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Abstract
We explore the benefits of augmenting state-of-the-art model-
free deep reinforcement learning with simple object representa-
tions. Following the Frostbite challenge posited by Lake et al.
(2017), we identify object representations as a critical cognitive
capacity lacking from current reinforcement learning agents.
We discover that providing the Rainbow model (Hessel et al.,
2018) with simple, feature-engineered object representations
substantially boosts its performance on the Frostbite game from
Atari 2600. We then analyze the relative contributions of the
representations of different types of objects, identify environ-
ment states where these representations are most impactful, and
examine how these representations aid in generalizing to novel
situations.
Keywords: deep reinforcement learning; object representa-
tions; model-free reinforcement learning; DQN.

Deep reinforcement learning (deep RL) offers a success-
ful example of the interplay between cognitive science and
machine learning research. Combining neural network-based
function approximation with psychologically-driven reinforce-
ment learning, research in deep RL has achieved superhuman
performance on Atari games (Mnih et al., 2015), board games
such as chess and Go (Silver et al., 2017), and modern video
games such as DotA 2 (OpenAI, 2018). While the successes of
deep RL are impressive, its current limitations are becoming
increasingly more apparent. The algorithms require orders
of magnitude more training to learn how to play such games
compared to humans. Tsividis et al. (2017) show that fifteen
minutes allow humans to rival models trained for over 100
hours of human experience, and to an extreme, the OpenAI
Five models (OpenAI, 2018) collect around 900 years of hu-
man experience every day they are trained. Beyond requiring
unrealistic quantities of experience, the solutions these algo-
rithms learn are highly sensitive to minor design choices and
random seeds (Henderson et al., 2018) and often struggle to
generalize beyond their training environment (Cobbe et al.,
2019; Packer et al., 2018). We believe this suggests that people
and deep RL algorithms are learning different kinds of knowl-
edge, and using different kinds of learning algorithms, in order
to master new tasks like playing Atari games. Moreover, the
efficiency and flexibility of human learning suggest that cogni-
tive science has much more to contribute to the development
of new RL approaches.

In this work, we focus on the representation of objects as
a critical cognitive ingredient toward improving the perfor-
mance of deep reinforcement learning agents. Within a few
months of birth, infants demonstrate sophisticated expecta-
tions about the behavior of objects, including that objects
persist, maintain size and shape, move along smooth paths,
and do not pass through one another (Spelke, 1990; Spelke
et al., 1992). In artificial intelligence research, Lake et al.

(2017) point to object representations (as a component of in-
tuitive physics) as an opportunity to bridge the gap between
human and machine reasoning. Diuk et al. (2008) utilize this
notion to reformulate the Markov Decision Process (MDP; see
below) in terms of objects and interactions, and Kansky et al.
(2017) offer Schema Networks as a method of reasoning over
and planning with such object entities. Dubey et al. (2018)
explicitly examine the importance of the visual object prior to
human and artificial agents, discovering that the human agents
exhibit strong reliance on the objectness of the environment,
while deep RL agents suffer no penalty when it is removed.
More recently, this inductive bias served as a source of inspira-
tion for several recent advancements in deep learning, such as
Kulkarni et al. (2016), van Steenkiste et al. (2018), Kulkarni
et al. (2019), Veerapaneni et al. (2019), and Lin et al. (2020).
This work aims to contribute toward the Frostbite Challenge
posited by Lake et al. (2017), of building algorithms that learn
to play Frostbite with human-like flexibility and limited train-
ing experience. We aim to pinpoint the contribution of object
representations to the performance of deep RL agents, in order
to reinforce the argument for object representations (and by
extension, other cognitive constructs) to such models.

To that end, we begin from Rainbow (Hessel et al., 2018), a
state of the art model-free deep RL algorithm, and augment its
input (screen frames) with additional channels, each a mask
marking the locations of unique semantic object types. We
confine our current investigation to the game of Frostbite,
which allows crafting such masks from the pixel colors and
locations in the image. While this potentially limits the scope
of our results, it allows us to perform intricate analyses of the
effects of introducing these object representations. We do not
consider the representations we introduce to be cognitively
plausible models of the representations humans reason with;
they are certainly overly simple. Instead, our choice of rep-
resentations offers a minimally invasive way to examine the
efficacy of such representations within the context of model-
free deep reinforcement learning. We find that introducing
such representations aids the model in learning from a very
early stage in training, surpassing in under 10M training steps
the performance Hessel et al. (2018) report in 200M training
steps. We then report several analyses as to how the models
learn to utilize these representations: we examine how the
models perform without access to particular channels, inves-
tigate variations in the value functions learned, and task the
models with generalizing to novel situations. We find that
adding such object representations tends to aid the models in
identifying environment states and generalizing to a variety of
novel situations, and we discuss several conditions in which
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these models are more (and less) successful in generalization.

Methodology
Reinforcement Learning. Reinforcement learning provides
a computational framework to model the interactions between
an agent and an environment. At each timestep t, the agent
receives an observation St ∈ S from the environment and takes
an action At ∈ A , where S and A are the spaces of possi-
ble states and actions respectively. The agent then receives
a scalar reward Rt+1 ∈ R and the next observation St+1, and
continues to act until the completion of the episode. Formally,
we consider a Markov Decision Process defined by a tuple
〈S ,A ,T,R,γ〉, where T is the environment transition function,
T (s,a,s′) = P(St+1 = s′|St = s,At = a), R is the reward func-
tion, and γ ∈ [0,1] is a discount factor. The agent seeks to
learn a policy π(s,a) = P(At = a|St = s) that maximizes the
expected return E[Gt ], where the return Gt = ∑

∞
k=0 γkRt+k is

the sum of future discounted rewards. For further details, see
Sutton and Barto (2018).

To construct a policy, reinforcement learning agents usually
estimate one of two quantities. One option is to estimate the
state-value function: vπ(s) = Eπ [Gt |St = s]. The state value re-
flects the expected discounted return under the policy π starting
at a state s. Another oft-estimated quantity is the action-value
(or Q-value) function: qπ(s,a) = Eπ [Gt |St = s,At = a], which
models the expected discounted return from taking action a at
state s (under policy π). Note that the Q-values relate to the
state values by vπ(s) = maxa qπ(s,a); the state value is equal
to the action value of taking the optimal action.

Atari Learning Environment and Frostbite. We uti-
lize the Atari Learning Environment (Bellemare et al., 2013;
Machado et al., 2018), and specifically the game Frostbite, as
a testbed for our object representations. The ALE offers an
interface to evaluate RL algorithms on Atari games and has
served as an influential benchmark for reinforcement learning
methods. In Frostbite1 , the player controls an agent attempt-
ing to construct an igloo (top-right corner of pixels panel in
Figure 1) before they freeze to death when a time limit is hit.
To construct the igloo, the agent must jump between ice floes,
making progress for each unvisited (in the current round) set
of ice floes, colored white (compared to the blue of visited
floes). The ice floes move from one end of the screen to the
other, each row in a different direction, in increasing speed as
the player makes progress in the game. As the agent navigates
building the igloo, they must avoid malicious animals (which
cause loss of life, in orange and yellow in Figure 1), and may
receive bonus points for eating fish (in green). To succeed,
the player (or model) must plan how to accomplish subgoals
(visiting a row of ice floes; avoiding an animal; eating a fish)
while keeping track of the underlying goal of completing the
igloo and finishing the current level.

DQN. As the Rainbow algorithm builds on DQN, we pro-
vide a brief introduction to the DQN algorithm, and refer the

1To play the game for yourself: http://www.virtualatari
.org/soft.php?soft=Frostbite

reader to Mnih et al. (2015) for additional details: DQN is a
model-free deep reinforcement learning algorithm: model-free
as it uses a parametric function to approximate Q-values, but
does not construct an explicit model of the environment; deep
as it uses a deep neural network (see Goodfellow et al. (2016)
for reference) to perform the approximation. The model re-
ceives as state observations the last four screen frames (in
lower resolution and grayscale), and emits the estimated Q-
value for each action, using a neural network comprised of two
convolutional layers followed by two fully connected layers.
DQN collects experience by acting according to an ε-greedy
policy, using Q-values produced by current network weights
(denoted Q(s,a;θ) for a state s, action a, and weights θ). To
update these weights, DQN minimizes the difference between
the current Q-values predicted to bootstrapped estimates of
the Q-value given the reward received and next state observed.

Rainbow. Rainbow (Hessel et al., 2018) is an amalgama-
tion of recent advancements in model-free deep reinforce-
ment learning, all improving on the DQN algorithm. Rainbow
combines the basic structure of DQN with several improve-
ments, such as Prioritized Experience Replay (Schaul et al.,
2016), offering a better utilization of experience replay; Du-
eling Networks (Wang et al., 2016), improving the Q-value
approximation; and Distributional RL (Bellemare et al., 2017),
representing uncertainty by approximating distributions of Q-
values, rather than directly estimating expected values. For the
full list and additional details, see Hessel et al. (2018). Note
that save for a minor modification of the first convolutional
layer, to allow for additional channels in the state observa-
tion, we make no changes to the network structure, nor do we
perform any hyperparameter optimization.

Object Segmentation Masks. We compute our object seg-
mentation masks from the full-resolution and color frames.
Each semantic category (see Figure 1 for categories and ex-
ample object masks) of objects in Frostbite is uniquely deter-
mined by its colors and a subset of the screen it may appear
in. Each mask is computed by comparing each pixel to the
appropriate color(s), and black or white-listing according to
locations. As the masks are created in full-resolution, we
then reduce them to the same lower resolution used for the
frame pixels. We pass these masks to the model as separate
input channels, just as Rainbow receives the four screen frame
pixels.

Experimental Conditions. Pixels: In this baseline condi-
tion, we utilize Rainbow precisely as in Hessel et al. (2018),
save for a minor change in evaluation described below. Pix-
els+Objects: In this condition, the model receives both the
four most recent screen frames, as well as the eight object
masks for each frame. This requires changing the dimension-
ality of the first convolutional layer, slightly increasing the
number of weights learned, but otherwise the model remains
unchanged. Objects: We wanted to understand how much
information the screen pixels contain beyond the object masks
we compute. In this condition, we omit passing the screen
frames, instead passing only the masks computed from each
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Pixels Player Bad Animal

Land Bear Unvisited Floes

Visited Floes Good Animal Igloo

Figure 1: Object mask examples. A sample screen frame encoun-
tered during Frostbite gameplay (top left), and the object masks
computed from it (remaining panels).

frame. Grouped-Moving-Objects: We wished to investigate
the importance of separating objects to separate semantic chan-
nels. Loosely inspired by evidence that animacy influences
human object organization (Konkle and Caramazza, 2013),
we combined all object masks for moving objects (all except
for the land and the igloo) to a single binary mask, which we
passed the model alongside the state pixels. For the remainder
of this paper, we shall refer to this condition as Grouped.

Training and evaluation. Each model is trained for ten
million steps, or approximately 185 human hours2 identically
to the models reported in Hessel et al. (2018). Our evaluation
protocol is similar to no-op starts protocol used by Hessel
et al. (2018), except that rather than evaluating models for
500K frames (and truncate episodes at 108K), we allow each
model ten evaluation attempts without truncation (as Frostbite
as a relatively challenging game, models rarely exceed 20K
frames in a single episode. We perform ten replications of the
baseline Pixels condition, recovering similar results to those
reported by Hessel et al. (2018), and ten replications of each
of our experimental conditions.

Implementation. All models were implemented in Py-
Torch (Paszke et al., 2017). Our modifications of Rainbow
built on Github user @Kaixhin’s implementation of the Rain-
bow algorithm3.

2At 60 frames per second, one human hour is equivalent to
216,000 frames, or 54,000 steps, as each step includes four new
frames. See Mnih et al. (2015) for additional details.

3https://github.com/Kaixhin/Rainbow

Training Pixels Pixels+Objects Objects Grouped

1 days 2443±661 2352±617 2428±612 4426±585

2 days 4636±792 6220±618 5366±863 7318±560

3 days 6460±1132 8915±730 7612±904 8417±627

4 days 7102±1027 10066±876 9761±1028 9688±614

5 days 8011±1112 11239±1301 11677±1559 10111±843

6 days 8236±1532 13403±1157 13033±1613 11570±927

7 days 9748±1652 14277±1282 14698±2038 13169±1209

Table 1: Mean evaluation results. We report mean evaluation re-
sults for each condition after each day of human experience (approxi-
mately 1.3M training steps2). Errors reflect the standard error of the
mean.

Results
Figure 2 summarizes the learning curves, depicting the mean
evaluation reward received in each experimental condition
over the first 10M frames (approximately 185 human hours) of
training (see results for each human day of training in Table 1).
Both conditions receiving the object masks show markedly
better performance, breaking past the barrier of approximately
10,000 points reported by state-of-the-art model-free deep RL
methods (including Hessel et al. (2018)), and continuing to
improve. We also validated that this improvement cannot be
explained solely by the number of parameters.4 We find that
including the semantic information afforded by channel sepa-
ration offers a further benefit to performance beyond grouping
all masks together, as evidenced by the Grouped condition
models falling between the baseline Pixels ones and the ones
with object information. We find these results promising:
introducing semantically meaningful object representations
enable better performance in a fraction of the 200M frames
that Hessel et al. (2018) train their models for. However, the
results for the first 24 human hours (see ?? in the Appendix)
indicate that initial learning performance is not hastened, save
for some advantage provided by the Grouped models over the
remainder. One interpretation of this effect is that the single
channel with moving objects best mirrors early developmental
capacities for segmenting objects based on motion (Spelke,
1990). We take this as evidence that object representations
alone will not bridge the gap to human-like learning.

We are less concerned with the improvement per se and
more with what these object representations enable the model
to learn, and how its learning differs from the baseline model.
To that end, we dedicate the remainder of the results section
to discussing several analyses that attempt to uncover how the
models learn to utilize the object masks and what benefits they
confer.

Omitted Objects Analysis
Our first analysis investigates the value of each type of object
mask. To do so, we took models trained with access to all

4We evaluated a variant of the Pixels model with additional con-
volutional filters, to approximately match the number of parameters
the Pixels+Objects has. The results were effectively identical to the
baseline Pixels ones.
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Figure 2: Mean evaluation reward per condition. Mean evalua-
tion reward per condition. Bold lines plot the mean per condition.
Shaded areas reflect the standard error of the mean. Thin lines mark
individual replications.

masks and evaluated them with one mask at a time omitted.
As to not interfere with input dimensionality, we omitted each
mask by zeroing it out. In each experimental condition (Pix-
els+Objects and Objects), we evaluated each replication ten
times without each mask. The boxplots in Figure 3 mark the
distributions of evaluation rewards obtained across the differ-
ent replications and evaluations. With minor exceptions, we
find that performance is similar in the two conditions. It ap-
pears that while the Pixels+Objects model receives the pixels,
it primarily reasons based on the objects, and therefore sees
its performance decline similarly to the Objects models when
the object masks are no longer available.

We find that some of the object masks are much more crucial
than others: without the representations identifying the agent,
the land, the ice floes, and the igloo (which is used to complete
a level), our models’ performance drops tremendously. The
two representations marking antagonist animals (‘bad animals’
and bear) also contribute to success, albeit on a far smaller
magnitude. Omitting the mask for the bear induces a smaller
penalty as the bear is introduced in a later game state than other
malicious animals. Finally, omitting the mask for the good
(edible for bonus points) animals increases the variability in
evaluation results, and, and in the Objects condition, results in
a higher median score. We interpret this as a conflict between
short-term reward (eating an animal) and long-term success
(finishing a level and moving on to the next state). Omitting
information about the edible animals eliminates this tradeoff,
and allows the model to ‘focus’ on finishing levels to accrue
reward.

These results indicate that models with both pixels and
object representations lean on the object representations, and
do not develop any redundancy with the pixels. This analysis
also validates the notion that the most important objects are
the ones that guide the model to success, and that some objects
may be unhelpful even when directly predictive of reward.

None Player Bad
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Animal
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Figure 3: Omitted object comparison. Comparing the resilience
of models in the Pixels+Objects and Objects conditions to omitting
specific object masks. Each pair of box plots represents omitting
a particular semantic category, with the full (no objects omitted)
on the far left. Pink lines mark the median of each distribution,
boxes the first and third quartiles, whiskers to any points with 1.5 the
interquartile range, and circles to any outliers.

State-value difference comparison
Next we highlight game states such that the object-augmented
networks predict substantially different state values than net-
works based on pixels, adapting the t-SNE (van der Maaten
and Hinton, 2008) methodology (using an implementation
by Ulyanov (2016)) utilized by Mnih et al. (2015) to visu-
alize state representations. We report a single comparison,
between the replications in the baseline Pixels condition and
the replications in the Pixels+Objects condition. We collected
sample evaluation states from the most successful (by eval-
uation scores) random seed of our Pixels condition models.
Utilizing the identity vπ(s) = maxa qπ(s,a), we passed each
state through each of the models compared and took the max-
imal action value as the state value. We then colored the
embeddings plotted in Figure 4 using the (normalized) differ-
ence in means, and examined clusters of states with extreme
differences to understand differences in what the models suc-
ceeded in learning. We plot the screen frames corresponding
to these telling states on the circumference of Figure 4.

States (2) and (3) highlight one failure mode of the Pixels
model: failure to recognize impending successful level com-
pletion. The baseline Pixels models miss the completed igloo
(which terminates a level) on the dark background, and there-
fore fail to identify these states as highly rewarding – even
though the igloo itself remains identical to previous levels–the
sole change, which Pixels models fail to generalize to, is the
change in background color. Note that the Pixels models do
encounter the igloo on a dark background during training, but
fail to recognize it–which appears to contribute to the score
difference between these models and the ones that receive
objects. States (1) and (6) pinpoint another source of confu-
sion: at some stage of the game, the ice floes begin splitting
and moving relative to each other, rather than only relative to
the overall environment. Unlike the previous case, the Pixels
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Figure 4: t-SNE visualization of internal model representations. We use a single Pixels condition model to compute latent representations
of states collected during an evaluation, and embed them in 2D using t-SNE. We color the embeddings by the normalized difference in mean
state-values 6 between models in the Pixels+Objects condition and models in the Pixels condition. Positive differences (in red) indicate higher
state values in Pixels+Objects models, negative differences (in blue) are states valued higher by Pixels models. Sample states plotted (labeled
1-7 clockwise) represent observed clusters where object representations most affect the learned value functions. Border colors denote which
condition predicted higher state values.

models do not encounter the splitting floes during training, as
they appear in the level following the dark background igloos
of states (2) and (3). Perhaps with training on these states the
Pixels models would learn to act around them; but as it stands,
these models fail to generalize to this condition. This motion
appears to confuse the baseline Pixels models; we conjec-
ture that the object representations enable the Pixels+Objects
models to reason better about this condition.

States (4), (5), and (7) depict situations where the baseline
Pixels models erroneously fail to notice dangerous situations.
For example, in state (5), although the igloo is complete, the
Pixels+Objects models identify that the agent appears to be
stuck without a way to return to land. Indeed, the agent suc-
cessfully jumps down, but then cannot return up and jumps
into the water (and to its death). States (4) and (7) represent
similarly dangerous environment states, which the model used
to collect the data survives in state (4) and succumbs to in
state (7)5. In these states, the Pixels+Objects models appear
to identify the precarious situation the agent is in, while the
Pixels models without object representations do not.

5Note that states (4) and (7), like states (1) and (6), feature the
splitting ice floes; the baseline Pixels models’ failure to recognize
those might contribute to the differences in states (4) and (7) as well.

6We pass each state through the ten replications in each condition,
compute the expected state value (expected as Rainbow utilizes distri-
butional RL), average across each condition for each state, compute

Generalization to novel situations
We now investigate the utility of our object representations
in generalizing to situations radically different from anything
encountered during training, in hopes of investigating the
capacity for systematic, human-like generalization. In Figure 5
and Figure 6, we augmented a state with additional features,
adjusting both the pixels and object masks accordingly. We
report a boxplot of state values predicted by models in each
condition, both for the original state before any manipulation
and for each manipulated state.

In Figure 5, we attempt to overwhelm the agent by sur-
rounding it with animals–during normal gameplay, the model
does not see anything resembling this simultaneous quantity
of animals. We also tested how our models would react to a
novel object (an alien from Space Invaders), marked either as
a ‘good animal’ or as a ‘bad animal.’ The Pixels models re-
spond negatively to all of the overwhelming conditions, which
is incorrect behavior in the Fish scene and correct behavior
otherwise. Both Pixels+Objects models and Objects models
show much stronger robustness to this change in distribution,
reacting favorably to being surrounded with edible animals,
and negatively to being surrounded with dangerous animals,
demonstrating the generalization benefit conferred by our ob-

the difference of means for each state, and normalize the collection
of differences.
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Figure 5: Generalization to being surrounded. We examined how each model would react to being surrounded. In the first two manipulations,
“Fish” and “Crabs,” we surround the agent with existing creatures from Frostbite. In the second two, we borrow an alien sprite from the Atari
game Space Invaders and label it in different object masks: first as edible fish, then as dangerous crabs.

ject representations. Some of these differences in state-value
distributions proved statistically significant: in a two-sample t-
test, the differences in between the Pixels and Pixels+Objects
models were significant (P < 0.001) in the ‘Fish’ and ‘Good
Aliens’ condition. The same held true for the Pixels and Ob-
jects models. Comparisons between the Grouped model and
Pixels+Objects showed the same pattern of significance, in
the ‘Fish’ and ‘Good Aliens’ cases, while the difference be-
tween the Grouped and Objects models proved significant
(P < 0.002) in all four generalization scenarios. When com-
paring within a model between the different manipulations,
results were equally stark: for the Pixels+Objects and Ob-
jects models, all differences were significant, save for the two
with identical valence (‘Fish’ and ‘Good Aliens,’ ‘Crabs’ and
‘Bad Aliens’). Note that these are entirely novel objects to
the agents, not merely unusual configurations of prior objects.
The entirely novel alien pixels appear to have little impact on
the Pixels+Objects models, providing further evidence that
these models rely on the object masks to reason (rather than
on the raw pixel observations).

We offer a second, potentially harder example, in which
object representations do not seem sufficient to enable gener-
alization. In Figure 6, we examine how the models respond to
another situation far off the training data manifold: on a soli-
tary ice floe, surrounded by crabs, with nowhere to go. Only
in one scenario (‘Escape Route’) does the agent have a path to

survival, and once arriving on land, could immediately finish
the level and receive a substantial bonus. While some of the
models show a preference to that state over the two guaranteed
death states, the differences are fairly minor, and only one (for
the Pixels+Objects model, between ‘Death #2’ and ‘Escape
Route’) proves statistically significant. This scenario, both its
original state and the various manipulations performed, fall
far off the data manifold, which may account for the higher
variance in state values assigned to original state (compared
to the one exhibited in Figure 5).

Discussion

We report a careful analysis of the effect of adding simple
object masks to the deep reinforcement learning algorithm
Rainbow evaluated on the Atari game Frostbite. We find
that these representations enable the model to learn better
and achieve higher overall scores in a fraction of the train-
ing time. We then dissect the models to find the effect of
these object representations. We analyze their relative contri-
butions to the model’s success, we find states where object
representations drastically change the learned value function,
and we examine how these models would respond to novel
scenarios. While we believe this provides strong preliminary
evidence to the value of object representations for reinforce-
ment learning, we acknowledge there is plenty of work ahead.
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Figure 6: Generalization to being stranded among crabs. We
examined how each model would react when stranded and surrounded
with crabs, with introducing additional ice floes that either serve as
an escape route or a distraction.

We aim to investigate utilizing similar representations in other
reinforcement learning tasks and explore methods towards
learning robust, cognitively-plausible object representations,
rather than providing them externally. Furthermore, we be-
lieve that additional core ingredients of human cognition may
prove as useful (if not more so) to the development of flexible
and rapidly-learning reinforcement learning algorithms. We
hope to explore the benefits offered by an intuitive physical un-
derstanding of the world can confer, as it can allow an agent to
predict the physical dynamics of the environment and plan ac-
cordingly. We also believe that the capacity to develop causal
models explaining observations in the environment, and the
ability to meta-learn such models across different scenarios
and games, would provide another step forward in the effort
to build genuinely human-like reinforcement learning agents.

Acknowledgements
BML is grateful for discussions with Tomer Ullman, Josh
Tenenbaum, and Sam Gershman while writing “Building ma-
chines that learn and think like people.” Those ideas sit at the
heart of this paper. We also thank Reuben Feinman and Wai
Keen Vong for helpful comments on this manuscript.

References
Bellemare, M. G., Dabney, W., and Munos, R. (2017). A Distributional Perspec-

tive on Reinforcement Learning. In Proceedings of the 34 th International
Conference on Machine Learning, Sydney, Australia, PMLR 70. 2

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47:253–279. 2

Cobbe, K., Klimov, O., Hesse, C., Kim, T., and Schulman, J. (2019). Quantifying
Generalization in Reinforcement Learning. In Proceedings of the 36th
International Conference on Machine Learning, Long Beach, California,
PMLR 97. 1

Diuk, C., Cohen, A., and Littman, M. L. (2008). An object-oriented representation
for efficient reinforcement learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning, ICML ’08, page 240–247, New
York, NY, USA. Association for Computing Machinery. 1

Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., and Efros, A. A. (2018). In-
vestigating human priors for playing video games. In ICML. 1

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
2

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.

(2018). Deep Reinforcement Learning that Matters. In Thirthy-Second
AAAI Conference On Artificial Intelligence (AAAI). 1

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combin-
ing Improvements in Deep Reinforcement Learning. In AAAI’18. 1, 2,
3
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