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Abstract

We explore structural issues with parameter estimation for
non-linear cognitive models: Some parameter values are eas-
ier to recover than others, and the recoverability of different
parameters interacts in systematic ways. We propose methods
for researchers to anticipate and visualize and these issues, and
the systematic ways they differ across experimental designs.
Our approach consists of assessing how changes in parame-
ter values translate into changes in behavioral predictions, and
develop measurements of the relative responsiveness of predic-
tions to parameter values. We demonstrate application of our
approach to cumulative prospect theory (CPT), a widely-used
model of risky decision-making.
Keywords: decision-making; prospect theory; parameter esti-
mation

Experimental design plays a large role in the precision
of the parameter estimates of models of decision-making
and other cognitive processes (Broomell & Bhatia, 2014;
Broomell, Sloman, Blaha, & Chelen, 2019; Navarro, Pitt, &
Myung, 2004; Stewart, Canic, & Mullett, 2019; Toubia, John-
son, Evgeniou, & Delquié, 2013). Understanding the impli-
cations of the parameter estimates recovered from a dataset
requires an understanding of several aspects of the model-
stimulus relationship, including the diagnosticity of the ex-
perimental stimuli (Broomell et al., 2019). In order to facil-
itate this understanding, Broomell et al. (2019) suggest re-
searchers report and discuss the process of stimulus selection
in model comparison and parameter recovery studies.

Broomell and Bhatia (2014) analyze the parameter dis-
crimination of decision sets used to estimate the parameters
of cumulative prospect theory. While their work formalizes
the discrimination power of a decision set, their measures do
not account for structural differences in the ease with which
parameter values that fall within different ranges can be re-
covered. In the present work, we conceptualize the param-
eter discrimination of a stimulus set as a function of the un-
derlying parameter value rather than a static quantity. Like
Broomell and Bhatia (2014), we focus our analysis on cumu-
lative prospect theory. This paper exposes structural asym-
metries in the recoverability of the parameters of CPT, and
demonstrates the application of methods that can anticipate
how an experimental design will exacerbate or mitigate these
asymmetries. The aim of our work is to begin to develop a set
of methods researchers can use to explore, visualize and doc-
ument the strengths and weaknesses of certain experimental
designs for parameter estimation.

A related body of work has focused on the development of
methods in optimal experimental design for model compar-
ison. Design optimization (Myung & Pitt, 2009) and adap-
tive design optimization (Cavagnaro, Myung, Pitt, & Kujala,
2010; Kim, Pitt, Lu, Steyvers, & Myung, 2014) are a col-
lection of methods for designing experiments with maximum
power to discriminate between competing models. Similar
methods that optimize for parameter recovery (e.g. Toubia
et al. (2013)) dynamically adjust the stimuli presented to a
participant to maximize the precision of parameter estimates.
While we demonstrate a method that achieves some success
at enhancing the power of stimulus sets to estimate certain
parameter values, this is intended primarily as a proof of con-
cept. Our focus is not on optimization, but on anticipation of
and transparency about the effects of the experimental design
in parameter recovery studies.

In the results we present below, we show that designs with
more power to estimate some parameter values have less
power to estimate others. When participants exhibit large in-
dividual differences in the parameter values that best describe
them, this may make it difficult to design an experiment that
can effectively optimize for discrimination across the range of
plausible parameter values. Dynamic approaches like those
developed by Toubia et al. (2013) could bypass the trade-offs
this implies. However, these methods cannot be used retro-
spectively to help researchers analyze archival datasets or to
implement a robust static experimental design. Our work can
facilitate the diagnosis and documentation of the strengths
and weaknesses of a stimulus set: which parameter values
it will have power to detect, and which it will not.

Cumulative prospect theory
Cumulative prospect theory (CPT) is a widely-used model
of risky choice (Tversky & Kahneman, 1992). Param-
eter estimates from CPT have been used to understand
individual- and group-level differences in psychological con-
structs like risk aversion, loss aversion and probability
weighting (Scheibehenne & Pachur, 2015).

In the field of judgment and decision-making, risky
decision-making is typically operationalized as a two-
alternative forced choice task between probabilistic gambles.
As an example, imagine being offered a choice between a
37% chance of winning $10, or a 45% chance of winning
$2. Participants in risky decision-making tasks are presented
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with dozens of such artificial choices, where both the out-
come amounts and probability of winning these outcomes are
varied.

Model formulation
Below we present a simplified formulation of CPT. For the
complete model specification, interested readers should con-
sult Tversky and Kahneman (1992), Glöckner and Pachur
(2012) or Broomell and Bhatia (2014).

According to CPT, choice is predicted by combining the
subjective value of possible outcomes X j, v(X j), with the
weighted probability of receiving outcome X j, w(p j). In par-
ticular,

v(X j) = Xα
j and w(p j) = e−(−ln(p j))

γ

(1)

The value of an entire gamble Gi is a combination of its
constituent outcomes, which we denote,

V (Gi) = ∑v(y j)w(p j) (2)

and the probability P(Gi) of selecting Gi is a monotonic
function of how much higher the value of Gi is than the alter-
native1:

P(G1) =
1

1+ e−ε(V (G1)−V (G2))
(3)

The parameter α determines a decision-maker’s (DM) de-
gree of diminishing sensitivity to increased outcomes. As α

decreases, larger outcomes generate proportionately less sub-
jective value. The parameter γ determines the curvature of
the probability weighting function. Smaller values of γ re-
sult in more over-weighting of small probabilities and under-
weighting of high probabilities. Finally, ε encodes the deter-
minism of the DMs’ choices.

Parameter estimation
CPT parameters are often estimated from behavioral data
using maximum likelihood estimation (Broomell & Bhatia,
2014; Stott, 2006). Maximum likelihood techniques attempt
to find the values of a model’s free parameters that make the
observed data seem very probable. In practice, this objective
is usually achieved by generating stochastic samples of can-
didate parameter values, and substituting these parameter val-
ues into the model formulation to generate a prediction. The
likelihood is a measure of how closely this prediction matches
the observed data. By computing the likelihood of multiple
sets of candidate parameter values, the algorithm hones in on
the values of the free parameters that maximize the likelihood
of the observed data.

Imagine a researcher trying to infer the temperature with-
out access to a direct measurement device like a thermome-
ter. A maximum likelihood approach would compare dif-
ferent plausible values of the relevant parameter—degrees

1We use the Prelec probability weighting function (Prelec, 1998)
and a logit form of the choice function, but see Stott (2006) for a
review of other forms of these functions.

Farenheit—and select the one that maximizes the likelihood
of a particular observation (or set of observations). For ex-
ample, the researcher could base their guess on an observa-
tion that it’s snowing. An initial guess of 60°F would imply
that this observation is very unlikely. On the other hand, any
guess between 15°and 35°F would imply that the observed
weather was very likely. Therefore, the researcher’s final es-
timate would be somewhere in that range.

In the case of CPT, the model’s free parameters are α, γ

and ε. As in the example above, the observed data are bi-
nary observations: the choice participants made between one
of two risky gambles. The model’s prediction is P(G1), the
probability that a DM will select gamble 1.

Structural asymmetries in parameter estimation
When tweaking a parameter value translates into detectable
changes in the outcomes predicted by a model, maximum
likelihood routines can be highly efficient and generate accu-
rate estimates. However, many theoretically interesting cog-
nitive models are non-linear, meaning the degree of change
in the predicted outcomes depends on both the underlying
parameter values and on where in the domain the change is
applied.

To continue with the example above, imagine the re-
searcher again trying to infer the average temperature on the
basis of several observations of whether or not it is snowing.
If the true, generating parameter value is 30°F, when the re-
searcher collects their observations, they will probably find
that it is snowing much of the time. As explained above, the
candidate parameter value 60°F would imply that these ob-
servations were very unlikely, while a guess closer to the true
value of 30°F would imply that these observations were very
likely. This design has a fair amount of power to identify
parameters within a critical range.

However, if the true, generating parameter value is 60°F,
when the researcher collects their observations, they proba-
bly won’t observe any snow. While they can determine that
the temperature is probably not between 15°and 35°F, they’ll
be unable to determine if it is 40°F, 60°F or 100°F, since all
these parameter values predict the observed sequence. Rely-
ing solely on the binary outcome of snow will mean that there
are certain regions of the parameter space that will be much
more difficult to identify.

The same intuition applies to asymmetries in the identi-
fiability of the parameter values of models like CPT. The
estimates of CPT parameters are similarly based on binary
observations—whether or not the DM selected to play one of
two gambles—and the context in which those observations
occurred. Some parameter values will lead to observations
that systematically provide less information than others. But
unlike the relationship between temperature and snow, the re-
lationship between a CPT parameter value and the relevant
binary observation is rarely obvious or transparent.

In the sections below, we identify some of the structural
asymmetries in the estimation of CPT parameters. We gener-
ate synthetic data sets from simulated CPT DMs, and analyze
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differences in the recoverability of different parameter set-
tings. Finally, we develop a conceptual framework to visual-
ize and better understand how much information we can gain
from a given experimental design, and show that this frame-
work can both explain and anticipate the structural asymme-
tries that arise from different designs.

Stimulus selection
To generate these data sets, we first needed to select stim-
uli, or pairs of gambles that the artificial DMs would choose
between. We generated 1,000 random gambles according to
the procedure described in Erev, Roth, Slonim, and Barron
(2002). We randomly sampled probabilities and outcome val-
ues to compose choices between gambles such that gamble i
yields some value Xi with probability pi, and nothing with
probability 1− pi. Gambles i and j were paired together un-
der the constraint that if Xi >X j, then p j > pi (and vice versa).

One-parameter model
For the sake of interpretability, we first explore a one-
parameter version of CPT. Specifically, we constrain both γ

and ε to be .5 and allow only α to vary freely.
Figure 1a shows how the precision of parameter estimates

changes as a function of the generating value of α. We ran-
domly selected 200 stimuli from the set described in the pre-
vious section, and simulated choices from 300 CPT DMs on
each of these stimuli. 100 DMs had a true α value of .2, 100
had a true α of .5, and 100 had a true α of .8. Notably, the esti-
mates are most tightly clustered around their true value when
α= .8. In contrast, when α= .2, the estimates are much more
variable.

Visualizing the recoverability of a parameter value
Why do we observe this asymmetry between the recoverabil-
ity of α = .2 and α = .8? The previous sections highlights
that parameter estimation routines rely on observed behavior
to discriminate between parameter values. When behavior
changes more rapidly in certain parts of the parameter space
than in others, different parameter values will lead to more or
less precise estimation.

Figure 2 shows how P(G·,1), the probability that a DM will
select G1, changes as a function of the DM’s α value. Recall
that the probability of making any choice is a function of the
difference V (G·,1)−V (G·,2). Here, we’ve restricted γ = .5
and ε = .5. Each red line corresponds to a stimulus i. On the
x-axis are the values we allow α to take, and on the y-axis
is the difference V (Gi,1)−V (Gi,2). The lines are trajecto-
ries that illustrate how the differences between V (G·,1) and
V (G·,2) become amplified as the value of α changes. The
black lines delineate choice probability contours: the values
of P(G·,1) that correspond to the values on the y-axis.

For the hypothetical meteorologist who wants to infer tem-
perature, discriminating between 30°F and 40°F is straight-
forward because of the dramatic changes in precipitation pat-
terns in this interval. When estimating CPT parameters, ide-
ally changes in the parameter values will correspond to steep
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(a) α̂ on a random set of experimental stimuli.
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(b) α̂ on a set of experimental stimuli curated to maximize the re-
coverability of .1≤ α≤ .3.

Figure 1: Densities of the distribution of estimates of α, α̂,
in a one-parameter version of CPT when the true generating
value of α is .2 (red), .5 (green) and .8 (blue).

changes in choice probabilities. This framework allows us to
identify ranges of α that are easier to recover by identifying
where segments of trajectories cut most dramatically across
choice probability contours.

Notice that when α is small (α < .5) most of the movement
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Figure 2: Visualizing the recoverability of α. Each red line
corresponds to a randomly-selected stimulus i, and shows
how the difference V (Gi,1)−V (Gi,2) changes as α is in-
creased (γ = ε = .5). The contour lines denote the values of
P(G·,1) associated with each value on the y-axis.

is between contours: Incremental changes in parameter values
barely shift choice probabilities. Compare this to the dramatic
movement when α is high (α > .5). For this range of αs, the
trajectories cut aggressively across contours, indicating that
incremental changes of α in this range correspond to large
changes in choice probabilities.2

We expect that stimuli that cross more contours yield more
information about the value of α. Figure 3a illustrates the
formalization of the number of contours a stimulus crosses. It
plots the absolute value of the finite differential ∂P(G·,1)

∂α
across

the range of plausible values of α. Each line corresponds to
one of the 200 randomly-selected stimuli. The finite differ-
ential is the difference between P(G·,1) calculated at α̃ and
P(G·,1) calculated at α̃−δ, where δ is a very small increment
(and γ and ε are held constant). In general, we can calculate
the differential of P(G·,1) with respect to any parameter. We
hereafter simplify terminology and write ∂P1/∂θ where θ is
the parameter the differential is calculated with respect to.

In other words, the y-axis shows the number of con-
tours each stimulus crosses when α increases by some small
amount. We expect that a value of α for which the stimuli
cut across many contours would be more precisely estimated
than a value of α for which the stimuli did not move very
much. We therefore favor regions where the absolute value
of the differential is far from 0.

For low values of α, the lines cluster around 0, but tend to
diverge for higher values of α. These higher absolute values

2We speculate that because v(X·) grows monotonically with α,
large values of α magnify the difference V·,1−V·,2. The rate at which
this difference grows accelerates as α increases, cutting across more
contours.
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(b) Stimuli with the highest
|∂P1/∂α| for .1≤ α≤ .3.

Figure 3: |∂P1/∂α|. Each line corresponds to a single exper-
imental stimulus.

of ∂P1/∂α are consistent with the more precise estimates of
higher absolute values of α we display in Figure 1a.3

Effect of adjusting the experiment
∂P1/∂α is a measure of the “suddenness” of change in pre-
dicted behavior, and can be thought of as a crude estimate of
the parameter discrimination of a stimulus or set of stimuli at
a particular value of α. We expected that if we adjusted the
stimulus set so the aggregate ∂P1/∂α was more concentrated
around lower values of α, this would mitigate the structural
asymmetry between estimating high and low values of α.

For each stimulus, we calculated the absolute value of
∂P1/∂α at each value of α. To select observations that would
be especially helpful in discriminating between low values of
α, we created an aggregated differential for each stimulus by
stacking the values of |∂P1/∂α| such that .1≤ α≤ .3, and se-
lected the 200 stimuli with the largest aggregated differential.

Figure 3b shows the values of |∂P1/∂α| for these 200
stimuli. Interestingly, there appear to be no stimuli where
|∂P1/∂α| peaks at α = .2. Instead, we isolated stimuli where
the absolute value of the differential peaks around α = .5,
which tends to “pull” some of the mass at α = .2 away from
0.

Figure 1b shows the distribution of parameter estimates
when choices are simulated using this set of curated stimuli.
As we predicted, the estimates when α = .2 and α = .5 seem
to have a lower variance than when the stimuli were selected
randomly, particularly estimates when α = .5. However, the
estimates when α = .8 are slightly more dispersed.

This is consistent with the pattern in Figure 3b: the values
of ∂P1/∂α are, in aggregate, further from 0 when α≈ .5, and
are relatively flatter when α≈ .8. This suggests that this mea-
surement can elucidate properties of an experimental design
that map onto empirical asymmetries in the recoverability of
parameter values.

3While these results are calculated on the basis of randomly-
selected gambles in the domain of gains, we see the same gen-
eral trend in the finite differentials of previously-published data
sets, such as those analyzed by Erev et al. (2002), Stott (2006) and
Glöckner and Pachur (2012).
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Two-parameter model
In the previous section, we showed how the methods we pro-
pose can anticipate structural asymmetries in the recoverabil-
ity of different values of α. However, the parameters of CPT
are interdependent (Li, Lewandowsky, & DeBrunner, 1996;
Scheibehenne & Pachur, 2015), and we expect the dynamics
of the individual parameters to interact. In this section, we
extend our analysis to a two-parameter version of CPT. We
again fix ε at .5, and allow both α and γ to vary.

Figure 4 shows the distribution of estimates of γ when α =
.5 and when α = .8. (Unlike in the analysis above, here α and
γ are estimated jointly.) Notice the interaction between the
values of α and γ: Estimates of γ are more precise when α is
high, and especially so when α is high and γ is low.

The same interaction can be seen from the correspond-
ing |∂P1/∂γ|s. Figure 3 shows plots of the finite differen-
tials with respect to one parameter. Figure 5a shows the
two-dimensional analog: a surface of the average value of
|∂P1/∂γ|. The interaction we observed in Figure 4 is also no-
ticeable here: The surface is higher for higher values of α,
and especially so when α is high and γ is low.

Using a procedure similar to the one we followed for the
one-parameter model, we attempted to mitigate this asymme-
try in the estimation of γ. We selected the stimuli with the
highest |∂P1/∂γ| when α was constrained to equal .5. The pa-
rameter estimation results using this curated design are dis-
played in Figure 6. We were able to enhance the recoverabil-
ity of γ when the true value of γ is .2, but do not otherwise ob-
serve a substantial increase in the precision of the estimates.

Figure 5b provides insight as to why we see this pattern.
The |∂P1/∂γ| surface climbs most dramatically when γ is low,
translating into the relatively more precise estimates shown in
Figure 6. Again, visualizing the choice probability surface—
the relationship between changes in parameter values and
changes in behavior—facilitated diagnosis, interpretation and
anticipation of asymmetries in parameter estimation.

Discussion
We presented methods to visualize the interplay between an
experimental design and a model’s parameters, and to facili-
tate understanding of model-stimulus relationships.

While we focused discussion on CPT, the intuitions we
established for structural asymmetries in parameter estima-
tion towards the beginning of the paper would apply more
broadly to non-linear cognitive models, especially to models
of decision-making, models of categorization and other mod-
els that are often calibrated using discrete observations. In
general, consideration of and transparency about the diagnos-
ticity of an experimental design is an important part of robust
modeling practices (Broomell et al., 2019). While we applied
these methods to a one- and two-parameter model, advances
in high-dimensional data visualization will likely make scal-
ing the approach to more complex models increasingly easier
(Blaha, 2019; Glendenning, Wischgoll, Harris, Vickery, &
Blaha, 2016).
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Figure 4: Densities of the distribution of estimates of γ, γ̂, in a
two-parameter version of CPT when the true generating value
of γ is .2 (red), .5 (green) and .8 (blue). The experimental
stimuli are randomly selected. The generating value of α is
either .5 (top) or .8 (bottom).

We are far from the first to point out challenges in the iden-
tification of CPT’s parameters (although we have not come
across another reference to the particular structural asym-
metries we discuss). Researchers have advocated for the
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mize the recoverability of γ conditional on α = .5.

Figure 5: Mean, across stimuli, of the absolute value of the
∂P1/∂γ.

use of hierarchical Bayesian approaches to the estimation of
CPT parameters in favor of maximum likelihood methods
(Jarnebrant, Toubia, & Johnson, 2009; Nilsson, Rieskamp, &
Wagenmakers, 2011; Scheibehenne & Pachur, 2015; Toubia
et al., 2013). These studies highlight the ability of hierar-
chical Bayesian methods to introduce shrinkage into param-
eter estimates, reducing the influence of outlying estimates.
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Figure 6: Densities of the distribution of estimates of γ, γ̂,
in a two-parameter version of CPT when the true generating
value of γ is .2 (red), .5 (green) and .8 (blue), and the generat-
ing value of α = .5. The experimental stimuli are curated to
maximize the recoverability of γ when α = .5.

In addition, hierarchical Bayesian methods make explicit the
uncertainty in and relationships between parameter estimates
(Scheibehenne & Pachur, 2015; Wetzels, Vandekerckhove,
Tuerlinckx, & Wagenmakers, 2010). We see the hierarchical
Bayesian approach as an additional, important tool that can
both facilitate parameter identification and help researchers
visualize a form of uncertainty in their estimates. While we
used maximum likelihood for this demonstration, extensions
of this work could use other estimation procedures, like hi-
erarchical Bayesian techniques, to generate the distribution
of parameter estimates shown in Figures 1, 4 and 6. The
method of estimation and the experimental design are each
one of many components of parameter recovery studies, and
both importantly contribute to the conclusions drawn by re-
searchers.

We hope our work both promotes a more nuanced under-
standing of the measurement process of parameter estimation,
and provides a step forward in developing ways to evaluate
experimental designs in a way that accommodates these nu-
ances.

References
Blaha, L. M. (2019, December). We Have Not Looked at

Our Results Until We Have Displayed Them Effectively:
A Comment on Robust Modeling in Cognitive Science.
Computational Brain & Behavior, 2(3-4), 247–250. doi:
10.1007/s42113-019-00059-6

2035



Broomell, S. B., & Bhatia, S. (2014). Parameter Recovery
for Decision Modeling Using Choice Data. Decision, 1(4),
252–274.

Broomell, S. B., Sloman, S. J., Blaha, L. M., & Che-
len, J. (2019, December). Interpreting Model Com-
parison Requires Understanding Model-Stimulus Relation-
ships. Computational Brain & Behavior, 2(3-4), 233–238.
doi: 10.1007/s42113-019-00052-z

Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala, J. V.
(2010, April). Adaptive Design Optimization: A Mutual
Information-Based Approach to Model Discrimination in
Cognitive Science. Neural Computation, 22(4), 887–905.
doi: 10.1162/neco.2009.02-09-959

Erev, I., Roth, A. E., Slonim, R., & Barron, G. (2002).
Combining a Theoretical Prediction with Experimental Ev-
idence. SSRN Electronic Journal. doi: 10.2139/ssrn
.1111712

Glendenning, K., Wischgoll, T., Harris, J., Vickery, R., &
Blaha, L. (2016, February). Parameter Space Visual-
ization for Large-scale Datasets Using Parallel Coordinate
Plots. Electronic Imaging, 2016(1), 1–8. doi: 10.2352/
ISSN.2470-1173.2016.1.VDA-490
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