kingstone, 2017). When organizing objects to re-
duce physical effort, spatial habit competes with the goal to
minimize effort, resulting in a reorganization of items only if
the costs for maintaining spatial habits become more notice-
able (Zhu & Risko, 2016).

The concept of an internal cost of cognitive effort has been
particularly influential as it explains the (globally) suboptimal
strategies frequently observed in humans – favoring simpli-
fying strategies (e.g., heuristics) can be subjectively optimal
when reducing the internal cost of mental effort outweighs
the benefit of a more accurate strategy.

In order to explain how cognitive effort can be reduced,
Clark (1996) proposed the concept of external scaffolding.
Accordingly, exploiting external structures facilitates human
problem-solving and allows for reducing the cognitive effort
of a specific task by offloading (part of) the problem solution
to external scaffolds such as tools or memory aids. Accord-
ing to Wilson (2002), strategies to offload cognition are used
particularly often in the context of spatial tasks. The envi-
ronment can be used to avoid having to encode or actively
represent stimuli or tasks, e.g., by laying out the pieces of an

object to be assembled in roughly the order and spatial rela-
tionship they will have in the finished state.

Against this background, we assume that humans exhibit
preferences for action sequences that minimize the effort re-
quired for task success. We use the term preferences to refer
to a concept with the following characteristics: 1) They deter-
mine a (partial) order on a set of options, 2) individuals may
not be aware of alternative options that have been neglected
in favor of the preferred option and 3), they do not emerge
from a mechanism specifically designed to generate prefer-
ences but are the result of more general processing principles
in human cognition.

Space

All human (everyday) activity takes place in space – required
objects for a given activity are located in the physical envi-
ronment, and movement within this environment is necessary
for performing the activity. Spatial properties, e.g., distance,
are also directly related to the required physical effort. While
determining the action sequence for performing a specific ac-
tivity, the spatial setup of the environment may impose con-
straints, such as having to move one object first before the
object located behind it can be reached. Even if there are
no hard constraints, there are a number of reasons to believe
that the order of actions in weakly constrained sequences is
determined by the spatial environment and its mental repre-
sentation.

According to Kirsh (1995), the organization of objects in
physical space aims to minimize cognitive effort and to fa-
cilitate the performance of everyday activities. People use
spatial arrangements to serve as cues what to do next by sim-
plifying internal computation (e.g. by arranging objects in
the kitchen in a way that it is obvious which vegetables need
to be cut, washed, etc. in the next step). Minimizing (com-
putational) effort by using the properties of the spatial en-
vironment to facilitate one’s actions is also consistent with
the theory of strong spatial cognition (van de Ven, Fukuda,
Schultheis, Freksa, & Barkowsky, 2018).

Another crucial characteristic of mental spatial representa-
tion is their organization by region (McNamara, 1986). When
planning a route in a regionalized environment, humans pre-
fer routes that cross fewer region boundaries (Wiener & Mal-
lot, 2003) or allow entering the target region more quickly,
even if shorter routes exist (Hochmair, Büchner, & Hölscher,
2008). While the cited studies apply to environmental spaces,
it seems reasonable to suppose that regionalization may also
be of importance in small-scale vista spaces, because travers-
ing space according to regions reduces the overall distance
and therefore the necessary effort.

Taking the above considerations into account, we assume
spatial properties of the task environment, i.e. distance and
physical constraints, to be an important factor when deciding
for the next action in everyday activities.
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Stepwise-Optimal Model for Table Setting
Consistent with humans favoring stepwise-optimal strategies
over planning ahead (Meder et al., 2019) and the “law of less
work” (Hull, 1943; Kool et al., 2010), we assume that table
setting follows a stepwise-optimal strategy. Taking the role of
preferences and space in everyday activities into account, we
propose that humans exhibit specific preferences for action
orderings: The next item to be picked up and taken to the
table is assumed to be chosen based on the current location
as well as the perceived cost of each possible action, with the
lowest-cost action being chosen.

Based on research on how the spatial environment is used
to facilitate task performance, i.e. intelligent use of space
(Kirsh, 1995), external scaffolding (Clark, 1996; Wilson,
2002) and strong spatial cognition (van de Ven et al., 2018), as
well as preferences regarding route planning (Wiener & Mal-
lot, 2003), we expect preferences to take specific constraints
into account:

• Distance (minimizing traversed distance by collectively
picking up items that are stored in the same location),

• functional relations between items (saucer goes below cup
and should therefore be taken first, so both items have to
be moved to and placed on the table only once), and

• reachability (picking up items from, e.g., a counter top, is
considered less effortful than picking up items stored in a
closed cupboard).

We propose these constraints as likely factors driving pos-
sible preferences. We do not claim that these are the only fac-
tors giving rise to possible preferences. However, based on
the existing research reviewed above, we assume that these
constraints have a strong influence on human behavior in ev-
eryday activities.

We implemented our three core assumptions in a computa-
tional model. The model approximates stepwise-optimal be-
havior by determining the lowest-cost next action for each
step from episode start (no items on the table, subject at start-
ing position) to task success (all required items on the table
and – if specified – in the target position, subject standing in
front of the table). If no specific table setup was required in
the task statement, we assume all table setups (i.e., task solu-
tions) to be equally good.

Each cost Ci, j is calculated by determining the Euclidean
distance (Eq. 1) between two item locations i(x1,y1) and
j(x2,y2) in a 2D representation of the specific environment.
This distance is further qualified by functional relations be-
tween items (parameter k) and reachability (parameter c)
yielding a weighted cost computed as given in Eq. 2.

d(i, j) =
√
(x1 − x2)2 +(y1 − y2)2 (1)

Ci, j = d(i, j)k · c (2)

Functional relations between items are defined as con-
straints that favor putting one item on the table earlier than

a second item, e.g., because the first item is supposed to be
placed below the second item (saucer and cup, placemat and
plate, etc.) or because the item is used to define the place
setting on the table (placemat, plate). Reachability indicates
whether an item can be accessed directly or whether it is
stored in a cupboard or the like which has to be opened first.

We assume functional relations between items to have an
influence on the ordering of items since, with an ideal or-
dering, each item has to be picked up and placed on the ta-
ble only once. In contrast to choosing an arbitrary ordering,
in which items already on the table might have to be moved
again (e.g., lifting the cup to place the saucer below it), this
ideal sequence minimizes the physical effort. Since the open-
ing of cupboards also involves physical effort, reachability is
considered to be another cost factor. Parameters k and c are
treated as free parameters of the model and will be estimated
from the first considered dataset.

Each modeled environment consists of the corresponding
spatial layout with item coordinates, the task description (re-
quired items), and constraints (how many items can be carried
at once). Following a stepwise-optimal strategy, in each step
the cost for all next possible actions is calculated (Eq. 2, i
= current location, j = item location) and the item with the
lowest associated cost is chosen to be picked up next (Fig. 1).

starting

position

tray

plate

cup

plate

cup

cup
5.20

5.40

5.40

6.92

7.59

Figure 1: Example for stepwise-optimal item choosing based
on weighted cost (TUM environment, k+c set)

To evaluate our model we test its ability to account for ta-
ble setting across three datasets. On the first dataset, the TUM
dataset, we estimate k and c and test whether a stepwise or a
global optimality model provides a more appropriate expla-
nation. The second dataset, the EPIC-KITCHENS dataset,
was employed for testing our model’s generalizability to ad-
ditional individuals and additional environments. The third
dataset, a self-collected virtual reality dataset, was employed
to test a regionalization prediction arising from the model. All
simulations compared variants of our model including only k,
only c, including k and c, and neither including k nor c (de-
fault parameters).

TUM Dataset The TUM Kitchen Data Set (Tenorth, Ban-
douch, & Beetz, 2009) contains data from four subjects set-
ting a table in different ways, each time using the same items
in the same environment. Since the spatial properties of the
environment and items did not change and the variance be-
tween observed sequences was low, we used the TUM dataset
set to fit our model parameters, in the hope of obtaining a re-
liable estimate.
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Each trial began with the subject facing the kitchen (stand-
ing between location A and B, see Fig. 2) and ended with all
required items being on the table (at location C or D in the en-
vironment). The necessary items for table setting were stored
in location A (tray, napkin), in the drawer between A and B
(silverware), and B (plate, cup). Of the 20 video episodes,
video 18 consists only in repetitive movement and had to be
excluded from our analysis.1 Variations include the location
of the setup on the table and the number of items being trans-
ported at a time (one or two).

Figure 2: Layout of the TUM kitchen (Tenorth et al., 2009)

Method Parameters k and c were estimated by grid search.
Parameter k was estimated per object (see Tab. 1) and c was
estimated to be 1.2 for all objects in closed containers (e.g.,
cupboard, drawer). Setting parameter k to a value < 1.0
decreases the weighted cost, thus corresponding to a higher
probability of taking the item in question first, whereas set-
ting parameter c to a value > 1.0 increases the weighted cost.

DLn =
edit distance

maximum edit distance
(3)

To evaluate how well the model-generated and observed
sequences matched, we computed the Damerau-Levenshtein
distances (Damerau, 1964) and normalized by sequence
length to make results comparable across sequences of differ-
ent length. The resulting distance measure, DLn, see Eq. 3,
ranged from 0 (i.e., identical) to 1 (i.e., maximally different).
As a baseline, mean edit distance was calculated for n! sam-
ples generated without replacement for observed sequences
of length n.

Results Comparing the edit distances between sequence
predictions from the model and observed sequences (see Fig-
ure 3) clearly demonstrates that both factors have a strong in-
fluence on the order in which items are picked up and brought
to the table (Fig. 3). Only when both factors are set, a match
between predicted and observed sequences is achieved for

1For our analysis, the videos have been numbered consecutively,
thus video 18 corresponds to video 19 (TUM numbering) and video
19 to video 20 (TUM numbering).

Table 1: Parameter estimates for different items

Item Value of k
tray, placemat 0.9
plate (empty), napkin 0.95
all other items 1.0

nearly all episodes. This indicates that the decision which
item(s) to get next does not rely on physical distance alone
but is strongly influenced by the effort to retrieve or arrange
items. Comparing model performances (default parameters,
only one of both parameters or both parameters set, or glob-
ally optimal) using the Friedman test indicates a highly sig-
nificant difference (χ2(4) = 66.595, p < 0.001).

To more specifically test the locality of strategies, we com-
pared our stepwise-optimal to a globally optimal model (i.e.,
a model that plans ahead, determining the overall lowest-cost
action ordering2). A Wilcoxon signed-rank test revealed that
our model performs significantly better than the global model
(W = 0.000, p < 0.001), which provides evidence for human
behavior being locally optimal.

Figure 3: Model fit, TUM data

In order to validate the model, we verify its generalizability
to other spatial environments and individuals using the EPIC-
KITCHENS and a VR data set.

Model Generalizability
EPIC-KITCHENS
Data EPIC-KITCHENS (Damen, D. et al., 2018) is a large-
scale first-person vision data set collected by 32 participants
in their native kitchens. Since each participant recorded their
activities in their home kitchen, spatial environments and
items vary between participants, which makes this data set
a strong generalization test of our model.

The participants recorded all their daily kitchen activities
with a head-mounted GoPro (video and sound) for three con-
secutive days. Each recording starts with the participant en-

2Assuming each item is brought to the table first before picking
up the next one.
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tering the kitchen and stops before leaving the kitchen. The
participants were asked to be in the kitchen alone, so that the
videos capture only one-person activities. Each participant
recorded several episodes.

The episodes contain a multitude of kitchen activities, such
as cooking, stowing away groceries, and table setting. For
the purpose of this analysis, we only used episodes with table
setting actions, which reduced the sample size to 16 videos.3

Method Since the table setting actions are interleaved with
cooking actions, specific items can fulfill different functions,
such as a plate being used as container for a meal or as an
empty (eating) plate. To account for such differences, items
are not categorized according to item type but function (e.g.
a plate not serving as the eating plate does not have strong
functional relations as defined in factor k). For each predicted
next item, the prior location was taken as a starting point,
regardless of whether the corresponding action was a table
setting action.
Results While the model prediction with default parame-
ters (c = 1.0, k = 1.0) tends to be near to or worse than the
baseline prediction (mean edit distance from n! samples for
each observed sequence of length n), with both parameters
set we achieve better results than the baseline for nearly all
episodes (Fig. 4). c and k improve prediction for most se-
quences even when only one factor is set (see first column
of Tab. 2: p < 0.05 for both comparisons). While prediction
accuracies show a significant difference for only c vs. both
parameters set, model simulations with only k vs. both param-
eters set show no significant difference, indicating that k may
be the decisive parameter considering the EPIC-KITCHENS
dataset (see second column Tab. 2).

Overall, our model generalizes well to new spatial envi-
ronments and individuals, which supports the model’s key
assumptions: stepwise optimality minimizing effort is sub-
ject to functional constraints and reachability. Comparing the
performance of the model with both vs. default parameters set
indicates a significant improvement of prediction accuracies
with parameters (W = 0.000, p = 0.002), corroborating our
assumptions.

Table 2: Wilcoxon signed-rank test comparing prediction ac-
curacies of model simulations

default parameters set
(c = 1.0, k = 1.0) c + k set

c set, k = 1.0 W = 0.000
p = 0.027

W = 0.000
p = 0.018

k set, c = 1.0 W = 0.000
p = 0.003

W = 0.000
p = 0.180

3P01 01, P01 03, P01 05, P01 09, P10 01, P12 01, P12 06,
P21 01, P21 03, P21 04, P22 12, P22 16, P24 02, P24 04, P24 05,
P26 11. Videos have been numbered consecutively in our analysis.

Figure 4: Model fit, EPIC data

Virtual Reality Data
One prediction arising from our model is that, whenever pos-
sible, people should tend to pick objects by regions, because
this minimizes the physical effort related to traversing the dis-
tance between items. This idea receives first support from the
TUM dataset: Videos 3 and 12, the only sequences in which
two items can be picked up at once, show a bias towards re-
gionalization, i.e., items stored in the same location are al-
ways picked up together (tray and napkin from location A,
plate and cup from location B, Fig. 2).

To investigate this prediction in more detail, we analyze
the presence of such regionalization in our third data set. The
study was conducted in a virtual environment because this
provides exact movement trajectory and distance measure-
ments and allows for more control over the environment than
a (possibly noisy) real-world setting. At the same time, the
VR environment promises higher ecological validity than a
laboratory setting.

Data The data contains table setting sequences in a VR en-
vironment from a single participant, who was naı̈ve with re-
spect to the purpose of the experiment. The virtual kitchen
consisted of three separate regions (fridge, tray area, island
area; Fig. 5), each of which had to be visited at least once.

The fridge contained a number of dairy products and or-
ange juice, drawer 1 silverware, drawer 2 mugs and glasses,
drawer 3 bowls, and the cupboard a number of food packages
such as cereal. The participant moved through the virtual
environment by moving through a corresponding but open
physical space, experiencing the virtual environment through
a HTV Vive head-mounted display. Movement was tracked
via the head-mounted display while interaction with the envi-
ronment was realized through two HTC Vive controllers (one
in each hand).

The participant was asked to set the table for one person
having breakfast. The minimum set of items consisted of a
cereal bowl, a spoon, cereal, milk, a glass, and juice; addi-
tional items could be added by the participant if desired. The
task was to first assemble all necessary items on the tray and
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then to carry the items to and distribute them on the table.
The participant was familiar with the kitchen and knew the
location of all required items well. Data from 39 trials was
collected. For action orderings we considered the order in
which items were grasped and put on the tray.

cupboard

kitchen counter

serving tray sink

drawer 1
drawer 2

fridge

kitchen island

drawer3

starting
position

table

Figure 5: Layout of the Virtual Reality kitchen

Results We observed a strong preference for regionalized
item collection and for choosing the order based on those re-
gions and the distances between them: Items from the same
region were picked up jointly and the regions were traversed
in an order that minimized the overall walking distance.

The prediction of the model being verified, we further
tested it by applying it to the Virtual Reality data set (Fig. 6).
In doing so, k could not be set because the items were assem-
bled on a tray first, rendering constraints due to functional
relations between items irrelevant. Moreover, c had no in-
fluence, because all items were stored in cupboards, drawers,
or the fridge. Without both factors, the model still performs
better than the baseline (i.e., mean edit distance, calculated
as described above), further corroborating that human treat-
ment of weakly constrained action sequences is to no small
part governed by stepwise optimization of traveled distance.

These results also show the limitations of the model: While
functional relations and reachability appear to be important
factors in everyday action sequences, they explain only part
of the variance in the observed sequences. For example, re-
lying only on physical (2D) distance, the model is not able to
distinguish between items stored in the same location and can
thus only predict the next best region in such instances.

Conclusion and Future Work
Our results suggest that action orderings in everyday activity
result from stepwise-optimization, aiming to minimize cogni-
tive and physical effort by factoring in properties of the spatial
environment. When dealing with weakly constrained action
sequences, the ordering of actions is not chosen arbitrarily but
according to preferences, which take distance, functional re-

Figure 6: Model fit, Virtual Reality data

lations between items, and reachability into account in order
to minimize the overall effort. These findings are consistent
with the theories of external scaffolding and strong spatial
cognition, i.e., humans using properties of the environment
to their advantage.

Our contribution also touches on the question whether hu-
man cognition and behavior is best seen as globally or locally
optimal. Our comparison of models realizing these two types
of optimality indicates that human behavior in everyday activ-
ities can indeed – as proposed by adaptive rationality – better
be explained by a locally optimal strategy, tuned to maximize
performance by following a stepwise-optimal heuristic. We
expect our proposed stepwise-optimal model not to be spe-
cific to the activity of table setting, but to be generalizable
to other everyday tasks. While functional relations may be
task-specific, i.e, depend on how the necessary items are used
in a given task and how this affects the functional relations
between them, we assume all model parameters to represent
important constraints also for other everyday activities.

The success of the stepwise-optimal model also raises in-
teresting questions regarding the control of action sequences.
In existing models of control of sequential actions (e.g.,
Cooper, Ruh, & Mareschal, 2014; Botvinick & Plaut, 2004),
the assumption seems to be that the to be controlled sequence
is completely known from the outset. But how are action se-
quences controlled, which are, as suggested by our work, not
completely known before execution? Do the same control
mechanisms apply or can they be adapted?

In the current model, the representation of task environ-
ments and distances is represented only in 2D. A 3D model
could potentially show other important factors, e.g. whether
picking up items from very high or low storage location is
considered more effortful. This might also allow the model to
better predict the next lowest-cost item when multiple items
are stored in the same (2D) location. Cognitive effort is an-
other important factor that needs to be considered in future
versions of the model, since minimization of effort is assumed
to affect both physical and cognitive effort.

While our model with the chosen constraints fits well to the
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data and is able to explain variability between datasets, other,
yet unknown factors may be of importance in determining hu-
man behavior in everyday activities. Future research is there-
fore needed to uncover other relevant mechanisms underlying
spatial cognition in everyday tasks and to explore how these
interact with our proposed constraints.

Future work also needs to investigate whether using a
heuristic model can be interpreted as opportunistic behavior
and to clarify the relation between traversed overall distance
and required time in the context of effort minimization.
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