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Abstract

People’s judgments and decisions often deviate from classical
notions of rationality, incurring costs to both themselves and to
society. Previous research has proposed that the cost of these
biases can be reduced by redesigning decision problems based
on theories of human decision making. These modifications—
or nudges—can have dramatic results and have been success-
fully applied to variety of domains. However, the formal un-
derpinning of nudge theory is limited, and it is not always clear
what the effect of a nudge will be before it is implemented. As
a result, designing nudges can be time consuming and error-
prone. In this paper, we propose an automatic method for de-
riving optimal nudges. The method is based on a resource-
rational model, which assumes that people make decisions in
a way that achieves a near-optimal tradeoff between the cost
and benefits of deliberation. We then frame nudges as modi-
fications to the costs of different cognitive operations, encour-
aging the cognitively frugal decision maker to consider some
problem features over others. As a proof of concept, we apply
the method to the Mouselab process-tracing paradigm, finding
that optimal nudges lead participants to make better decisions
with less cognitive effort.

Keywords: nudging, decision support, decision making, re-
source rational analysis

Introduction
How do we choose when to recycle, where to invest our sav-
ings, or what to buy at a cafeteria? Investigating the biases
that characterize these decisions is a central focus of psychol-
ogy and behavioral economics. These biases are not only the-
oretically important in that they violate classical assumptions
about human behavior, but are also of practical significance
because many small errors can add up to large costs for both
individuals and societies (Kahneman et al., 1982).

In an effort to reduce these costs, researchers have pro-
posed using behavioral theory to redesign decision problems
in order to help people make better choices and fewer costly
errors (Thaler & Sunstein, 2008). These changes—often re-
ferred to as nudges—are an increasingly popular alternative
to government initiatives such as educational programs, legis-
lation, and incentives, and are often significantly less expen-
sive to administer (Benartzi et al., 2017).

While promising, nudges are controversial. Many are un-
comfortable with having their choices influenced by changes
they are not aware of or cannot control, and there is often dis-
agreement about how nudges should be evaluated (Goodwin,
2012). Furthermore, while inexpensive to administer, the de-
velopment of nudges in new domains can involve a costly

search process due to a lack of rigorous theory about how
choice architectures interact with people’s decisision-making
processes.

To address these limitations, we propose a method of
constructing optimal nudges based on a formal theory of
resource-bounded decision making (Griffiths et al., 2015;
Lieder & Griffiths, 2019). In this framework, a person’s
decisision-making process is modeled as a sequential interac-
tion with their own mental resources. Building on this idea,
we formalize nudges as modifications to a decision maker’s
cognitive environment, for example, making new cognitive
operations possible or reducing the cost of existing ones.
Having formalized a specific kind of decision problem in this
way, we can precisely specify the goal of a nudge with an ob-
jective function that can be programatically optimized. That
is, we both provide a rigorous and transparent evaluation met-
ric for nudges, and also eliminate the need to manually search
for nudges that perform well on that metric.

In this paper, we begin by outlining the computational
framework underlying our approach. We then present a con-
crete method to construct near-optimal nudges within a re-
stricted set of nudges that reduce the cost of specific cognitive
operations. As a proof of concept, we apply this method to
the Mouselab process-tracing paradigm (Payne et al., 1988),
where cognitive operations are externalized as information-
gathering clicks. We find that our method both improves the
quality of participants’ decisions and also reduces the cogni-
tive cost of those decisions. We conclude by discussing the
limitations of the current approach and directions for future
work.

Background
Nudging
In line with classical theories of rationality, public policy pro-
grams were traditionally guided by the assumption that peo-
ple act optimally with respect to their self interest (Moseley &
Stoker, 2013; Jackson, 2005). The goal of many public pro-
grams was thus to increase people’s freedom of choice and
remove government mandates and suggestions. When policy
makers wanted to change people’s behavior, they would often
recommend new incentives, educational programs, or legisla-
tion (Benartzi et al., 2017).

In a landmark book, Thaler and Sunstein (2008) challenged
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this approach, arguing that research in psychology and behav-
ioral economics showed that people often do not act optimally
with respect to their self interest. Instead, they argued, behav-
ioral theories suggest an alternative framework for designing
public programs. Specifically, they proposed that govern-
ments should use psychological theory to implement subtle
changes to the structure of decision environments, nudging
people towards making better choices without restricting their
freedom of choice. These changes would be developed by
“choice architects” who would leverage findings on people’s
heuristics and biases to design effective nudges (Kahneman
et al., 1982; Benartzi & Thaler, 2007).

Nudges have since been successfully applied to domains
such as retirement savings, energy consumption, and personal
health (Benartzi et al., 2017; Marteau et al., 2011; Newell &
Siikamäki, 2014). For example, many companies have pro-
grams where workers can sign up to automatically save a pro-
portion of their earnings in a tax-deferred investment account.
Despite the obvious benefits of doing so, many undersave
and underinvest – a recent study found that 68% of 401(k)
participants thought their savings rate was too low (Choi et
al., 2004). In response, proponents of nudge theory have
suggested changing savings plans to “opt-out” programs, in
which employees save a certain proportion of their pay by de-
fault but can choose not to (Madrian & Shea, 2001), a change
that can lead to significantly higher savings rates at virtually
no administrative cost (Chetty et al., 2014).

Despite these promising results, nudging can still be con-
troversial. Many people are uncomfortable with having their
decisions influenced by processes beyond their control or that
they are unaware of. Even when developed openly, there is
often disagreement about what behaviors nudges should aim
to influence and optimize (Goodwin, 2012). Furthermore,
the application of nudges has been limited by ad-hoc use of
psychological theories and informal heuristics (Vlaev et al.,
2016), as well as practical difficulties in adapting psycholog-
ical models to real-world contexts (Moseley & Stoker, 2013).

Resource-rational analysis

Resource-rational analysis is a formal framework for deriv-
ing cognitive models based on the assumption that people
act optimally with respect to their limited cognitive resources
(Griffiths et al., 2015; Lieder & Griffiths, 2019). Within this
approach, a cognitive process is understood as the solution
to an optimization problem, where the objective function ex-
plicitly trades off external utility with internal computational
cost. Critically, the theory predicts that people’s behavior will
depend on both the structure of the external environment and
also the computational actions they can execute and the costs
of those actions (their internal computational architecture).
As a result, resource-rational models often make behavioral
predictions that differ dramatically from classical theories of
rationality, and have been shown to account for a wide range
of apparent biases and errors in human decision making (e.g.
Lieder et al., 2012, 2018; Nobandegani & Shultz, 2020).
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Figure 1: Metalevel Markov decision process.

Metalevel Markov decision processes
A key challenge in resource-rational models is appropriately
specifying the relevant computational architecture for a given
cognitive process and how these computations ultimately lead
to a decision. Recent work has approached this challenge
using formal tools developed in a subfield of artificial intel-
ligence known as rational metareasoning (Matheson, 1968;
Russell & Wefald, 1991), which studies the problem of com-
putational resource allocation. In particular, computation—
i.e., reasoning—is framed as a sequential decision problem in
which an agent refines its beliefs about the quality of different
possible physical actions by executing a series of computa-
tional actions. The goal of metareasoning is to select compu-
tations in a way that results in good decisions with minimal
computation cost.

Concretely, this process is modeled as a metalevel Markov
decision process (metalevel MDP; Hay et al., 2012). A met-
alevel MDP, graphically depicted in Figure 1, is formally
identical to a standard Markov decision process (MDP),
which is a well-established formalism for representing tem-
porally extended interactions between an agent and its ex-
ternal environment (Puterman, 2014). A standard MDP,
(S ,A ,T,r), is defined by a set of states, S , a set of actions,
A , a transition function, T , and a reward function, r. The
transition function specifies the dynamics of the environment
(i.e., how taking actions moves the agent from one state to
another) and the reward function specifes the goal, giving a
scalar state-dependent reward for each action that the agent
takes. The agent chooses actions to maximize cumulative re-
ward using a policy, π, which specifies which action to take
based only on the current state.

While a standard MDP describes the interaction between
an agent and its external environment, a metalevel MDP
describes the interaction between an agent and its internal
computational environment. A metalevel MDP is defined
(B,C ,Tmeta,rmeta), where the states, B , correspond to the
agent’s beliefs and the actions, C , correspond to computations
(or cognitive operations). The transition function, Tmeta, de-
scribes how computations update the agent’s beliefs. Finally,
the reward function, rmeta, describes both the cost of com-
putation and also the utility of the resulting decision. That
is, rmeta(b,c) is negative for all computations except ⊥, for
which it gives the expected utility of making a decision based
on the final belief state. The metalevel policy, πmeta, chooses
which computation to perform based on the current belief.

2349



For example, consider the case of one-shot decision mak-
ing, where a decision maker faces a decision between a set
of possible actions, A . Each of these actions, a ∈ A , has
some associated utility that depends on some initially un-
known state, θ. The agent would like to maximize U(a;θ)
but must choose a only on the basis of her belief, b ∈ B ,
which we assume to be a distribution over θ. Before mak-
ing a choice, she can execute any number of computational
actions, c ∈ C , which refine her belief. On average, the more
computations she executes, the more accurate her belief and
the better her decision. However, each of those computations
incurs a cost, given by rmeta(b,c). Thus, at some point the
agent executes a special operation, ⊥, which terminates the
decision-making process. At this point, an action is (stochas-
tically) selected by the action policy, πact(a | b⊥), which is
typically assumed to be uniform over all actions with max-
imal expected utility given the final belief state, b⊥. The
final metalevel reward is the expected utility of that action:
rmeta(b,⊥) = ∑a∈A πact(a | b)U(a;θ). That is, the final met-
alevel reward is the objective expected utility of the action(s)
with maximal subjective expected utility given the final belief
state. The total metalevel reward is the difference between
this expected utility and the the sum of the incurred computa-
tional costs.

Constructing optimal nudges
The metalevel MDP formalism provides a computational
foundation for understanding, predicting, and controlling the
effect of nudges. With this lens, nudging is viewed as a
method for modifying a person’s computational architec-
ture, making some sequences of reasoning easier than oth-
ers. These modifications are formalized as altering the com-
ponents of the metalevel MDP describing a person’s decision-
making process. Formalizing nudging in this way allows us
to leverage computational optimization tools to automatically
identify nudges that achieve precisely specified goals. Opti-
mal nudging consists of four steps:

1. Model a decision problem as a metalevel MDP, M.
2. Specify a space of possible nudges as a set of possible mod-

ified metalevel MDPs, M̃ . Modifications might include
adding computational actions or modifying the cost of ex-
isting actions.

3. Specify the goal of the nudge with an objective function,
f (M̃;θ), that indicates how desirable the decision maker’s
behavior will be given the modified metalevel MDP, M̃,
and the true state of the world, θ.

4. Identify the optimal nudge as the modification that maxi-
mizes the objective function:

M̃∗θ = argmax
M̃∈M̃

f (M̃;θ)

Example: Reducing the cost of outcome evaluation
We now illustrate the general approach in the context of a
simple example. Consider a decision problem in which you

must take an action that will have different consequences de-
pending on the outcome of some random process in the en-
vironment. You are familiar with this environment and can
easily call to mind the relevant probabilities, but you are fac-
ing a new set of possible actions and must carefully consider
the consequences of each action depending on the random
outcome in order to determine how desirable each (action,
outcome) pair would be. Formally, your goal is to choose an
action with high expected utility,

EU(a) = ∑
o

p(o)U(a,o), (1)

where the outcome probabilities, p(o), are known but the
outcome-dependent action utilities, U(a,o), must be com-
puted if they are to figure into your decision.

This describes the situation faced by participants of an ex-
periment using the Mouselab paradigm (Figure 2; Payne et
al., 1988), which has been used extensively in the study of
human decision making (and is described in greater detail be-
low). Previous work has shown that Mouselab can be for-
malized as a metalevel MDP (Gul et al., 2018), and it thus
serves as a good initial test case for optimal nudging. In the
following sections, we describe how we apply the proposed
four-step process to create optimal nudges for Mouselab.

1. Metalevel MDP The metalevel MDP for Mouselab is
defined by (B,C ,Tmeta,rmeta). The unknown state, θ, corre-
sponds to the utilities, U(a,o), for each combination of action
and outcome. A belief, b∈B , is thus a distribution over those
utilities. The belief is initialized to a multivariate Gaussian
with known mean and isotropic covariance corresponding to
an i.i.d. prior over each utility. A computation, c ∈ C , re-
veals one of these unknown utilities. As such, the transition
function, Tmeta, specifies that beliefs are updated by fixing
the mean of the corresponding element of the belief to the
true value and setting its variance to 10−10. The reward func-
tion, rmeta, specifies the cost of revealing each utility (oper-
ationalized in our experiment as a number of clicks) as well
as the decision utility. To compute the latter, we assume, as
usual, that πact selects the action with maximal expected util-
ity given the final belief (i.e. maximizing Equation 1 with
unknown utilities replaced by the mean of the corresponding
element of the belief). rmeta(b,⊥) is then the true expected
utility of this action (or distribution over actions) given the
true utilities.

2. Space of nudges Although endowing decision makers
with novel computational actions is an exciting direction, we
restrict ourselves here to a narrower class of nudges that sim-
ply reduce the cost of the existing computations.1Concretely,
M̃ must be identical to the original metalevel MDP, ex-
cept that the reward function is modified to be r̃meta(b,c) =
rmeta(b,c) + λc, where λc is the reduction in cost for com-
putation c. The modification is subject to three constraints:
λc ≤ −rmeta(b,c) (computational costs cannot become nega-
tive), λc ≥ 0 (costs can only be reduced not increased), and
∑c λc ≤ Z (there is a budget on total cost reduction). This
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Figure 2: Experimental interface. On every trial, participants made a choice between six options. After choosing an option, a
single ball color (Blue, Green, or Yellow) was selected with percentage probability equal to the number of balls of that color.
The option then paid out with the value indicated by the corresponding cell. The values in some cells were initially shown, but
others were hidden at trial onset. Participants could click on these cells to reveal the values, paying one point for each click.
The number of clicks required to reveal each cell was indicated by its color.

final restriction prevents the trivial optimization r̃meta(b,c) =
0 ∀c ∈ C . The budget, Z, represents the degree to which the
decision maker’s computational architecture can be modified.

3. Objective function The choice of a suitable objective
function depends on a nudge’s goal. For example, many
nudges aim to maximize the probability that people take a
certain action, e.g. recycling or registering to become an or-
gan donor. This kind of goal can be formalized as maximiz-
ing the probability of the decision maker choosing a specific
action,

faction(M̃;θ,a∗) = Eb⊥

[
πact(a∗ | b⊥) | M̃,θ

]
,

where the expectation is taken with respect to the belief state
of the decision maker when she makes a choice, b⊥. Although
the distribution over b⊥ depends on M̃ in complex ways, it
will generally be the case that reducing the cost of a compu-
tation that measures some dimension of θ will increase the
probability that the decision maker acquires an accurate be-
lief about that dimension. Thus, this objective function will
select modifications that make it inexpensive to measure di-
mensions of θ that make the desired action, a∗, appear desir-
able (or make competing actions seem undesirable).

Other nudges do not aim to make people choose a specific
option, but rather to improve the overall quality of their deci-
sions, encouraging them, for example, to make healthier eat-
ing choices or choose more diversified investment portfolios.

1This excludes interventions that introduce novel deliberative
strategies, such as “boosts” that make previously unaccesible infor-
mation available (Hertwig & Grüne-Yanoff, 2017). Applying our
framework to such cases is an important direction for future work

We can model this kind of goal as maximizing the expected
utility of the decision maker’s choice,

futility(M̃;θ) = Eb⊥

[
∑
a

πact(a | b⊥) EU(a;θ)
∣∣∣M̃,θ

]
.

Finally, we might want to not only encourage people to
make better decisions, but also to make it easier to make
those decisions. We can formalize this goal as maximizing
the cumulative metalevel reward which captures both deci-
sion quality and computational cost,

fmeta(M̃;θ) = EC

[ T

∑
t

r(Bt ,Ct)
∣∣∣M̃,θ

]
. (2)

Here, the expectation is taken over all possible sequences of
computations the decision maker could execute. This quan-
tity is also called the metalevel return and it is the quantity
that the optimal metalevel policy maximizes. We chose this
as our objective function for the present study; however, any
of the above objectives can be trivially implemented.

All the above objectives implicitly depend on assumptions
about the metalevel policy, πmeta. One principled choice is to
assume that the decision maker is metalevel optimal. How-
ever, computing the optimal metalevel policy is computation-
ally intensive. We thus instead assume that the agent fol-
lows the meta-greedy policy (Russell & Wefald, 1991), which
chooses each computation as if it were committed to making
a decision on the following time step. This policy behaves
similarly to the optimal policy, and explains human behavior
in Mouselab nearly as well as the optimal policy (Gul et al.,
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2018). More to the point, it is easy to compute; runtime is lin-
ear in the number of possible computations and independent
of the dimensionality of the belief space, under the assump-
tion of “independent actions” (Hay et al., 2012). This allows
us to construct optimal nudges for complex decision prob-
lems where identifying an optimal solution is intractable.

4. Optimization Selecting a nudge that optimizes Equa-
tion 2 can be expressed as a k-dimensional maximization
problem where k = |C | − 1 is the number of computations,
excluding ⊥. To reduce the complexity of this problem, we
applied the additional constraint that the budget be divided
equally and into integer amounts among one, two, three, or
six options. We then selected a modification within this space
using a simple greedy search procedure, first placing the full
budget on one computation, then considering splitting it to
reduce the cost of second computation, and so on. We found
this approach to slightly outperform more sophisticated ge-
netic programming techniques, suggesting that it is an effec-
tive optimization strategy.

Experiment: Testing optimal nudging
We evaluated the proposed optimal nudging method in a mod-
ified version of the Mouselab paradigm (Payne et al., 1988).
In this setup, participants make choices between different op-
tions with known and unknown payoff values. The paradigm
externalizes computations as information-gathering opera-
tions (clicks) that reveal these values, computational cost as
an explicit monetary cost for clicking, and belief states as
configurations of revealed and hidden values. By using such
a paradigm, we can more easily make assumptions about the
metalevel MDP underlying the participant’s decisions, thus
allowing us to test the cost-modification approach directly.

Methods
An example of the experimental interface is given in Figure 2.
Participants chose between six options (columns), each with
three possible payoff values (rows). After making a choice,
a ball was drawn from a simulated lottery machine with 100
balls, and the chosen option paid out depending on the color
of the drawn ball. The percentage probability that a certain
color ball was drawn was simply the number of balls indi-
cated in the far left column. Different options paid different
values depending on which color ball was drawn, and some
of these values were revealed at trial onset, while others were
hidden. To reveal a hidden value, participants had to click on
the value they wished to reveal between one and four times
(see Figure 2), paying one point for each click. The number
of clicks necessary to reveal each cell was sampled uniformly
from {0,1,2,3,4} to mask the cost-reductions (described be-
low). Cell values were sampled from a normal distribution
with a mean of 75 points and a standard deviation 36 points
(truncated at 0 points and discretized to integers).

On each trial, the cost structure was modified according
to either the proposed optimal nudging method, or a random
baseline. In both cases, the cost-modification budget was set

to Z = 6 points, which is a fairly modest budget in comparison
to the average cost of 36 points for revealing every cell. Op-
timal costs were chosen to maximize the metalevel return of
the meta-greedy policy (Equation 2), using the greedy search
method described above. The random cost modification was
determined by randomly sampling three costs and reducing
each by 2 points.

We recruited 150 participants from Amazon’s Mechani-
cal Turk, limiting our study to those living in the United
States. Participants who failed an attention check were ex-
cluded from the experiment. Participants first completed a
practice trial, and then 20 test trials in which 10 problems
had random modifications and 10 had optimal modifications.2

Each participant completed the same set of 21 problems, but
problem order and each problem’s modification type varied
randomly between participants. At the end of the game, par-
ticipants’ total points were paid to them as a bonus with 10
points equal to 1 cent. Participants earned $0.25 for partici-
pating in the study plus an average bonus of $1.71.

Results
On average, participants earned 81.55 points on trials with
random modifications and 89.66 points on trials with opti-
mal modifications (see Figure 3). To test whether this dif-
ference was significant, we ran a crossed mixed-effects re-
gression predicting total points earned on each trial with a
fixed effect for the cost-modification condition (optimal vs.
random) and random effects for both participant and prob-
lem. A likelihood ratio test of the mixed effects model
with and without the condition fixed effect was significant
(χ2(1) = 37.711, p < 0.001). Similar models predicting the
click cost and decision quality also revealed significant effect,
(click cost: 3.99 vs. 3.48, χ2(1) = 8.6866, p = 0.003; choice
payout: 85.54 vs. 93.14, χ2(1) = 33.821, p < 0.001).

Discussion
In this paper, we have proposed a formal framework for de-
veloping, comparing, and evaluating nudges. The frame-
work is based on theoretical work characterizing human deci-
sion making as making optimal use of limited computational
resources (Griffiths et al., 2015; Lieder & Griffiths, 2019).
Viewing error in decision making as the consequence of lim-
ited resources suggests that we can improve peoples’ deci-
sions by alleviating those limitations. In particular, by model-
ing decision making as a metalevel Markov decision process
(Hay et al., 2012), we formalized nudging as giving people
access to more powerful or less costly computational actions,
which they can deploy to make better decisions with less cog-
nitive effort. Formalizing nudging in this way allows us to ap-
ply tools from artificial intelligence to design optimal nudges,
i.e. nudges that most improve people’s decisions (subject to
constraints). As a proof of concept, we applied the frame-
work to the Mouselab process-tracing paradigm, finding that

2Due to a programming error, the first test problem was always
the same as the practice problem. We thus exclude data from this
problem from our analysis, leaving 19 trials per participant.
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Figure 3: Average points per game spent and earned under random and optimal cost modifications. Plot (a) shows the average
points spent uncovering values, (b) the average reward from participants’ choices, and (c) their average net reward (choice
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and a restricted regression with no fixed effect. Errors bars show standard error estimates derived from the residuals of the
unrestricted crossed mixed-effects regressions.

optimal nudges both increased the quality of participants de-
cisions and also reduced the effortfulness of making those
decisions. This provides preliminary evidence that reducing
computational costs can be an effective way to help people
make decisions more effectively.

Our approach has a number of advantages over other ap-
proaches to nudging. First, it provides a theoretical founda-
tion for understanding and predicting nudges’ effects. Sec-
ond, we explicitly specify the goal of a nudge using an ob-
jective function. This increases the transparency of nudges,
provides a natural way to think about novel goals for nudges
(e.g., making people’s decisions easier without systematically
changing their choices), and allows an end user to have con-
trol over how they are nudged. Third, given a model of the
decision-making process and an objective, our method au-
tomatically discovers an optimal nudge using computational
optimization techniques. This reduces the human labor in-
volved in designing nudges, and can potentially identify bet-
ter nudges than a person would be likely to discover.

Despite the advantages, optimal nudging presents several
challenges. First, it requires a detailed model of the com-
putational process underlying the decision we would like to
intervene on. In the present work, we avoided this challenge
by using a process tracing paradigm that externalizes these
typically unobservable processes. Applying the method in
the real world, however, requires one to infer this model from
behavior. Nevertheless, even a heavily simplified decision-
making model may be adequate to construct helpful, if not
truly optimal, nudges. Second, the method makes strong as-
sumptions about the decision maker’s cognitive process, i.e.
that it is near-optimal given the metalevel MDP. While this
assumption may not be borne out in practice, it is not critical
to the basic framework and could easily be modified. Third,
we do not account for the potential communicative content

of nudges. If the decision maker can infer the nudger’s goal,
social reasoning may affect her decision.

Nudging is an increasingly popular method for improv-
ing people’s choices and reducing the costs of their errors.
However, nudges are both controversial and often difficult to
implement and evaluate. In this paper we proposed optimal
nudging as a way to leverage resource-rational modeling to
address these limitations and ethical concerns. Priorities for
future work include extending optimal nudging to more natu-
ralistic tasks where deliberative processes are unobserved and
applying the framework to improve existing nudges.

Acknowledgements

This research was supported by a grant from Facebook Real-
ity Labs.

References
Benartzi, S., Beshears, J., Milkman, K. L., Sunstein, C. R.,

Thaler, R. H., Shankar, M., . . . Galing, S. (2017). Should
governments invest more in nudging? Psychological Sci-
ence, 28(8), 1041-1055.

Benartzi, S., & Thaler, R. (2007). Heuristics and biases in
retirement savings behavior. Journal of Economic perspec-
tives, 21(3), 81–104.

Chetty, R., Friedman, J. N., Leth-Petersen, S., Nielsen, T. H.,
& Olsen, T. (2014). Active vs. passive decisions and
crowd-out in retirement savings accounts: Evidence from
Denmark. The Quarterly Journal of Economics, 129(3),
1141–1219.

Choi, J. J., Laibson, D., Madrian, B. C., & Metrick, A.
(2004). For better or for worse: Default effects and 401(k)
savings behavior. In Perspectives on the economics of ag-
ing (pp. 81–126). University of Chicago Press.

2353



Goodwin, T. (2012). Why we should reject Nudge. Politics,
32(2), 85-92.

Griffiths, T. L., Lieder, F., & Goodman, N. D. (2015). Ratio-
nal use of cognitive resources: Levels of analysis between
the computational and the algorithmic. Topics in cognitive
science, 7(2), 217–229.

Gul, S., Krueger, P. M., Callaway, F., Griffiths, T. L., &
Lieder, F. (2018). Discovering rational heuristics for risky
choice. In The 14th biannual conference of the german
society for cognitive science.

Hay, N., Russell, S., Tolpin, D., & Shimony, S. E. (2012).
Selecting computations: Theory and applications. In Pro-
ceedings of the 28th conference on uncertainty in artificial
intelligence.
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