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Abstract 
Infants learn to imitate and recognize words at an early age, 
but phonemic awareness develops at a later age, guided by 
acquisition of literacy for example. We investigate a 
hypothesis that speech representations in the brain are formed 
partly due to articulatory-acoustic learning, and these 
representations may be used as a basis when learning an 
additional mapping to phonemes. We train a convolutional 
recurrent neural network, having an articulatory branch and a 
phonemic branch for multitask learning. When trained with 
real conversational speech and aligned synthesized 
articulation, it is shown that the use of the articulatory 
representation boosts phoneme recognition accuracy, when 
the first convolutional layers are shared between the two 
branches. It is hypothesized that representations involved in 
speech perception formed in the brain during childhood may 
be partly based on articulatory learning, and an additional 
mapping from these low-level speech representations to 
phonemes has to be learned. 

Keywords: Speech learning, speech inversion, articulatory 
modeling, phonetic learning. 

Introduction 
 
Despite big leaps forward in automatic speech recognition 

in the recent years, mainly due to the use of Deep Neural 
Networks (DNNs) (Hinton et al., 2012), humans still 
outperform machines especially under noise, or complex 
listening situations (Spille, Kollmeier & Meyer, 2018). 
Automatic speech recognition solutions are often trained to 
classify phones from acoustic speech. In this case the 
training set is segmented and annotated with phone labels. 
For example the widely used speech recognition dataset, 
TIMIT (Garofolo et al., 1993), has hand-labeled 
transcriptions to 61 phonetic categories. Phonetic labeling of 
speech is subjective by itself (Bayerl & Paul, 2011; 
Garofolo et al., 1993), and labeling of TIMIT is based on 
phonemic and allophonic knowledge of the annotators (Zue 
& Seneff, 1996; Keating, Byrd, Flemming & Todaka, 
1994), and is thus biased by their phonemic interpretations, 
rather than based on purely objective speech-based 
information. 

Categorizing continuous speech into discrete and 
segmental categories is a problem by itself. Indeed, research 
has not yet agreed on any particular universal unit of speech 

perception, and evidence exist that humans do not readily 
recognize and segment phonemes out of speech, but they 
have to be trained to do so (through e.g. writing). It has been 
shown that biasing the perception of one allophone (variant 
of a phoneme), does not generalize to other allophones of 
that phoneme (Mitterer, Scharenborg & McQueen, 2013), 
indicating that at least allophones can be treated as separate 
perceptual units in the brain (see also Reinisch, Wozny, 
Mitterer & Holt, 2014). Also, acquiring literacy has been 
shown to affect our ability to segment words into sounds 
(Anthony & Francis, 2015), adding to the evidence that 
phoneme categories have to be learned.  

From a human speech learning point of view, normally 
developing infants learn to imitate and produce speech 
simultaneously with learning to recognize important speech 
patterns, such as words. Learning speech imitation requires 
learning of a mapping from acoustic speech to its 
continuous physical articulation, or some motor commands 
underlying it. Whereas this mapping is learned in early 
childhood, the mapping of speech acoustics into phonemes 
is learned at a later age, possibly having to rely on speech 
representations that the brain has already specialized to 
during the earlier learning phases. The view that speech 
representations are shared between the perceptual and 
production modalities is supported by research showing that 
articulatory/motor control disorders can impair speech 
sound perception, and this is often specific to sounds 
produced by the impaired articulator (see Skipper, Devlin & 
Lametti, 2017, for a review). The motor areas of the brain 
are also actively involved when listening to speech (Wilson, 
2004; D’Ausilio et al., 2009) 

Based on the above evidence, it seems possible that 
humans learn an additional mapping from context dependent 
sub-word units, as represented in the brain, into 
linguistically motivated abstract phoneme categories. From 
the point of view of technical solutions to speech 
recognition, especially phone recognition, the learning of 
this mapping poses an additional complication. Given 
acoustic speech and its phonetic transcription, the learning 
algorithm tries to learn a mapping between the two, but is 
unaware of the intermediate (perhaps articulatorily 
motivated) representation that humans seem to be able to 
conceptualize. Modern DNN solutions, given enough 
training data and suitable network architecture, are able to 
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learn complicated representations, but the amount of 
training data used is often much larger than what is 
available to a normal human language learner (e.g. 3 million 
4 second utterances in 20 noise conditions, as in Sak, 
Senior, Rao & Beaufays, 2015). This suggests that deep 
neural networks, learning based on vast amounts of data, are 
not cognitively plausible, and thus do not increase our 
understanding of how humans learn to process speech.  

Research has shown that grounding speech learning based 
on the visual modality can be used to learn robust sub-word 
speech units (see e.g. Harwarth, Hsu & Glass, 2019), and 
that learning of speech-image mappings can benefit from 
simultaneously learning a mapping to speech transcriptions 
(Chrupala, 2020). In this study we investigate if having 
access to an approximate representation of physical 
articulatory information can reduce the amount of training 
data needed to learn robust speech representations, that can 
then help to learn the phonology of a language. 

Previous research 
 
Several previous studies have investigated the use of 

articulatory information in speech recognition. Kirchoff 
(1999) described phones as discrete articulatory features 
(such as voiced, vowel, front) into which acoustic speech 
was mapped using a hybrid artificial neural network – 
hidden Markov model system (ANN/HMM). The 
combination of estimated articulatory features and acoustic 
features increased word recognition accuracy under noisy 
conditions. Frankel and King (2001) showed that combining 
measured articulatory information with acoustic features 
enhances speech recognition accuracy.  

Mitra (2010) used the Haskins Laboratories TAsk 
Dynamics Application (TADA) speech synthesizer (Nam, 
2004) to create synthetic speech, related trajectories for 
vocal tract variables (TVs, such as tongue tip position or lip 
aperture degree), and gestural activations. Gestures are 
speech action units, leading to controlled movement of tract 
variables, and their use is motivated by “articulatory 
phonology” (Browman & Goldstein, 1989), that describes 
speech as a series of temporally overlapping articulatory 
gestures. Mitra (2010) trained an articulatory gesture 
recognizer and showed that using TVs and acoustic features 
(AFs) together lead to better gesture recognition than TVs or 
AFs alone. He also generalizes the hypothesis to natural 
speech by warping synthesized trajectories over a natural 
speech corpus, allowing the inversion of natural speech into 
TVs. In word recognition experiments he shows that using 
inverted TVs together with AFs improves recognition over 
the AFs alone. Further, a Gesture-based Dynamic Bayesian 
Network is used for speech recognition, using AFs and 
inverted TVs as input, and articulatory gestures as a hidden 
layer. This gesture-based system provides the highest word 
recognition accuracy. 

Mitra et al. (2017) trained neural networks to perform 
speech inversion based on a synthetic dataset created with 
TADA with several speaker characteristics. Then they 

recognized speech with a hybrid convolutional neural 
network (HCNN), using acoustic features only, or combined 
with inverted TVs. They report that a simple combination of 
features does not improve recognition accuracy when 
compared to the (acoustic-only) baseline, but using separate 
convolutional filtering on the acoustic and TV domain is 
needed, before combining their outputs, in order to improve 
recognition accuracy.  

Badino, Canevari, Fadiga and Metta (2016) use datasets 
of acoustic speech and corresponding measured 
electromagnetic articulographic (EMA) data. They 
experiment with autoencoders to first transform raw 
articulatory data into a more compact representation. They 
train DNNs to perform acoustic-to-articulatory inversion, 
and report that combined acoustic and inverted articulatory 
features improved recognition performance when compared 
to acoustic features alone. Phone recognition is done using a 
DNN-HMM system, using DNN-based phone state 
classifiers. They also experiment with acoustic-to-
articulatory based pre-training, where the learned inversion 
network is not used to provide the articulatory features, but 
is rather used to initialize the phone classifier. This is done 
by replacing the linear top layer of the network, originally 
providing articulatory features, into a softmax layer 
providing phone posteriors, and fine tuning. The pre-
training technique provides a small improvement, but is not 
as effective as concatenation of acoustic and recovered 
articulatory features. 

A joint model for articulatory inversion and acoustic 
model DNN training is introduced in Yu, Markov and 
Matsui (2019), showing significant improvement compared 
to the acoustic-only model. In their first experiment they 
concatenate predicted articulatory and acoustic vectors in 
the training and testing phases, but the articulatory inversion 
network is trained jointly with the rest of the network. 
Measured acoustic-articulatory data is used during training. 

In the works described above, in the testing phase, vocal 
tract variables are first estimated from the speech signals to 
be recognized via a speech inversion system, i.e. full speech 
inversion from acoustics to articulation is needed in the 
recognition phase. There are also studies that use the 
articulatory representation only during training, and 
recognition is based on acoustic features only, and speech 
inversion is not needed. In the second experiment of Yu, 
Markov and Matsui (2019) a Generalized Distillation 
method is used, where a separate teacher network uses the 
articulatory information to learn and provide soft targets to 
the student network, that then learns to recognize phonemes 
without having to perform speech inversion. Markov, Dang 
and Nakamura (2006) train a hybrid HMM/Bayesian 
network model, where the articulatory characteristics of 
phoneme states are captured in the hidden variables of the 
Bayesian Network. They use measured articulatory data and 
show the hybrid network’s increased recognition accuracy 
when compared to acoustic-only baseline. Also, Canonical 
Correlation Analysis (CCA) has been used to warp the 
acoustic representations of speech into a domain that is 
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motivated by articulation. CCA learns maximally correlated 
projections of articulatory and acoustic representations of 
speech (Bharadwaj, Arora, Livescu & Hasegawa-Johnson, 
2012; Wang, Arora, Livescu & Bilmes, 2015; Tang, Wang 
& Livescu, 2018), and only the acoustic projections are used 
when testing. Different variants of acoustic projections 
discovered with CCA consistently outperform unprojected 
acoustic features in speech recognition. In Wang et al., 
(2015) a variant of CCA, where the canonical correlations 
are optimized using a neural network, is reported to 
outperform a speech inversion based system, where a 
mapping from acoustics to articulation is learned and the 
articulatory features are appended to the acoustic ones 
during recognition. In CCA-based studies, measured 
articulatory data is used. 

In the current study, an important difference to previous 
research (except for Markov et al., 2006, the Generalized 
Distillation method of Yu, Markov and Matsui (2019) and 
the CCA studies) is that we do not use the recovered 
articulatory trajectories as an additional feature to acoustic 
speech features when learning to recognize phones. Instead, 
we investigate the usability of representations formed at 
lower layers of the neural network structure during 
articulatory-phonemic learning, and thus do not need to 
perform speech inversion during the testing phase. Mitra et 
al. (2014) have investigated using the hidden layers of an 
inversion DNN as acoustic features, but showing no 
improvement compared to acoustic baseline. These layers 
were trained based on acoustic-to-articulatory inversion 
alone, whereas we train these layers in the joint task of 
inversion and phonemic learning, showing more promising 
results. 

Since in the current study it is not necessary to perform 
speech inversion during testing, our work has a similar 
approach to the CCA studies, and the Generalized 
Distillation experiment in Yu, Markov and Matsui (2019), 
but uses a slightly differing strategy motivated by infant 
speech learning. First, instead of measured articulatory data 
we use synthesized speech articulations that are time-
aligned with a database of spontaneous, conversational, 
Finnish speech. The learning model thus has no access to 
exact articulations of the speakers, only its own vocal tract 
model, analogously to human learners. Second, 
convolutional recurrent neural networks are used to learn 
the mapping from acoustic speech into speech articulation 
and in phoneme categories at the same time. This multi-task 
learning model is compared with a baseline phoneme 
recognizer that uses the same network architecture, but 
learns a direct mapping from acoustics into phonemes. It is 
investigated at which level the articulatory branch of the 
network should be separated from the phonemic branch for 
maximal performance improvement in phoneme recognition 
accuracy. 

Note that even though the cognitive plausibility of using 
DNNs with vast amounts of training data was criticized in 
the introduction, in this study DNNs are used as a tool to 
learn mappings between input and output data. This is done 

in order to test the potential value of taking different speech 
modalities into account when learning, hopefully leading to 
more cognitively plausible learning strategies in the future. 

Experiments 
In these experiments we use an articulatory speech 
synthesizer to create trajectories of articulatory variables 
over a Finnish database of conversational speech. The 
database used is the Aalto University DSP Course 
Conversation Corpus1. For the purpose of keeping 
computational time reasonable for experimentation, we use 
a subset of the complete dataset. We use the first 2295 
speech samples for training and validation, corresponding to 
male speakers 1-94, and female speakers 1-12 from years 
2013 and 2014. From these conversations we select the ones 
of less than 20 seconds in duration, to create a compact 
training and validation set of 2189 utterances, totaling about 
3.4 hours of conversation, out of which 38 minutes has been 
annotated as silence. 

For testing, maximally 20 second long segments of the 
following dataset utterances 2296 to 3000 are used, 
consisting of male speakers 94-116 and female speakers 13-
21. The whole available dataset or the proposed division to 
development, training, and evaluation sets are not used, 
since we are interested in relative improvements on simple 
and reasonably rapidly training network structures, and are 
not aiming to reach benchmark recognition accuracies on 
the given data. 

The dataset has automatically generated alignments to 
Finnish graphemes. In Finnish, each vowel phoneme, and 
almost every consonant phoneme, has one corresponding 
grapheme (Suomi et. al., 2008). Thus, the grapheme 
alignment is close to a phonemic transcription. The 
grapheme level alignment works well with LeVI articulatory 
text-to-speech synthesizer (see supplementary material to 
Rasilo et al., 2013), that can be given a sequence of Finnish 
phonemes and their target times, and that creates dynamic 
articulatory trajectories through the (intended) articulatory 
target positions, and synthesizes the corresponding output 
sound. The articulatory model creates coarticulatory effects 
in the way that vowel targets may not be fully reached due 
to new vowel or consonant target appearing close in the 
future. Also, consonant articulations are context dependent - 
consonant gestures are superposed onto existing vocal tract 
configuration (or movements), regarding the articulators that 
create the targeted consonant gesture. 

For each sound file in the used subset of the speech 
corpus, articulatory trajectories are created by giving LeVI a 
phoneme target on the same time moments as the beginning 
of the corresponding grapheme in the data transcription. 
LeVI creates articulatory trajectories with a 10ms time 
resolution. All articulatory trajectories are normalized to 
have zero mean and a standard deviation of one 

 
1Available at: http://urn.fi/urn:nbn:fi:lb-2015101901 
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Baseline experiment – speech-to-text 
In the baseline experiment, a traditional speech-to-text 

recognizer is trained. All the experiments are conducted 
using Tensorflow and Keras libraries for Python. All input 
and output data are zero-padded to a length of 2000 frames 
(20 seconds with a 10ms frame shift). The output of the 
training set consists of one-hot encoding of the correct 
grapheme for each frame, following the data transcription. 
The graphemes included in the dataset are 
‘#abdefghijklmnoprstuvyäö’, where # corresponds to a 
silent frame, thus totaling 24 output categories. As an initial 
acoustic feature 26-dimensional log-Mel spectrograms are 
used, extracted with 25ms window and 10ms frame shift. 
The spectrograms are zero-padded to the same length as the 
output, and normalized to have zero mean and a standard 
deviation of one. 

After experimenting with several CNN architectures, a 
network with 4 convolutional layers, 2 LSTM layers and an 
output layer was found to provide good recognition results 
for a reasonably simple model. Figure 1 (left) shows the 
architecture of the baseline CNN. The filter sizes for the 
one-dimensional convolutional layers is 8, whereas the 
channel size reduces when going towards the top layers of 
the network. One-dimensional convolutional layers are 
used, each kernel spanning the whole frequency range, in 
order to find temporal patterns of increasing complexity 
when moving up the network. After the convolutional 
layers, two stacked LSTM layers are used with tanh-
activations, to capture the temporal evolution of the output 
of the convolutions. 

Multitask learning with an articulatory branch 
The performance of the baseline network is compared 

with a branched network, where the second branch learns to 
perform acoustic-to-articulatory inversion, from speech 
acoustics into the hypothesized articulatory parameter 
trajectories produced by the vocal tract model. Since our 
initial hypothesis is that learning speech inversion can aid in 
finding acoustic patterns that are beneficial for phone 
recognition, the articulatory branch is split from the 
phonemic branch after a number of layers that are left 
common for both networks (see Fig 1, right). We investigate 
six different cases, having from one to six bottom layers 
shared by the two networks (e.g. in Figure 1, two layers are 
shared). The articulatory training data consists of 9 
articulator position parameters that are normalized to zero 
mean and standard deviation of one. For every sample, a 
weighted sum of the losses of the two branches is used to 
calculate the total loss for the sample. The weights are 
constant over all experiments and are selected so that the 
two losses have approximately an equal contribution. 

Training, testing and hypotheses 
Each network is trained ten times, to account for the 

variation caused by random initialization of network 
weights, and the variation in the training and validation sets. 
For each run, 20% of the 2189 samples are randomly 
selected for the validation set, and the rest for the training 
set. Weighted categorical cross-entropy was used as the loss 
function for the phonemic branch – due to the highly 
imbalanced grapheme frequencies, weights were calculated 
as the inverse frequency of the grapheme counts in the 
training set. For the inversion branch, mean squared error 
loss function was used. Adam optimizer, with a learning rate 
of 0.0005 and a batch size of 50 samples was used. Each ten 
runs per network architecture were trained for 100 epochs. 
For each run, the network weights that result in the lowest 
validation loss during the 100 epochs are saved for further 
analysis. The ten best models per architecture are used to 
recognize the separate test set, and their average weighted 
frame classification error rate (FERs) and standard deviation 
is calculated. Again, FER weighting is done based on the 
inverse occurrence frequencies of each grapheme, giving 
average recognition accuracy per grapheme. Note that in the 
testing phase, the grapheme classification is performed only 
with the phonemic branch of the multitask network, 
requiring only the acoustic features for recognition.  

Figure 1. Used neural network architectures. Baseline 
network trained to recognize graphemes from speech (left). 
Multitask network, where training of the lowest 2 layers is 
influenced also by speech articulation 
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The hypotheses of the several test cases are the following. 
We expect increased grapheme recognition performance in 
the multitask scenario, due to previous studies having 
shown that the use of articulatory information, even with 
synthesized articulation (Mitra et al., 2010, 2017), should 
increase recognition accuracy. If this is not the case, the 
vocal tract model may not be suitable for the purpose, or the 
network architecture should be better designed. If we see an 
increase in grapheme recognition accuracy, we hypothesize 
that splitting the network somewhere in the lower layers 
should provide optimal performance. This is due to our 
hypothesis that articulatory learning in early infancy 
probably guides learning of certain speech representations, 
and learning the phonemic mapping is a separate process 
occurring at a later age, possibly partly relying in the 
already learned representations.  

If optimal performance is obtained splitting the network 
in the top layers, it indicates that inverting speech all the 
way to the articulatory representation may be beneficial for 
phone recognition. This hypothesis is additionally tested 
with the often-used technique of concatenating the inverted 
articulatory features with acoustic features. In this case, first 
an inversion network is trained (considering only the left 
branch of the multitask network in Figure 1). Then, the 
original acoustic features are concatenated with the inverted 
articulatory parameters, and a new network (with the same 
structure as the baseline network, except for the increased 
dimensionality of the input) is trained to perform grapheme 
recognition.  

Results 
The average frame error rates of the ten best models for 

each architecture, and their standard deviations are drawn in 
Figure 2. Two-sample t-tests are performed to see if the 
differences between the FERs are significant (p ≤ 0.05), 
when compared to the baseline case. 

We see that the best grapheme recognition score is 
obtained when the separation to the articulatory inversion 
and phonemic branch is done after the third convolutional 
layer. This indicates that it is beneficial to use both, 
articulatory and acoustic, features to learn the low level 
representations of speech. When the separation is done 
above the third layer, performance slowly drops, indicating 
that the articulatory inversion branch and the phonemic 
branch have to be specialized in their own mapping tasks, 
on top of the shared representation. This finding is in line 
with the Canonical Correlation Analysis studies (e.g. Wang, 
et al., 2015) that show that projecting the acoustic domain 
into an articulatorily motivated domain improves 
performance more than concatenating inverted articulatory 
features into acoustic features. Also, Badino et al. (2016) 
reported that merely articulatory pre-training of the speech 
recognition network was not the most efficient way of using 
the articulatory data.  

Contrary to the findings in previous studies mentioned in 
the introduction, in our tests concatenation of inverted 
articulatory features and acoustic features does not improve 
baseline performance. This is presumably due to inaccuracy 
in the speech inversion – analysis of some of the 
synthesized articulations shows errors where the tempo of 
the conversational speech is fast. Further development of the 
articulatory synthesizer may help to overcome these issues. 
However, it is interesting to see that the inversion network 
is still able to help in finding useful acoustic patterns in the 
lower layers. 

Figure 3 shows the smoothed evolution of the weighted 
recognition accuracy of the validation set during the training 
for three models. The network with concatenated features 
learns faster than the baseline, due to the inverted 
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Figure 2. Frame classification errors on the test set, mean 
and standard deviation of the best models, after training 
each architecture 10 times. Baseline network, and the 
phonemic branch of multitask network, when split into two 
branches (after the layer mentioned on the x-axis) during 
training. Significant improvements compared to the 
baseline are marked with an asterisk. In the “Concatenated” 
model, fully inverted speech and acoustic features are 
concatenated for recognition. 

Figure 3. Weighted grapheme recognition accuracy on the 
validation set during training. Average over 10 runs per 
model, with a 20-frame moving average for smoothing. 
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articulatory features already being informative about the 
grapheme category. However, it finally only reaches the 
baseline accuracy. The multitask network split after the third 
layer results in the highest accuracy. 

Discussion 
Even though it was hypothesized that in human learning the 
articulatorily motivated speech representations in the brain 
are formed earlier than the development of phonemic 
awareness, we simulated the learning of the phonemic and 
articulatory knowledge simultaneously. This is done in 
order to see the potential of shared representations in a 
simple simulation. In future experiments, the timing aspect 
could be further examined with a curriculum learning 
strategy, where speech is first mapped to articulation and 
visual/referential context, and then using the learned low-
level representations to map to phonemes in a subsequent 
phase. In the first phase, learning a representation based 
only on articulation may not be sufficient nor realistic, since 
infants have access to a lot of referential information 
coming from the visual, and other sensory modalities. 

In this study, a vocal tract model optimized for 
articulating given sequences of Finnish phonemes was used. 
Speech transcribed to Finnish graphemes could be used as 
its input due to the close relation between the phonemes and 
graphemes in Finnish. Any other language, transcription or 
vocal tract model could be used, but it is important that the 
vocal tract model is capable of producing realistic speech 
articulations based on the given transcription. 

Conclusions 
Our study indicates that articulatory information, 
synthesized on top of real speech based on its phonemic 
transcription, can be used along with the original speech to 
boost speech recognition accuracy. It is also shown that it is 
more beneficial to tune the low-level speech representations 
using the articulatory information, than to perform full 
speech inversion into articulatory gestures when recognizing 
phonemes. This finding is compatible with what we know 
about infant speech learning: during the first years of their 
lives, infants learn first to map perceived speech into 
articulation (learning to imitate speech; Pawlby, 1977; 
Jones, 2009) and general word forms, and phonemic 
learning occurs at a later age, influenced for example by 
experience with written language (Anthony & Francis, 
2015). The simulations show that the phonemic network 
may be specialized in its own complex mapping task, and 
that it may build upon speech representations learned in 
earlier phases of speech learning. 
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