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Abstract

We present a new quantum-markovian model of two-
alternative forced choice (2AFC) decision-making. We treat
the decision-making process as an accumulation of evidence
between two competing alternatives, analogous to the drift dif-
fusion model (DDM), in which the stimulus acts as a gener-
ative process, emitting bits of information that are treated as
quantum particles. The particles are acted on by a landscape
determined by the agent’s experience with the task or stimu-
lus, signal strength, and allocated cognitive control. We de-
rive closed form expressions for success rates under both the
interrogation and free response paradigms. Under the free re-
sponse paradigm, we show that this model reduces to a Markov
process with closed form response time (RT) distributions that
take the form of inverse gaussians (IGs) with periodic noise
characteristic to the task set. In the limit of long RT, the RT
distributions become smooth, recovering true IG distributions
analogous to the standard DDM.

Keywords: DDM; quantum cognition; markov decision-
making; 2AFC

Introduction

We present a new quantum-markovian model of information
accumulation for perceptual two-alternative forced choice
(2AFC) decision making. Our model builds on a framework
that treats each decision outcome as a square attractor po-
tential, the width of which is determined by the relative auto-
maticity of that response and the depth of which is determined
by the amount of cognitive control allocated to it by the agent.

A prime example of 2AFC tasks is the dot motion task,
in which a participant is presented with an image of moving
dots, a portion of which move cohesively in one of two car-
dinal directions (we will use left or right) while the others
move randomly (Shadlen & Newsome, 1996). The partici-
pant is tasked with identifying the direction of the cohesively
moving dots (the target stimulus), a task made more or less
difficult by the relative number of randomly moving dots (the
distractor stimulus). In order to do so, participants are thought
to exert cognitive control, in the form of attention favoring the
processing of either the entire stimulus over distractors or of
stimuli moving in one of the two directions, in the case of ex-
ceptions or a learned bias (e.g., movement in one direction is
more frequent than the other), and thus parameterizing infor-
mation processing to improve performance on the task.

The drift diffusion model (DDM) (Ratcliff, 1978) has been
used to explain behavior in 2AFC tasks as a process of evi-
dence accumulation toward one of two responses (e.g. left or

right in case of the dot motion task). Although the DDM
alone does not specify a mechanism for control and auto-
maticity in such tasks, work building on the DDM has ad-
dressed the role of control in modulating its parameters (Bo-
gacz et al., 2006). A fundamental feature of the DDM is the
assumption that variability in performance is due to noise,
which is typically treated as Gaussian. This is assumed to
reflect influences on the decision process (or its parameters)
that are uncorrelated with the signal or the process itself.

Quantum mechanical models have been proposed as an al-
ternative for explaining the dynamics of the decision process,
in which behavioral variation arises directly from a distribu-
tion of states characteristic to the system rather than unex-
plained exogenous influences. Justifications for this line of
thinking are several, and include the inherent stochasticity
of quantum systems, which may naturally capture the inher-
ent stochasticity of neural systems without the requirement of
additional variables; in cognitive models, this noise is com-
monly assumed to have a Gaussian form and added post hoc.
In a quantum model, the form of the stochasticity of the sys-
tem is determined by the parameters of the system, and is
inherent to the model.

Previous quantum decision-making models treat an agent’s
cognitive state as a single quantum particle, repeatedly mea-
sured throughout the course of the decision-making process.
Details of a DDM model of this type are given in (Busemeyer,
Zheng, & Townsend, 2006). This single-particle model has
the virtue of directly addressing interference and order ef-
fects, which arise from the uncertainty principle in physical
systems and, in cognitive systems, reflect the fact that mea-
suring the state of a decision by self-report has the effect of
altering future measurements of that same decision. Here,
we present a variant of the quantum model that differs from
other quantum cognitive models in that, rather than treating
the agent’s mental state as a single quantum particle evolv-
ing in time, it treats the stimulus as a single generative pro-
cess, emitting bits of information as quantum particles, acted
on by a landscape determined flexibly by the agent’s mental
state. Because we are treating a process wherein the same
stimulus-emitted particle is not subject to multiple measure-
ments, our model predicts that this type of process (perceptual
2AFC with a single response to a single trial) does not exhibit
the same order effects and interference properties of a single-
particle process. However, it is a natural extension of single
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particle models that consider repeated value judgments and
allows the two types of decision-making to share the quan-
tum mechanical framework. Like the DDM, this approach
assumes that the dynamics of decision-making behavior are
determined by an integration process: the integration of de-
tections of the quantum particles, serving as bits of informa-
tion about the stimulus, that are measured by agents through
the “filter” of their internal representations. Unlike the clas-
sic DDM, which treats perception as continuous, our particle-
based model works in a discrete-time framework, which is in
keeping with a range of recent work that shows that attention
causes periodicity to arise in perception by inducing corti-
cal oscillations that effectively bundle the stimulus into pack-
ets, passed between populations of neurons during a receptive
window. A review of this theory and supporting evidence can
be found in (Fries 2009). By modeling perceptions of the
stimulus as a quantum particle, we mirror the distributed na-
ture of internal representations of complete stimuli with com-
peting components by diffuse and overlapping populations of
neurons, as well as the fact that populations of neurons receiv-
ing the diffuse competing input will tend to, in the measure-
ment process, collapse that input to a single representation as
though they had only been shown one stimulus component
(Reynolds, Chelazzi, & Desimone, 1999). In quantum me-
chanics, the property of particles exhibiting a distributed state
before measurement and a collapsed one after measurement
is known as wave-particle duality.

In our model, after determination of the properties of the
quantum attractor landscape, the information accumulation
process is easily reducible to a simple Markov chain. In the
following analysis of our quantum Markov model, we find
probabilities of success under the interrogation paradigm,
closed form solutions for reaction times in the free response
paradigm, and we show that, in the limit of time, the RT dis-
tributions of this model are given by inverse gaussian distri-
butions comparable to those exhibited by the DDM. However,
key aspects in both concept and behavior of our multi-particle
model differ from both the standard continuous-time DDM
and the single particle model, thus providing an opportunity
to distinguish among these in future empirical studies.

Background

We begin by defining an infinite one dimensional attractor
landscape populated by square attractors. Each attractor cor-
responds to the internal representation of a single stimulus
component and corresponding response; that is, a set of rules
encoded by the agent to bind a stimulus component to a re-
sponse output. In this paper, we consider the limiting case
of two alternatives, corresponding to a pair of attractors and
the options in a 2AFC decision process (eg: if the cohesive
motion is leftward, push the left arrow key) (Shadlen & New-
some, 1996). The agent’s experience with the task, as well as
the strength of the input signal (signal to noise ratio, in the dot
motion task), determines the width, w;, of the square attrac-
tor for each representation and, thus, its relative automaticity.
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The agent, having some information about the task they are
expected to perform, then allocates cognitive control in such
a way as to parameterize processing of stimulus information
appropriately to allow for rapid and accurate performance.
This is accomplished by the flexible allocation of control to
both or individual attractors as suits the conditions of the ex-
periment. To attend mor focally on the task-relevantstimuli
(and away from distractors such as ambient noise), an agent
may deepen both attractors; an agent given a somewhat reli-
able cue or that has noticed a frequency pattern in the stim-
uli may attend more closely to only one stimulus component,
deepening the associated attractor. The relative allocation of
control to each response determines the depth of its attrac-
tor, d;. In an environment with two stimulus parameters, the
entire landscape may then be described by a single potential,
V(wi,wa,d1,dy).

As noted in the introduction, there is evidence that attention
operates as a “’blinking spotlight”, facilitated by oscillations
in cortical activity that propagate information across differ-
ent levels of processing in discrete packets (Fries, 2009). In
this paper, we provide a formal interpretation of the blink-
ing spotlight model of attention, treating incoming packet of
perceptual information as a quantum particle, acted on by the
landscape, and having its position measured to be within one
attractor, the other, or neither, before a new particle is admit-
ted to the system. This measurement is analogous to emitting
one particle at a time into the landscape, placing an array of
geiger counters within each attractor, and waiting for one to
pick up the particle before admitting a new particle to the sys-
tem.

Drawing parallels between a physical quantum system and
cognitive systems must be done with care not to overstep the
usefulness of the metaphor for modeling. To that end, we
make several important assumptions in the treatment of inci-
dent stimulus information as particles. First, we assume that
every agent participating in a task is capable of allocating
control, in the form of attention, sufficiently to process rel-
evant sensory information above chance; that is, we assume
agents are able to attend the stimulus and understand how to
respond to it. Quantum systems admit two types of state for
particles: bound and scattering. It is only in bound states that
particles can be expected to be found within the attractors
with probability above chance. For this reason, we will treat
only the bound states of our system. Second, while it is rea-
sonable to think that the agent’s state of arousal, (with respect
to its influence on the focus vs. dissipation of attention) which
may change between or even within trials, will impact their
ability to perform the task, we cannot, within the confines of
this model, make the assumption that any one state of arousal
is more likely than another. In a quantum system, we may
relate the agent’s arousal to the specific energy of a bound
state. For example, at higher energy, the particle is more
likely to be found outside of an attractor, much as an agent
that is more agitated is less likely to be able to attend a de-
manding task. Furthermore, and on a more technical note, the



measured state of an agent is described by their performance
metrics (RT and correctness), unlike a physical quantum sys-
tem, the measured state of which often belies its energy. For
these reasons, given that our model system is comprised of a
single particle of unknown energy, we rely on the postulate of
equal a priori probabilities to determine that each bound state
admitted by the system is equally likely to occur. Finally, al-
though allocated control is known to fluctuate both within and
between trials, we assume that the fluctuations happen in be-
tween the measurements of particles (processing of a single
packet of stimulus information) such that the corresponding
changes in the depths of attractors do not alter the wave func-
tion of a particle between when it is admitted to the system
and when it is measured; that is, the stimulus packet is passed
through the system while it is in a single synchronous state,
not while the synchronicity of relevant populations is in flux.
This seems to be the case, not merely a simplifying assump-
tion, for cognitive systems experiencing the synchronous ef-
fects of attention (Fries, 2009). This allows us to find the
bound states and corresponding probability distributions for
a particle in V by solving the time independent Schroedinger
equation.

Next, we will briefly describe the form of the bound states,
which gives rise to the probability distributions that determine
where, in the landscape, a particle is found, and lend insight
to one of the phenomena of this model, the “dropped bit”,
in which an incident stimulus particle is not passed along for
higher processing because it has not been found to be in ei-
ther attractor. Prior to measurement, the state of each piece of
information, determined by the bound states, is a continuous
distribution across both attractors. Although the states vary
with attractor parameters, they all share a canonical form: ex-
ponentials that converge to zero as their position goes to posi-
tive or negative infinity and oscillations within the wells. The
quantum system always has the property, therefore, of having
a non-zero probability of the particle being found outside the
attractors. This probability is higher in narrower attractors,
associated with a less salient stimulus or less automatic re-
sponse and in shallower attractors, to which less control has
been allocated. The presence of multiple attractors of finite
depths affects the distributions, causing states to have com-
ponents that reside in both attractors and giving rise to a fun-
damental conflict between stimulus components, altering the
properties of success rate and RT distributions.

In order to accumulate information about the stimulus, the
agent makes measurements of the position of the quantum
particle, causing the collapse of its state from a diffuse distri-
bution to a definite state. This dynamic is similar to one found
in neural populations in the visual system when distributed
populations of neurons, representing a a number of stimuli
in an overlapping receptive field, compete for representation
by a population at a higher level of processing. It has been
shown that the neurons at the higher level of processing will
respond to the mixed stimulus representations as they would
to only a single representation (Reynolds, Chelazzi, and Des-
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imone, 1999). Similarly, the measurement of the quantum
particle in our model allows for finding the particle to be in
well 1 (associated with alternative 1), well 2 (associated with
alternative 2), or neither well. This final case may be referred
to as ’dropping a bit”, and occurs when the system does not
integrate a bit in a useful way. It may be attributed to tem-
porary inattentiveness, but always has a non-zero probability
of occurrence, regardless of how much control an agent may
attempt to exert. The information is then integrated, accord-
ing to the attractor in which it was measured, as evidence for
either choosing response 1 (leftward motion, left arrow key),
choosing response 2 (rightward motion, right arrow key), or
is ignored. The probability of each case is determined by in-
tegrating the L2 norm of the bound states across the width of
the wells.

To understand this more intuitively, consider the dot mo-
tion stimulus. Each incoming bit contains information about
multiple components of the stimuli, i.e. the direction of both
the target (cohesive) stimulus and the distractor (random)
stimulus.The agent processes the components of the stimulus
at each moment according to how much experience they have
perceiving and responding to such stimuli (the width of the
wells), their commitment to performing the task (their abil-
ity to deepen both attractors) as well as how much control
they have allocated to favoring the processing of one stimulus
over the other to perform the task at hand (their tendency do
deepen a singular attractor if given a reason, such as asym-
metric stimulus frequency, to do so). This combination of
automaticity and expressions of control creates a two well
“filter” that shapes the probability distributions for the stim-
uli. Then, by making judgments about the stimulus, the agent
collapses those distributions, and integrates the information,
stochastically, as perception of left- or right-moving dots. The
measurement clears the particle from the system by passing
the bit to a higher level of processing, similarly to a geiger
counter clearing a photon in measurement by converting its
energy to current. Repeated measurements of the stimulus
lead to the accumulation of evidence and, when one stimu-
lus component has sufficiently out-paced the other, the agent
responds.

Theory and Results

Having addressed the qualitative aspects of this DDM model,
we now continue to a rigorous analysis of its mathematical
properties, yielding closed forms for the probability of suc-
cess under the interrogation paradigm as well as the proba-
bility of success and the RT distributions under the free re-
sponse paradigm. These results mirror the DDM in limiting
cases, but have certain characteristics that arise directly from
the theoretical framework employed here.

Relating the Multi-Particle Quantum DDM to the
Traditional DDM

In the standard DDM, the drift, dx is given by Brownian mo-
tion, where the displacement of the decision variable with re-
spect to its starting point is the sum of a series of independent,



identically distributed (IID) Gaussian variables. The resultant
instantaneous displacement is given by

dx = Adt + cdW (D

Where A is the mean drift rate and the second term is normally
distributed noise (Bogacz et al., 2006).

In our model, the displacement of the decision variable is
also the sum of IID variables, whose probability distributions
are given by the probability of a bit being accumulated as
evidence for either response 1, response 2, or neither.

Value assignments for each bit take on the value of a step
size for a random walk

dx=x€{-1,0,1} 2)

And the agent’s progress from their initial position at time is
given by

X(t) = ix, 3)

The probabiliy of each value of x; is drawn from a uni-
formly distributed set of probabilities, which arise from a set
of equally probable bound eigenstates admitted by V. We
denote the probability that step x; has a value a, given the
eigenstate j as,

Py = P(x = al)) @)

, where j € [1,2,3,...n] is the index of the eigenstate.
The expectation of x;, analogous to the mean drift rate of
the standard DDM, is therefore given by

1 [ 1 (&
J J

The stochastic trajectory of this model arises directly from the
competition between target and distractor stimulus-associated
attractors in the landscape, each of which exerts an attractive
force on the particle, laying claim to some part of the proba-
bility distribution.

State of the System Over Time

This double-well quantum variant on the DDM evolves as a
discrete time Markov chain with a (possibly infinite) single-
step transition matrix, which gives the probability of transi-
tioning from state i to state j in a single step, given by

I-(Ma+M)) My 00 .. 0
M, 1—(My+My) M3 O ... 0
T = : (6)
0 0 0 0M; 1—(Ma+My)

The two common approaches to 2AFC tasks are the inter-
rogation paradigm and the free response paradigm. Under
the interrogation paradigm, the agent is exposed to the stim-
ulus until a time determined by the experimenter, and then
forced to respond. Under the free response paradigm, the
agent is instructed to respond as quickly and accurately as
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possible, then exposed to the stimulus until they decide to
respond, presumably when the system hits one of two deci-
sion boundaries. Under the interrogation paradigm, we are
concerned only with probability of a correct choice. Under
free response, we are interested in both probability of a cor-
rect choice and response time, as well as the tradeoff between
speed and accuracy. For the double-well quantum DDM, the
interrogation and free response paradigms call for different
analyses.

Interrogation Paradigm

Under the interrogation paradigm, we allow the system to
evolve freely and take a measurement of its state at the time
determined by the experimenter, r. As with the standard
DDM, the probability of success given by

Ps = P(X > 0) 7)

In order to find these values, we need to know the probabil-
ity that the system is in a state X; given that it started in state
Xo.

Since the system’s step size is bounded above and below,
the state of the system is also bounded above and below.

x €{-1,0,1} (8)

Xe{-t,—t+1,..0,...t—1,1} 9)

We find the probability distribution of the state of the system
across all possible states by fixing the transition matrix such
that 7 € R™"

n=2+1 (10)
And finding

S, =T'X (11)

Xo = ér11 (12)

Where é;11 € R" is the characteristic vector, with all entries
zero except the ¢t 4 1st entry, which is 1, and corresponds to
starting the system at time t = 0. §; is the probability distri-
bution for all possible states of the system, X.

T is a finite Toeplitz tridiagonal matrix with constants on
the diagonals, which allows for analysis of arbitrary positive
integer powers (Salkuyeh, 2006). In our special case, the
(i,j)th entries of T are given by,

i
1 M\ 2 Al ink jmk

Tt~: - -~ )\f . .

i (t—i—l)(Mz) k; S 20+ 1) )M\ 26+ 1)

13)

km
M=(1—-M —M 2/ MM — 14
k= ( 1 — M) +2vM, ZCOS(Z(Z—H)) (14)
And, since the system began at t = 0, its probability distribu-
tion at time ¢ is described by the entries of the ¢ + 1th column
of T*

i—t—1
! M\ 2 Lo (mi2a+1)Y
T:’,t—&-l_<t+l> (Mz) ‘;)7\'2“+1Sln<2(t+l) (1)
(15)




This is a gaussian-like distribution with periodic interference.
As time progresses, the interference dissipates, and we re-
cover a gaussian distribution.

Assigning the positive direction to be the correct one, the
probability of success is given by

2t+1

Ps= Y (i) (16)

i=t+1

Probability of Success V. Time
Interrogation Paradigm

Probability of Success

E3 2 0
Time Steps

Figure 1: A sample of the probabilities of success over time
under the interrogation paradigm, M; = 0.488, M, = 0.388.
As expected, it will converge to 1 in the limit of time, but
exhibits rapid oscillations and a slower non-monotonicity that
depend on M| and M;. In the case of high conflict, there is a
chance for the outcomes to cross the axis of equal probability
due to these oscillations.

Free Response Paradigm

Under the free response paradigm, we set two decision
boundaries at x = {—T%,T;} where —T¥ is the threshold for
making the incorrect decision (failure), and 7 is the threshold
for making the correct decision (success). We do not assume
that these boundaries are symmetric, which corresponds to
allowing for the existence of bias in a standard DDM. The
system now evolves as a Markov chain with two absorbing
states. Its one-step transition probability matrix is given by

1 M, 0 0 0
0 1—(My+My) M, 0 0
A O M, 1—(My+My) My 0 c Rmxm
0 0 0 My 1—(My+M;) 0
0 0 0 0 M 1
(17)
where
m=Ti+T,+1 (18)

The system may occupy any of state of a discrete space given
by x € R™!. The state of the system at time 7 is again given
by

S, =A'Sy 19)

. The probabilities of success and failure can be described by
setting the thresholds for each choice as absorbing states and
finding the probability of absorption by each from the starting
point.
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The probabilities of success and failure are found by solv-
ing the expressions
Bx;=f (20)

Bx; =y 21

Where s = é,, and f = é; for x; and x,. The entries
(x5); give the probability of success, having started from
xi € [Ty, =Ty +1,.. T, — 1,T;], and failure is given likewise
by (xy);. The matrix B is

1 0 0 0 0
My —(M2+M]) M, 0 0
0 M, 7<M2+M1) M, 0
B=|" 22)
0 0 0

My —(Mx+My) M,
0 0 0 0 0 1
And the boundary conditions are given by (x5)1 =0, (x5)m =
land (x¢)1 =1, (x¢)m» =0. Thatis, if the agent begins exactly
at the threshold for the “incorrect” decision, their probability
of success is zero and their probability of failure is 1.

The entries of x; and xy are exponential and given by,

Mo\
(xf)i=Ciy+Coy <M?> (23)
_Mgl—l
Cif=—— "1 (24)
Mg
M, Mt
Cyr=|— e R — 25
& (Mz) (M’I"I — My )
And .
M 1
(x5)i = C15s+Cos (M?) (26)
Mrln—l
Cis=———>7 27
My - My
—M, My
Cy = 28
. ( M, ) (M;"I—Mg“ (28)

With these values in hand, we can now set the initial posi-
tion of the agent to x = 0, and the probability of success and
failure are given by the Trth entries of xrand x;.

Ty

py—mb [ M =My — ;! (29)
s =My 5
Mf/JrTs _ng +T;

The probability of the agent choosing incorrectly is defined
and found similarly.

Ts T;
r( ME—MEF
Pr=M, | —/—F—3—
o <M1Tf+T’T—M;f+T‘Y GO

Where M| # M,. Where M| = M,, Pr = Pg = 0.5. Success
rates follow a binomial distribution.



Mean Response Time A useful parameter for describing
an agent’s performance is the mean response time for both
correct and incorrect responses, analogous to the uncondi-
tioned RT in the standard DDM.

This is done by setting absorbing states at the boundaries
—Ty and Ty . Next we find the characteristic matrix N = (I —
Q)" ! where Q € R 22 g t,

1— (M +M>) M, 0 (]
M 1—(M+M>) M, -0
0= 0 M, 1—(Mj+M3) ... 0 (31
_qit) —M{fi_ (Uifl(d)Um*j(d)> < ]
N 1 N U (d) 1= 32)
R BTN Unt@Un—ild)y 5
- \/mi*jJrl Un(d) J !

Where U;(d) is the ith Chebyshev polynomial of the second
kind, evaluated at d and d is given by

M+ M,

d= 33
2V/M{M> (33)

(Fonesca & Petronilho, 2005). The sum over the entries of
each row of N gives the expected time before absorption by
either state, having started in state i . Since our agent always
begins at ¢t = 0, we are only interested in i = Ty + 1. There-
fore, the mean response time for the system is given by

m—2

E(RT) = Z Nrpy1,j (34)
=1

RT Distributions as a First Passage Problem To get the
RT distributions for the free response paradigm, we must con-
sider a first passage problem. The probabilities that the first
passage time from initial state Sq to final states s and f is ¢
will be denoted by f;(¢) and f(r) respectively.

To find f;(r), we begin by setting our decision thresholds
as absorbing states in our Markov chain. Thus, the single-
step transition probabilities are given by A (as defined above).
Probability of absorption by success and failure thresholds
respectively at time is given by

as(t) = (AtSO)m = (St)m (35)
And
ap(t) = (A'So)1 = (S (36)

. However, ay(t) and as(r) give the probabilities of having
been absorbed at time ¢ and all preceding times. Therefore,

fs(t) = as(t) —as(t —1) (37)

fr(t) = as(t) —ap(r=1) (38)
The tridiagonal nature of A allows closed-forms of the distri-
butions f(r) and f(r) . To find these, we reduce to a matrix
of matrices,
A= {6 7 8] e R (39)
0F 1
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B=[M0..0] € RI*"m2 (40)

F=[00.m]eR>"2 (41)

And T € R™2*m=2 j5 our familiar Toeplitz matrix.

; —1 0 BT'"! 0
Al A" = |or_110 42)
0 FT'"! 0

Because we are only interested in probabilities of being in
either absorbing state, we are interested only in the top and
bottom rows of this matrix, the T + 1st entries of which give
the probability of succeeding or failing at time 7.

£ =Mi(T" w21y (43)

fr(@6) =Ma(T" N1y (44)

Response Time Distributions

T
— Correct
—Incorrect

Probability of Response

0 100 20
Time Steps

Figure 2: A sample of the RT distributions for success and
failure, M| = 0.488, M, = 0.45. These distributions oscillate
inside of inverse gaussian envelopes. The periodicity they
exhibit is due to the asymmetry of M and M and the discrete
measure of time.

These distributions are shaped like inverse gaussian distri-
butions, but exhibit periodic noise characteristic to the sys-
tem.

RT Distributions in the Limit of Time Because the state
of the system is a sum of IID random variables, we know by
the central limit theorem that the success rate distributions
will converge to a Gaussian

M1+M2—M2)
n

P(S) =f7\C<M7 (45)
And that the probability distribution of the states for the in-
terrogation paradigm (no absorbing states) as the interroga-
tion time increases is also bounded by a Gaussian distribution

such that

lime,, = N (Mn,n (M, +M> — M?)) (46)

n—1n



Thus, in the limit of sufficiently high thresholds or sufficiently
long time, the RT distributions are given by an inverse gaus-
sian distribution for the limiting state S,,,

Ty 77
RT=IG|—=,—35 47
M’ M+ M —M?

Conclusion

We have presented a novel discrete time quantum-markov
model for 2AFC decision-making processes that yields closed
form success and failure probabilities and response time dis-
tributions. The model’s discrete treatment of time arises di-
rectly from the treatment of incident stimuli as quantum par-
ticles of information, which are propagated in a periodic
way and begins to provide a formally rigorous account of
the ”blinking spotlight” effect that attention lends to per-
ception (Fries, 2009). The motivation for the quantum na-
ture of the particles is justified both by previous models that
yield quantum-like results for judgment decision processes,
as reviewed in the work of (Busemeyer, Wang, & Pothos)
and by the dynamics of neural representations as information
passes through different levels of processing, which seems to
mirror the wave-particle duality of quantum particles in that
distributed representations are collapsed to distinct ones by
the measurement process (Reynolds, Chelazzi, & Desimone,
1999).

The RT distributions are analogous in form to the inverse
gaussians familiar from a standard DDM (Bogacz et al.,
2006), but differ in that the noise that is inherent to the sys-
tem and determined by the agent’s task set and experience,
as well as the stimulus itself. The noise is intrinsic to the
system in that it is determined by M| and M,, which are de-
termined by the quantum attractor landscape V, rather than
being generalized to being Gaussian. In the limit of time or
sufficiently high decision thresholds, the noise of the system
dissipates and we recover inverse gaussian distributions but,
on shorter time scales, the system exhibits oscillatory com-
ponents, arising as a result of theoretical differences from the
standard DDM, that make novel predictions that may be mea-
surable by future experiments. Because of their closed form,
RT distributions and success probabilities are quick and com-
putationally cheap to calculate, as they do not require simula-
tion.

This model is a limiting case arising from a framework
that treats incoming stimulus information as quantum parti-
cles subject to attractor potentials determined by the agent as
well as the stimulus. In future work, this framework will be
extended to include dynamics of control allocation and will
be used to treat task-switching applications and higher di-
mensional stimuli. Current work is extending this framework
for analysis of multi-choice decision making processes and
2AFC with bivalent stimuli, which requires greater levels of
processing.
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