
Generalizing Outside the Training Set:
When Can Neural Networks Learn Identity Effects?

Simone Brugiapaglia (simone.brugiapaglia@concordia.ca)
Matthew Liu (matthew.liu@mail.concordia.ca)

Department of Mathematics, Concordia University, Montréal, QC, Canada.

Paul Tupper (pft3@sfu.ca)
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada.

Abstract

Often in language and other areas of cognition, whether two
components of an object are identical or not determine whether
it is well formed. We call such constraints identity effects.
When developing a system to learn well-formedness from ex-
amples, it is easy enough to build in an identify effect. But can
identity effects be learned from the data without explicit guid-
ance? We provide a simple framework in which we can rig-
orously prove that algorithms satisfying simple criteria cannot
make the correct inference. We then show that a broad class
of algorithms including deep neural networks with standard
architecture and training with backpropagation satisfy our cri-
teria, dependent on the encoding of inputs. Finally, we demon-
strate our theory with computational experiments in which we
explore the effect of different input encodings on the ability of
algorithms to generalize to novel inputs.
Keywords: identity effects, machine learning, neural net-
works, generalization

Introduction
Imagine subjects are told that the words AA, GG, LL, and
MM are good, and the words AG, LM, GL, and MA are bad.
If they are then asked whether YY and YZ are good or bad,
most will immediately say that YY is good and YZ is bad.
Humans will immediately note that the difference between
the two sets of words is that the two letters are identical in
the good words, and different in the second. The fact that Y
and Z do not appear in the training data does not prevent them
from making this judgement.

However, many machine learning algorithms would not
make this same inference given the training set. Depending
on how inputs are provided to the algorithm and the training
procedure used, the algorithm may conclude that since nei-
ther Y nor Z appears in the training data, it is impossible to
distinguish two inputs containing them.

The ability or inability of neural networks to generalize
learning outside of the training set has been controversial for
many years. G. F. Marcus (2003) has made strong claims
in support of the inability of neural networks and other al-
gorithms that do not instantiate variables to truly learn iden-
tity effects and other algebraic rules. The explosion of in-
terest in deep neural networks since that book has not truly
changed the landscape of the disagreement; see G. Marcus
and Davis (2019) for a more recent discussion. Here we hope
to shed some light on the controversy by considering a single
instance of an algebraic rule, specifically an identity effect,
and providing a rigorous framework in which the ability of

an algorithm to generalize it outside the training set can be
studied.

In our framework, we consider mappings that transform the
set of inputs, and consider whether particular learning algo-
rithms are invariant to these transformations, in a sense which
we will define. We show that if both the learning algorithm
and the training set are invariant to a transformation, then the
predictor learned by the learning algorithm is also invariant to
the transformation, meaning that it will assess inputs before
and after transformation as equally well formed. We then
show that a broad class of algorithms, including deep feed-
forward neural networks trained via backpropagation, satisfy
our criteria for some commonly used encodings. Finally, we
show with computational experiments how this dependence
on encoding plays out in practice. In our example we will see
that one-hot encoding (also known as localist encoding) leads
to a learner that is unable to generalize outside the training
set, whereas distributed encoding allows partial generaliza-
tion outside the training set.

This work is a refinement and extension of earlier work
(Tupper & Shahriari, 2016). We have simplified the main
theory and shown that it is applicable to a broader range of
situations. Additionally, we have shown the theory applies to
a large class of learning algorithms and encodings of inputs.

Main result
Suppose we are training an algorithm to assign ratings to in-
puts. For example, we may want an algorithm that indicates
whether a sentence is grammatical, whether two shoes in a
picture form a matching pair, or decide whether a word is
well-formed or not. Often the ratings will just be 0 or 1, like
in the case of a binary classifier. Let W be the set of all pos-
sible inputs w. In our setting, W is composed of words, but it
may also consist of strings, vectors, images, etc.

Our learning algorithm is trained on a set of data D. D
consists of a list of input-output pairs (w,r) where w ∈W and
r ∈ R. Let D be the set of all possible data sets with words
from W .

Typically, in machine learning there is a training algorithm
(such as backpropagation, or least-squares fitting) which
takes as input a training data set D and outputs a set of pa-
rameters p. We formalize this with a map A as

p = A (D).

2057
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

(Note that the training algorithm might involve randomized
operations, such as random parameter initialization; in this
case, the set of parameters p is a random variable). Now,
when we want to give a rating to a novel input w, we plug it
into our model f using the parameters p, i.e.

r = f (p,w).

In the case of artificial neural networks, this operation cor-
responds to a forward propagation of w through the trained
network.

Though in practice determining p is done separately from
computing the rating of w (especially since one usually wants
multiple w to be evaluated), for our purposes we can combine
them into one function we can analyse. We define the learning
algorithm as a map L : D×W → R given by

L(D,w) = f (A (D),w).

What we want to be able to show is that a given algorithm
is not able to distinguish between two inputs not in D. More
formally, we want our conclusion to be of the form

L(D,w1) = L(D,w2),

for two inputs w1,w2 in W , but not in D, when L and D have
some particular structure.

The relation between w1 and w2 will be defined with the
help of a function τ : W →W that takes w ∈W and gives
τ(w) ∈W . It is some transformation of the inputs. For ex-
ample, if W is a set of words, τ might reverse the order of
the letters. If W is a set of images, τ might perform a mirror
reflection. In the case of a data set D, we define τ(D) as the
data set obtained by replacing every instance of (w,r) in D
with (τ(w),r).

Our main result follows.

Theorem 1 (Rating impossibility for invariant learners)
Let L be a learning algorithm, D a data set, w ∈W an input,
and τ a transformation of W. Assume that the following two
conditions hold:

1. L(τ(D),τ(w)) = L(D,w) (invariance of the algorithm);

2. τ(D) = D (invariance of the data).

Then, L(D,τ(w)) = L(D,w).

Proof.

L(D,τ(w)) = L(τ(D),τ(w)) = L(D,w).

�
The first condition in the theorem, invariance of the algo-

rithm, we will show to be true of some learning procedures
for all D and w, though the result only requires it for the D
and w of interest. The second condition, invariance of the
data, we expect to hold only for certain particular data sets,
and, in particular, the richer the data set, the fewer transfor-
mations τ it will be invariant to. Under these two conditions,

the theorem states that the algorithm will not be able to give
different ratings to w and τ(w).

Here is a simple example of how this theorem works. Sup-
pose W consists of two-letter words and τ is a transformation
that reverses the order of the two letters. Suppose L is a learn-
ing algorithm that is invariant to τ , which is a fairly reason-
able assumption, unless we explicitly build into our algorithm
reason to treat either letter differently. Suppose D is a training
set where all the words in it are just the same letter twice, so
that τ(D) = D. Then the theorem states that the learning al-
gorithm trained on D will give the same result for w and τ(w)
for all words w. So the algorithm will give the same rating
to xy and yx for all letters x and y. This is not surprising: if
the algorithm has no information about words xy where x 6= y,
then why would it treat xy and yx differently?

Now we discuss how to apply this theorem to our actual
motivating example, i.e. learning an identity effect. Again,
suppose words in W consist of ordered pairs of capital letters
from the English alphabet. Suppose our training set D con-
sists of, as in our opening paragraph, a collection of two-letter
words none of which contain the letters Y or Z. The ratings
of the words in D are 1 if the two letters match and 0 if they
don’t. To apply the theorem, let τ be defined by

τ(xY) = xZ, τ(xZ) = xY, τ(xy) = xy,

for all letters x and all letters y with y 6= Y,Z. So τ usu-
ally does nothing to a word, but if the second letter is a Y, it
changes it to a Z, and if the second letter is a Z, it changes it
to a Y. Note that since our training set D contains neither the
letters Y nor Z, then τ(D) = D, as all the words in D satisfy
τ(w) = w.

According to our theorem, to show that L(D,YY) =
L(D,YZ), and therefore that the learning algorithm is not able
to generalize the identity effect correctly outside the training
set, we just need to show that

L(τ(D),τ(w)) = L(D,w),

for our D and w = YY. In fact we will show that this identity
is true for all D and w for certain algorithms and encodings of
the inputs.

Encodings
Up till now, we have let our set of inputs W be any set of
objects. But in practice, our inputs will always be encoded as
vectors. We use w to denote both the input and its encoded
vector. We will also consider maps τ that are implemented by
linear transformations when working with encoded vectors.
We denote the linear transformation that implements τ by T .

As an example, the map τ we previously introduced, that
switches Y and Z in the second position of a word, will be
implemented by a linear transformation T , but the particular
transformation will depend on how we encode the two-letter
words as vectors. We will obtain different results for the in-
variance of a learning algorithm depending on the properties
of T .

2058

Which learning algorithms are invariant?
No regularization
We suppose our model for the data D = {(wi,ri)}n

i=1 is given
by r = f (B,Cw) where C is a matrix containing the coeffi-
cients multiplying w and B incorporates all other parameters
including any constant term added to Cw (e.g., the first bias
vector in the case artificial neural networks). The key point
is that the parameters C and the input w only enter into the
model through Cw.

This at first might seem restrictive, but in fact most neural
network models use this structure: input vectors are multi-
plied by a matrix of parameters before being processed fur-
ther. For example, suppose we are training a three-layer feed-
forward neural network whose output r is given by

r = σ3(W3 σ2(W2 σ1(W1w+b1)+b2)+b3),

where W1,W2,W3 are weight matrices, b1, b2, b3 are bias vec-
tors, and σ1,σ2,σ3 are nonlinear activations (e.g., ReLU or
sigmoid functions). In this case, we can let C = W1 and
B = (W2,W3,b1,b2,b3) to show that it fits into the required
form.

Now suppose we select B and C by optimizing some loss
function

F(B,C) = L (f (B,Cwi),ri, i = 1 . . .n), (1)

Let B̂ and Ĉ be the optimal values of B and C and let us as-
sume them, for the moment, to be unique minimizers.

Let us now assume that the transformation τ is linear and
invertible, hence of the form τ(w) =T w, for some invertible
matrix T . If we apply T to the words wi in the data set and
perform optimization again, we get new parameters B′ and
C′. But note that C′(T wi) = (C′T)wi. So the optimum is
obtained by letting

C′T = Ĉ,

or C′ = ĈT −1, and B′ = B̂.
But what output do we get with these new parameters for

the input τ(w)? We obtain

L(τ(D),τ(w)) = f (B′,C′T w) = f (B,Ĉw) = L(D,w),

as required. The fact that w is premultiplied by a matrix that
is fit as part of the learning algorithm means that it doesn’t
matter whether all inputs are premultiplied by a linear trans-
formation.

Summarizing these considerations we obtain the following
theorem.

Theorem 2 Suppose that a learning algorithm L uses a
model of the form r = f (B,Cw), where parameters B and C
are determined by minimizing a loss function of the form (1)
and that admits a unique set of parameters (B̂,Ĉ) as its global
minimizer. Then, for any D and w, L is invariant to any τ that
is a linear invertible transformation:

L(τ(D),τ(w)) = L(D,w).

Regularization
So far we have considered a loss function where the param-
eters C that we are fitting only enter through the model f in
the form Cwi. But, more generally, we may consider the sum
of a loss function and a regularization term:

F(B,C) = L (f (B,Cwi),ri, i = 1 . . .n)+λR(B,C),

where λ > 0 is a tuning parameter. Suppose B and C are
obtained by minimizing this objective function.

Suppose our map τ is again implemented by an invertible
matrix T in our encoding. As long as R(B,CT) = R(B,C)
for all B and C and if F(B,C) still admits a unique set of
minimizers, then the arguments of the previous subsection go
through as before. This begs the question: what linear trans-
formations τ will make this true? If R has the form

R(B,C) = R1(B)+‖C‖2
F ,

where ‖ ·‖F is the Frobenius norm (obtained by squaring and
adding all the coefficients in C), also known as L2 regular-
ization, then any orthogonal transformation τ will lead to a
learning algorithm that is invariant to τ .

If we use an L1 regularization term (obtained by summing
the absolute value of all the entries in C), the algorithm will
not be invariant to all orthogonal transformations, but it will
be to τ that are implemented by a permutation matrix, as it is
in our motivating example with localist encoding.

Multiple minima and backpropagation
It is an idealization of most learning algorithms to assume
that they are trained by finding unique global minimizers of
loss functions. Models are often not trained all the way to a
minimum, there may be multiple minima, and there may be
local, non-global minima. In order to determine if a learn-
ing algorithm L is invariant to a transformation τ , we have to
study how the parameters are actually learned from the data.

For deep neural networks, which are our focus here, a
standard training method is backpropagation, which can be
viewed simply as gradient descent. Parameters are deter-
mined by randomly generating initial guesses and then using
gradient descent to find values that sufficiently minimize the
loss function.

Let us consider a linear orthogonal transformation τ as-
sociated with a linear orthogonal matrix T . We randomly
initialize the parameters C as C = C0, such that C0 and C0T
have the same distribution. This happens, for example, when
the entries of C0 are identically and independently distributed
according to a normal distribution N (0,σ2). (Note that this
scenario includes the deterministic initialization C0 = 0, cor-
responding to N (0,0)). We also initialize B = B0 in some
randomized or deterministic way independently of C0.

The subsequent estimates of Ci+1 for C are then computed
via backpropagation as

Ci+1 =Ci +θi
∂F
∂C

(Bi,Ci),

2059

for i = 0,1, . . . ,k and a sequence of step sizes {θi}k
i=1, which

we assume to be independent of C0. Successive approxima-
tions Bi of B are computed similarly.

Now, what happens if we apply the same training strategy
using the transformed data set τ(D)? We denote the generated
parameter sequence with this training data {(B′i,C′i)}k

i=1. We
claim that the sequence (B′i,C

′
iT) has the same distribution

as (Bi,Ci) for all i. Then, if we use (Bk,Ck) as the parameters
in our model we obtain

L(τ(D),τ(w)) = f (B′k,C
′
kT w)

which has the same distribution as L(Bk,Ckw), establishing
invariance of the learning algorithm to τ .

The full statement of our results is as follows; we provide
a full proof in another publication.

Theorem 3 Let τ be a linear transformation with orthogonal
matrix T . Suppose a learning algorithm L uses a model of
the form f (B,Cw) and parameters B and C are determined
by performing a predetermined number of gradient descent
iterations to minimize an objective function of the form

F(B,C) =L (f (B,Cwi),ri, i = 1, . . . ,n)+λ (R1(B)+‖C‖2
F).

Suppose the random initialization of the parameters B and C
are independent and that the initial distribution of C is invari-
ant with respect to right-multiplication by T . Then, L(D,w)
and L(τ(D),τ(w)) have the same distribution.

Numerical experiments
Since our theoretical results apply to idealizations of the com-
monly used learning algorithms, here we explore how appli-
cable they are with some numerical experiments. Our exper-
imental setting is analogous to the one in (Tupper & Shahri-
ari, 2016). However, we will consider different training algo-
rithms and letter encodings.

Task and data set
Our vocabulary W is the set of all two-letter words composed
by any possible letter from A to Z. We define the set W1 as
the set of all grammatically correct words (i.e. AA, BB, ...,
ZZ) and W0 as the set of all other possible words (which in
turn are grammatically incorrect).

The training data set consists of the 24 words AA, BB,
CC, ..., XX from W1 along with 48 words uniformly sampled
from W0 without replacement. The learners are then validated
on the words YY,ZZ,YZ,ZY,xY,xZ, where x∈ {A,B, ...,X}.
We assign ratings 1 to words in W1 and 0 to words in W0.

Encodings
We represent each word as the concatenation of the encod-
ings of its two letters, and so the representation of the words
is determined by the representation of the letters. All letter
representations used have a fixed length of k = 26 (chosen
due to the 26 letters that make up our vocabulary W). We
define one deterministic encoding and two random ones.

One-hot encoding (or localist encoding) is our sole deter-
ministic encoding. This encoding simply assigns a single
nonzero bit for each character. Namely, the letters A to Z
are encoded using the standard basis vectors {ei : 1 ≤ i ≤ k}
where ei has a 1 in position i and 0’s elsewhere. Because of
its deterministic nature, new encodings are not generated at
each repetition.

Binary (or distributed) encoding defines an arbitrary com-
bination of k bits as our representation, with all characters
encoded uniquely. We also define a j-active bits binary en-
coding where only j arbitrary bits are 1’s with all 0. For our
experiments, we set j = 3. Again, all characters are ensured
to be encoded uniquely. Both one-hot and binary encodings
are binary representations as all k entries are constrained to
be 1 or 0.

Finally, the Haar encoding uses the rows of a random k×k
matrix sampled from the orthogonal group O(k) via the Haar
distribution (Mezzadri, 2007) for the representation of each
of the k letters. In other words, the row vector ai of the ran-
domly sampled matrix A is used for the representation of the
ith letter, where 1 ≤ i ≤ 26. Use of the Haar distribution en-
sures all encoded vectors are orthogonal to each other.

In the context of our experiments, all random encodings
are randomly re-generated for each repetition, producing new
representations for each iteration.

Note that with these different encodings the map τ has rep-
resentations as the matrix T with different properties. With
the one-hot encoding, T is a permutation matrix (and hence
orthogonal) that just switches the last two entries of a vector.
With the Haar encoding, T is an orthogonal matrix. Finally,
with the 3-active bit binary, T does not have any special al-
gebraic properties.

Neural network learners
The learners we test are artificial feedforward neural networks
with 1, 2 and 3 hidden layers. Each hidden layer contains
256 units, with ReLU nonlinearities for all hidden units and a
sigmoid activation for the output unit. All weights are initial-
ized using the random Gaussian distribution N (µ, σ2) with
µ = 0 and σ2 = 0.0025. Biases are initialized to 0.

We train the models by minimizing the binary cross-
entropy loss function via backpropagation using the Adam
optimizer (Kingma & Ba, 2014) with the following hyperpa-
rameters: γ = 0.001, β1 = 0.9 and β2 = 0.999. The batch-size
is set to 72 (the number of training samples) to ensure deter-
ministic iterates and the number of epochs are tested at 100
and 500. The neural network architectures are implemented
in Keras (Chollet et al., 2015).

Randomness
The experiment is repeated 40 times for each learner. For
each iteration of the experiment, we randomly generate a new
training data set. The validation data set is instead generated
only once and held constant across all learners and all experi-
ments. For each encoding, the three neural network architec-
tures are trained and validated in succession. Similarly, the

2060

Figure 1: Predictions of network architectures and encodings on novel words. From top to bottom: One-hot encoding, dis-
tributed 3-active bit encoding, and Haar encoding. From left to right: 1, 2, and 3 hidden layers.

sequence of 40 initial weights are also the same among all
encodings. To further ensure consistency, the same random
seed is set once at the beginning of each learner’s experiment
(not during the 40 individual experiments). As such, the runs
for each encoding use the same sequence of 40 training data
sets (and repeated 3 times for each architecture).

Results
We present the performance on a test set of each neural net-
work architecture on each encoding in Figure 1.

The outputs shown correspond to a training session of 500
epochs. The first 2 bars of each graph correspond to words
included in the training set (xy denotes the first word from W0
in the training set of a particular run). The boxes represent
the average rating over all 40 outputs and the bars represent
the corresponding standard deviation.

The box plots show that the neural networks are able to
generalize (albeit not perfectly) to novel inputs on 1 of the

3 encodings tested, namely the binary 3-active bit encoding.
This conclusion stems from the fact that higher than average
scores are given by those learners to the novel stimuli YY and
ZZ than to the novel stimuli YZ, ZY. The networks trained
using the one-hot and Haar encodings show no discernible
pattern indicating a complete inability to generalize the iden-
tify effects outside the training set. These results follow after
all networks are observed to learn the training examples all
but perfectly (as evidenced by the high ratings for column
AA and low ratings for column xy).

It is interesting to note that both the one-hot and Haar en-
codings represent the only true orthogonal encodings. In the
one-hot case, failure to generalize can be explained by the
fact that the novel inputs stimulated connections and units
that were never activated during the training phase. The Haar
case addresses this issue by assigning nonzero values for each
entry in the representation. However, it too fails to allow the
networks to learn the identity effects.

2061

Figure 2: Evolution of training loss (solid lines) and validation loss (dashed lines) of networks trained on the different encodings
(3-layer case). From left to right: One-hot encoding, distributed 3-active bit encoding, and Haar encoding.

Figure 2 shows the evolution of the training and validation
losses for the first 100 epochs when the 3-layer network is
trained on different encodings. A discernible gap between
dotted and solid lines indicate inability of the network to gen-
eralize to new inputs. The gap being present in one-hot and
Haar cases while not being present in the distributed case mir-
rors the results we observe in Figure 1.

Discussion
We see agreement between our theoretical predications and
our numerical experiments for our identity effect test prob-
lem. Our theory predicted that when the encoded letters for
different vectors are orthogonal (as they are with one-hot and
Haar encodings), then since the transformation τ is an orthog-
onal transformation, the learner will not be able to distinguish
between the inputs YY and YZ. The theory has nothing to
say about the case of the 3-bit active encoding, because in
that case τ is not orthogonal, and our theorems do not apply.
Accordingly, in this case, even though the network is not able
to give the correct answer of 1 for YY and 0 for YZ, and so
not be said to learn the generalization perfectly, it does give a
higher rating on average to YY than to YZ. We leave it to the
reader to decide if this constitutes an exception to the claim
that learners need to instantiate variables in order to general-
ize algebraic rules outside the training set (G. Marcus, 1999).

Our results hew closely to those of Prickett, Traylor, and
Pater (2019); see also (Prickett, Traylor, & Pater, 2018).
There the authors train a variable-free neural network to per-
form reduplication, the process where a linguistic element is
repeated from the input to the output. Following the experi-
mental work of G. Marcus (1999), they trained the network
on many examples of the pattern ABB, where A and B are
substituted with syllables. The network is then tested by see-
ing if it can predict that the third syllable of a string such
as “li na ” should be “na”, even when not exposed to this
input before. The authors found that their network could per-
form partial generalization when the novel inputs included
new syllables or new segments, but could not generalize to
new feature values. The reason for this is that feature values
were encoded in their model via a localist representation, and

introducing a new feature value was like expecting the net-
work to learn a function depending on a bit that was always
set to zero in the training data, just like the localist represen-
tation in our set-up. Since novel segments were composed
of multiple novel feature values, this corresponds to our 3-bit
active encoding, where apparently learning can be extended
imperfectly to new combinations of already seen segments.

Our results and those of Prickett et al. (2019) continue a
theme that is well known in connectionist literature: when
representations on novel inputs overlap with representations
in training data, networks are able to generalize training to
novel inputs. See McClelland and Plaut (1999) for a discus-
sion of this point in the context of identity effects.

Acknowledgments
The authors were supported by NSERC Discovery Grants.
S.B. and M.L. also acknowledge the Faculty of Arts and Sci-
ence of Concordia University for financial support.

References
Chollet, F., et al. (2015). Keras. https://keras.io.
Kingma, D. P., & Ba, J. (2014). Adam: a method for stochas-

tic optimization. arXiv preprint arXiv:1412.6980.
Marcus, G. (1999). Do infants learn grammar with algebra

or statistics? Response. Science, 284(5413), 436–437.
Marcus, G., & Davis, E. (2019). Rebooting AI: building

artificial intelligence we can trust. Pantheon.
Marcus, G. F. (2003). The algebraic mind: Integrating con-

nectionism and cognitive science. MIT press.
McClelland, J. L., & Plaut, D. C. (1999). Does generaliza-

tion in infant learning implicate abstract algebra-like rules?
Trends in Cognitive Sciences, 3(5), 166–168.

Mezzadri, F. (2007). How to generate random matrices
from the classical compact groups. Notices of the Amer-
ican Mathematical Society, 54(5), 592-604.

Prickett, B., Traylor, A., & Pater, J. (2018). Seq2Seq models
with dropout can learn generalizable reduplication. In Pro-
ceedings of the 15th Workshop on Computational Research
in Phonetics, Phonology, and Morphology (pp. 93–100).

2062

Prickett, B., Traylor, A., & Pater, J. (2019). Learn-
ing reduplication with a variable-free neural network.
http://works.bepress.com/joe pater/38/.

Tupper, P., & Shahriari, B. (2016). Which learning algo-
rithms can generalize identity-based rules to novel inputs?
In Proceedings of the 38th Annual Conference of the Cog-
nitive Science Society (pp. 1289–1284).

2063

