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Abstract

Language exhibits striking systematicity in its form-meaning
mappings: Similar meanings are assigned similar forms. Here
we study how systematicity relates to another well-studied
phenomenon, linguistic regularization, the removal of unpre-
dictable variation in linguistic variants. Systematicity is ulti-
mately a property of classes of form-meaning mappings, each
member of which can be acted upon independently by linguis-
tic regularization. Both are supported by a cognitive bias for
simplicity, but this leaves open the question of how they inter-
act to structure the lexicon. Using data from a recent artificial
gesture learning experiment by Verhoef, Padden, and Kirby
(2016), we formalize cognitive biases at the item level and the
language level as inductive biases in a hierarchical Bayesian
model. Simulated data from models that lack either one of
those biases show how both are necessary to capture subjects’
systematicity preferences. Our results bring conceptual clar-
ity about the relationship between regularization and system-
aticity and promote a multi-level approach to cognitive biases
in artificial language learning and language evolution. Key-
words: systematicity; Bayesian modeling; regularization; sign
language; artificial language learning

Introduction

One fundamental feature of language is that mappings be-
tween forms and meanings are systematic. A set of form-
meaning relationships exhibits systematicity if signs for simi-
lar meanings share similar forms. While form-meaning asso-
ciations are largely arbitrary in spoken language at or below
the the level of the morpheme, systematicity is abundant at
higher levels of linguistic organization. The phrases “the blue
chair”, ”the broken chair”, or ’the inexpensive chair”, for in-
stance, all refer to propositions that include the meaning chair
by virtue of sharing the form “chair”. Similarly, forms that
express categories of meanings such as actions often share
common morphological features (e.g., English verbs that de-
note an ongoing action in progress share the suffix ”-ing”).

One widespread view in language evolution is that system-
aticity is the result of competing pressures for simplicity and
informativeness in cultural transmission (Kirby, Griffiths, &
Smith, 2014; Kirby, Tamariz, Cornish, & Smith, 2015). On
this account, systematicity is preferred because it is a simple
yet efficient way to organize a large lexicon.

In this paper, we present a modeling case study to investi-
gate the relationship between systematicity, which is by def-
inition a property of classes of form-meaning relationships,
and linguistic regularization, a cognitive process that gener-
ates simplicity by removing unpredictable variation from the
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Figure 1: Results from Verhoef et al. (2016). A. Data from the
test phase of the experiment, averaged by participant, display-
ing varying levels of systematicity in the output languages. B.
The same data before averaging by participant shows high de-
grees of item-specific regularization.

input (Smith & Wonnacott, 2010). While both phenomena are
supported by cognitive biases for simplicity, their relationship
is unclear because they are typically studied in isolation.

To this end, we model data from a recent artificial lan-
guage learning experiment (Verhoef et al., 2016, Figure 1),
which was conducted to study the role of gestural preferences
and linguistic regularization in the emergence of systematic-
ity in sign language lexicons (Padden, Meir, & Lepic, 2013).
One compelling feature of this data is that participants dis-
play multi-level inferences that suggest that cognitive biases
operate on at least two separate levels:

o Item-specific inferences: Learners make first-order gen-
eralizations about the distributions governing individual
items. This suggests that learners are equipped with induc-
tive biases that lead to regularization of these distributions.

e Language-wide inferences: Learners draw inferences
about the rules governing groups of items based on
their commonalities. This suggests that learners exhibit
second-order biases for systematicity.

©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).



INSTRUMENT = object
“A toothbrush”

HANDLING = action
“Using a toothbrush”

Figure 2: Two different gesture strategies, HANDLING and
INSTRUMENT, used to refer to an action or an object. The
figure depicts the congruent (iconic) mapping HANDLING to
ACTION and INSTRUMENT to OBJECT.

To better understand the relationship between these two
distinct levels, we formalize these biases in the context of a
hierarchical Bayesian model (Kemp, Perfors, & Tenenbaum,
2007). Modeling results suggest that biases at each level can
(to some extent) operate independently and must work in tan-
dem to create systematicity at the language level. In particu-
lar, item-specific regularization alone is not sufficient to give
rise to systematicity. Before describing the modeling in more
detail, we will first present the artificial language learning ex-
periment in the next section.

Gesture Learning Experiment

The data we model was obtained in an experiment study-
ing the use of different gesture strategies for referring to
hand-held tools (Padden et al., 2013; Padden, Hwang, Lepic,
& Seegers, 2015; Ortega & Ozyijrek, 2016; Verhoef et al.,
2016). Both in gesture and sign languages, two dominant
strategies have been found: HANDLING (showing how you
hold the tool) and INSTRUMENT (showing what the tool looks
like), as shown in Figure 2. Sign languages differ in the rela-
tive frequencies of use of these strategies. Crucially, variation
between forms is often conditioned on the intended meaning.
American sign language (ASL) signers, for instance, prefer
to map HANDLING forms to ACTION concepts and INSTRU-
MENT forms to OBJECT concepts (Padden et al., 2013). These
same mapping preferences can be found in non-signing ges-
turers (Verhoef et al., 2016). The experiment explored the in-
fluence of such prior mapping preferences on systems created
by participants in an artificial gesture learning experiment.

In the experiment, HANDLING and INSTRUMENT strate-
gies were probabilistically paired with OBJECT or ACTION
concepts for 9 different hand-held tools (e.g., hammer, tooth-
brush, mascara, etc.). 80 participants were evenly split across
four conditions whose input languages varied in their map-
pings between gesture strategies and concepts:

e Congruent. Each concept in the training phase is pre-
sented 75% of the times with the preferred mapping (see
Figure 2), e.g., “using a toothbrush” appeared 6 out of 8
times with a video depicting HANDLING and 2 times with
a video depicting INSTRUMENT; “a toothbrush” appeared
6 times with INSTRUMENT and 2 times with HANDLING.

e Incongruent. The preferred mapping (see previous bullet
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point) is used 25% of the times.

e Handling. The HANDLING strategy is used 75% of the
times for all items, independent of concept type.

e Instrument. The INSTRUMENT strategy is used 75% of
the times for all items, independent of concept type.

Each tool x concept combination was presented 8 times
and people received feedback about the correct gesture strat-
egy. After training, participants were asked to select the cor-
rect gesture for each tool x concept combination another 8
times, this time without feedback. Figure 1A shows the ex-
perimental results and indicates how participants’ output de-
viates from their respective input, indicated by one of the four
target labels (). The axes show the proportion of HAN-
DLING used for ACTION concepts (x-axis) and HANDLING
used for OBJECT concepts (y-axis). Each data point shows
the output language of a single participant averaged across
the 9 items. To disambiguate between participants in the cen-
ter of the plot that produced near-random responses for every
item and participants that produced highly deterministic yet
different responses for different items, the size of each data
point shows the the variance in participants’ use of different
gesture strategies across items.

Figure 1A shows that only in the congruent condition a ma-
jority of subjects consistently extended the input pattern and
produced languages that were more deterministic than the in-
put, that is, regularization that lead to systematicity occurred.
Subjects in the other conditions either regularized towards the
direction of the input mapping, or towards other mappings,
while they seem to be most strongly drawn in the direction of
congruent mappings. This suggests that, while participants
favored congruent mappings overall, they vary in their sensi-
tivity to the input condition.

Participants also differ in their inferences about systematic-
ity. Most participants produced systems in which tools are
regularized in a single coherent way (data points close to the
corners), but some participants didn’t have a single preferred
direction of regularization (high variance data points in the
center region). While the latter similarly show strong item-
level regularization behavior, they fail to show second order
regularization (inferences about the kinds of gesture strate-
gies used for different tools).! However, overall levels of reg-
ularization are high, as indicated by Figure 1B, which shows
the distribution over test data before averaging by participant.

Bayesian Learning Model

To better understand how cognitive biases at multiple levels
interact to give rise to systematicity, we formalize the exper-
iment presented above as a computational model. Because
we’re interested in quantitatively assessing the effect of cog-
nitive biases on behavior in a probabilistic setting, we follow

IThese participants are importantly distinct from low variance
participants in the center region, which fail to show either first or
second order regularization.
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correspond to higher probability regions.

prior work and treat language learning as inference in a sta-
tistical model (Kirby et al., 2015; Culbertson & Smolensky,
2012). This model, describing inferences performed from
the perspective of the subject, must be distinguished from the
model used by the scientist to quantify uncertainty about the
parameters involved in the subject’s inference. From the per-
spective of the subject, learning consists of observing data
from one of the four conditions under the influence of prior
assumptions about how the data was generated (inductive bi-
ases). After learning, test phase data is generated from the
subject’s updated model. The scientist observes both training
and test data and infers which prior biases are most likely
responsible for the observed patterns. The model we will
present has important connections to the model of word order
preferences developed by Culbertson and Smolensky (2012),
which can be understood as a special case of our model.

Informal description of the model

Both training and test data are modeled as counts drawn
from a 2-dimensional Binomial distribution with parameter
0 = (8,,0,), the probability of generating a HANDLING
form for the ACTION meaning and for the OBJECT meaning,
respectively. We will refer to a set of these rules (one for
each item) as a lexicon. Rules can be visualized as a point
in a 2-dimensional space (see Figure 3B). Learning for the
subject consists of observing training counts d = (d,,d,)
for each tool and computing a posterior distribution over
lexicons P(0|d). According to Bayes’ rule, this distribution
is proportional to the product of the prior probability of

a lexicon P(@) and the (Binomial) likelihood of the data
under that lexicon P(d|0). After learning, subjects produce
test phase data by sampling a lexicon from their posterior
distribution and subsequently generating data using that
lexicon.

The prior distribution is conditioned on cognitively-
interpretable parameters wy, a, x, y, which represent different
cognitive biases that act on learning: wy represents a subject’s
individual preference for certain form-meaning mappings
(e.g., congruent, handling, etc.) over others, a represents
subjects’ overall bias for systematicity across form-meaning
mappings, and parameters x and y encode the strength of sub-
jects’ item-level regularization biases. From the perspective
of the researcher, placing prior distributions on these condi-
tioned variables allows us to infer subjects’ inductive biases
by way of how different biases would manifests in behavior.
This yields the full probabilistic model depicted in Figure 3A.

Item-level (first-order) inferences Following previous
work (Culbertson & Smolensky, 2012) we assume that
knowledge about the lexicon is expressed in terms of a mix-
ture distribution (see Figure 3B). We use four symmetric
components plus one random component, each correspond-
ing to a canonical mapping strategy as described in Table 1.
Components are modeled as Beta distributions with different
permutations of the model parameters x and y, whose values
govern the strength of the regularization bias in the model.
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Figure 4: Results for the full model (see text, from left to right): The distribution over a, the prior parameter for the Dirichlet
distribution, is split into a base vector and a concentration parameter. A. The base vector shows the direction of substantive
biases. B. The concentration parameter shows that the model has learned a sparse prior over mixture weights. C. Estimates for
the regularization bias show very sparse Beta distributions, i.e., strong prior biases for regularization. D. Strength of random
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Table 1: Parameters of the mixture components. Each com-
ponent is the product of two independent beta distributions
of the form: Beta(8,|0,,, B,)Beta(8,|0, B,). Our model also
contains the identifiability constraints x > y, as well as the
constraint that x > 1.

Mixture component 0, Bs | &% Po
Congruent X yl|ly x
Handling X y | x y
Instrument y X |y X
Incongruent y X | x 'y
Random r r r r

Language-wide (second-order) inferences Lexicons (i.e.,
a set of production rules, one rule per item) are sampled from
this mixture distribution according to a probability vector wy,
which is unique to each subject s. While this mixture weight
parameter encodes information about statistical tendencies in
a subject’s lexicon, placing a distribution on w; allows us to
expresses second-order generalizations about lexicons across
subjects. Since wy is a probability vector, this prior takes the
form of a Dirichlet distribution (a multivariate generalization
of the Beta distribution), parametrized using a vector a. Anal-
ogous to the parameters of a Beta distribution, a is able to
express information about the expected composition of a lex-
icon, as well its systematicity (i.e., whether sampled mixture
weights tend to be more uniform or more extreme). To this
end, a can be decomposed into a scalar concentration param-
eter Y = ):ﬁ.V:] a;, governing systematicity and a vector with
entries b; = a;/ Zf\’: jaj, which encodes an overall mapping
preferences for different mixture components (substantive bi-
ases).

Learning from the subject’s perspective

Before learning about subject’s inductive biases from the sci-
entist’s perspective, we must first obtain the subject’s pos-
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terior distribution over lexicons given the observed training
data P(0|d) o< P(d|0) x P(0). Inference is tractable because
the product of the prior P(0), a mixture of Beta distributions,
and the likelihood P(d|0), a Binomial distribution, can be ex-
pressed in closed form, which allows us to perform the update
analytically. Informally, we update each Beta distribution of
the mixture as if it had generated all the observed data. The
mixture weight for each component is then updated in pro-
portion to how well it predicted the data relative to the other
components.

One important addition to the model is the use of a subject-
specific learning parameter M, which allows the model to
show graded regularization behavior in response to data
(Meylan, Frank, & Levy, 2013). This learning parameter
effectively operates as a discounting factor on the data. If
ns = 0.5, for instance, instead of updating with the observed
counts k = 2,n = §, the model is updated using k = 1,n = 4.
No update of the prior occurs with 1y = 0 while Ny = 1 cor-
responds to full Bayesian updating.

Learning from the researcher’s perspective

To infer subjects’ inductive biases concerning language-wide
inferences (parameter a) and item-level inferences (parame-
ters x, y, r), as well as the aforementioned learning rates 1y,
uninformative prior distributions were placed on these param-
eters. The model is conditioned on the remaining, subject-
produced test data d. For this model and model variants de-
scribed below, we computed sampling-based approximations
of the posterior distribution using a NUTS sampler in the
Python-based probabilistic programming language PyMC3
(Salvatier, Wiecki, & Fonnesbeck, 2016).

Item-level vs language-wide inferences

To better understand the distinct contribution of each level
of inference and how they might jointly give rise to system-
aticity, we explore two variants of the model outlined so far
(also see caption in Figure 3). The no-item-level-inferences
model uses a single production rule for all items, thereby pre-



venting the model to generalize on an item-by-item basis.
The no-language-wide-inferences model uses a single mix-
ture proportion w, shared across subjects and thus precludes
the model from learning and expressing generalizations about
different languages. In this respect, the model developed by
Culbertson and Smolensky (2012), which lacks both of these
components, is an important baseline model. The models are
evaluated in terms of how well simulated data from the mod-
els explains the patterns of systematic inferences implicit in
the experimental data.

Modeling results

We first report results for the inductive biases that were es-
timated using the full model, after which we discuss how
it compares with models that lack the ability to make item-
specific or language-wide inferences.

Inductive biases of the full model

Figure 4 shows posterior estimates for the inductive biases
acquired by the full model.

Mapping biases Both mapping biases and the concentra-
tion parameter, which we interpret as a systematicity bias, are
derived from the posterior distribution over a, the parameter
of the Dirichlet distribution generating mixture proportions.
As Figure 4A indicates, subjects are strongly biased towards
congruent gesture-meaning mappings, i.e., they overall prefer
the iconic mapping INSTRUMENT to OBJECT and HANDLING
to ACTION (see Figure 2). Moreover, subjects have an addi-
tional, slightly weaker, preference for incongruent mappings
over handling and instrument mappings. Since the congru-
ent and incongruent mappings are the only strategies that al-
low the system to express distinctions among objects and ac-
tions, this indicates that subjects have a strong overall bias to-
wards informative systems. This is surprising since subjects’
weren’t explicitly penalized for collapsing distinctions, which
is often necessary to prevent a loss of expressivity in artifi-
cial language learning experiments. Handling and instrument
mappings were in turn weakly preferred over random map-
pings, suggesting an additional preference for structured and
simple mappings. Mapping biases followed the order con-
gruent > incongruent > handling or instrument > random in
94.5% of the samples from the posterior trace.

Systematicity The concentration parameter expresses sec-
ond order regularization biases over the structure of the lex-
icon. Figure 4B shows that the model acquired a low con-
centration parameter that encodes an inductive bias for sparse
lexicons (i.e., lexicons that are primarily composed of a single
mapping strategy).

Item-level regularization bias To assess the strength of
the regularization bias, we examine the posterior distribution
over x and y, the prior parameters of the first four mixture
components, where values were constrained such that x > y.
Figure 4C suggests that the region of highest posterior proba-
bility corresponds to extremely sparse Beta distributions, re-

sulting in a strong preference for near-deterministic produc-
tion rules. To demonstrate this, we depict the regularization
bias that corresponds to values of the mode of the posterior
distribution, which shows a Beta distribution where most of
the probability mass is located within the (0.99, 1.0) inter-
val. The strength of this prior regularization bias is qualita-
tively similar to the bias reported in Culbertson and Smolen-
sky (2012) (x=16.5,y =0.001).

Random component The posterior on r, the random com-
ponent, is depicted in Figure 4D. Values correspond to a mod-
erately peaked Beta distribution. The low mixture weight
placed on the random component (see Figure 4A) suggests
that this component is not instrumental in explaining sub-
jects’ inferences.

Learning parameters A learning parameter was included
in our model to account for the observation that subjects gen-
eralized in ways not consistent with full updating based on
the input. For each subject, we therefore estimated a learning
parameter M, ~ Beta(a,,By,) and Figure 4E shows maxi-
mum a posteriori estimates (MAP) for each subject’s o, and
Br,- Most subjects lie along the o, = 1 line, correspond-
ing to varying degrees of strong learners, or the By, =1 line,
corresponding to degrees of weaker learners, respectively.
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Figure 5: Simulated data from the full model, the no-item-
specific-inferences model, the no-language-wide-inferences
model, and a model lacking both components.

Contrasting item-specific vs language-wide
inferences

The results so far demonstrate that our model acquired strong
inductive biases for systematicity. To investigate which role
item-specific and language-wide inferences play in acquiring
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such biases, we compare simulated data from four differ-
ent models: the full model, the no-item-specific-inferences
model, the no-language-wide-inferences model and a model
that lacks both inferential capabilities (see Figure 5). When
asking whether a model acquires a bias for systematicity, it
is important to note that all of the models are in principle ca-
pable of learning and expressing such a bias. Here we are
instead interested in whether the models will actually acquire
such a bias when conditioned on the experimental data, that
is, when they are tasked with reproducing patterns that exist
in the data under the structural constraints that their respective
model architectures place on them.

Data was simulated by fixing the models’ a, x, y, and r
parameters to their respective MAP estimates given the ex-
perimental data and by randomly sampling learning param-
eters M, and mixture weights w for 400 simulated subjects,
100 each per experimental condition. Simulated subjects ob-
served the same training stimuli as subjects in the original
experiment.

Figure 5 shows the distribution of simulated data for each
of the four models. The full model (upper left corner) repro-
duces all key aspects of the data: regularization at the level
of items and systematic generalizations at the language level
commensurable with the experimental data (Figure 1). The
model also reproduces overall preference for congruent form-
meaning mappings observed in the experiment.

The no-item-specific-inferences model uses a single pro-
duction rule for all items. Models that lack this component
(right hand side of Figure 5) fail to produce systematic lan-
guages. As generalizations can differ on a per item basis but
must here nevertheless be explained by a single rule, test data
are “pulled” towards the center of the space. Coercing the
model to fit to our data, which contains multi-modality at the
item level, results in model failure. The no-item-specific in-
ference constraint leads to mode collapse and, subsequently,
to a failure to produce the kinds of systematic inferences ob-
served in data.

The no-language-wide-inferences model (lower left cor-
ner), on the other hand, seems to exhibit some amount of
systematicity. On closer examination, however, it becomes
apparent that it predominantly reproduces patterns that are
present in the input, while adding very little systematicity of
its own by means of its inductive biases. While models with
weak inductive biases are able to reproduce patterns that al-
ready exist in the input if given enough data, these patterns
would not be sustainable in our current model and eventu-
ally disappear. More generally, experimental data can vary in
the richness of patterns of systematicity that it exhibits. The
fact that the model variants explored here are too constrained
to capture patterns in the data suggests that the data exhibits
high degrees of systematicity, which requires multi-level in-
ferences such as exhibited by the full model.
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Discussion

We modeled data from a recent artificial language learn-
ing experiment by Verhoef and colleagues (2016) to clar-
ify the relationship between item-specific regularization and
language-wide systematicity in domains where learners draw
hierarchical inferences. We developed a Bayesian learning
model that renders explicit the nature and interplay of cogni-
tive biases that operate at these different levels.

Simulations from structurally different versions of the
model showed that both item-specific and language-wide
inferences are necessary to capture participants’ behavior.
While models that are prevented from forming item-specific
(first-order) generalizations fail to capture regularization,
models that don’t allow language-wide (second-order) infer-
ences fail to show systematicity. This supports the hypothesis
that learners’ inductive biases about form-meaning mappings
are structured hierarchically.

One open question is whether cognitive biases at these two
levels are an instance of a more general, low-level preference
for simplicity (Chater & Vitanyi, 2003) that manifests itself
differently at each level, or whether they are biases with fun-
damentally distinct origin.

In future work, we intend to explore extensions of our
model to other domains in the context of generalizations
about items vs generalizations across items, such as Cornish,
Smith, and Kirby (2013) and Cuskley (2019), or Smith and
Wonnacott (2010). Hierarchical probabilistic models are a
powerful tool for cognitive science because they allows us to
flexibly express learners’ inferences at multiple, interrelated
levels (Kemp et al., 2007). We hope that some of the wider
implications of this work will be promoting a multi-level ap-
proach to the study of inductive biases in artificial language
learning and language evolution more broadly.
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