Leveraging Machine Learning to Automatically Derive Robust Planning Strategies

from Biased Models of the Environment

Anirudha Kemtur!, Yash Raj Jain!, Aashay Mehta
Max Planck Institute for Intelligent Systems, Tiibingen, Germany

Frederick Callaway

Department of Psychology, Princeton University, Princeton, NJ, USA

Saksham Consul, Jugoslav Stojcheski, Falk Lieder
Max Planck Institute for Intelligent Systems, Tiibingen, Germany

1 These authors contributed equally.

Abstract

Teaching clever heuristics is a promising approach to improve
decision-making. We can leverage machine learning to dis-
cover clever strategies automatically. Current methods require
an accurate model of the decision problems people face in
real life. But most models are misspecified because of lim-
ited information and cognitive biases. To address this prob-
lem we develop strategy discovery methods that are robust
to model misspecification. Robustness is achieved by model-
ing model-misspecification and handling uncertainty about the
real-world according to Bayesian inference. We translate our
methods into an intelligent tutor that automatically discovers
and teaches robust planning strategies. Our robust cognitive
tutor significantly improved human decision-making when the
model was so biased that conventional cognitive tutors were no
longer effective. These findings highlight that our robust strat-
egy discovery methods are a significant step towards leverag-
ing artificial intelligence to improve human decision-making
in the real world.

Keywords: automatic strategy discovery; cognitive tutors; ro-
bust reinforcement learning; decision-making

Introduction

A promising approach to help people avoid bad decisions is
to teach them clever decisions strategies that are well suited
to common decision problems in everyday life (Gigerenzer &
Todd, 1999; Hertwig & Griine-Yanoff, 2017). A bottleneck
of this approach is discovering efficient strategies that reli-
ably lead to good decisions. Building on a new normative and
prescriptive theory of good decision-making (Lieder & Grif-
fiths, 2020), recent work has began to address this bottleneck
by leveraging machine learning to develop algorithms for au-
tomatic strategy discovery (Callaway, Lieder, et al., 2018;
Callaway, Gul, Krueger, Griffiths, & Lieder, 2018; Lieder,
Krueger, & Griffiths, 2017). Automatic strategy discovery
methods require a model of the environment. Given such a
model, methods from machine learning are used to compute
the strategy that achieves the best possible trade-off between
performance and computational cost in the simulated envi-
ronment. When there is a mismatch between simulation and
reality, the discovered strategy can perform arbitrarily poorly
in the real world. Such problems arise because people tend to
make errors when they describe the real world. Human mem-
ory and human judgment are known to be fallible and prone to

systematic errors known as cognitive biases (Tversky & Kah-
neman, 1974). Another fundamental limit to people’s models
of the real-world is uncertainty (Hertwig, Pleskac, & Pachur,
2019); there may be rare events and combinations of circum-
stances that the person specifying the model has never experi-
enced before. Optimizing with respect to the resulting biased
models might lead to strategies that fail in the real world.

To overcome this fundamental problem, this article pro-
poses a robust approach to automatic strategy discovery that
takes into account that the model of the environment might
be incorrect. The resulting uncertainty about what the world
might be like is modeled using Bayesian inference. Our ap-
proach computes the heuristic that performs best in expecta-
tion over all possible worlds that might have given rise to the
provided specification. We thereby provide a first proof-of-
concept for leveraging machine learning to discover robust
heuristics in the face of uncertainty about the structure of the
environment.

Our findings suggest that our methods are robust to uncer-
tainty and errors in the model of the environment. The dis-
covered heuristics tend to work well in the true environment
even when the model of the environment was derived from a
biased description of limited experience. This will be impor-
tant for future efforts to derive clever heuristics from people’s
descriptions of the decisions they face in the real world.

The plan for this article is as follows: We start by introduc-
ing the theoretical and computational background of our ap-
proach; we then define the problem of robust strategy discov-
ery; next, we present our solution to this problem and evaluate
it in simulations; lastly, we apply the approach to improving
human decision-making and discuss future directions.

Background

Robust strategy discovery builds on the definition of opti-
mal heuristics advanced by Lieder and Griffiths (2020) and
machine learning methods for deriving them automatically
(Lieder et al., 2017; Callaway, Gul, et al., 2018). We
study strategy discovery in the Mouselab-MDP paradigm
(Callaway, Lieder, Krueger, & Griffiths, 2017) and incorpo-
rate robust strategy discovery into intelligent tutors that teach

2405
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

people how to make better decisions. We briefly introduce
each of these foundations in turn.

Resource-rational heuristics

Lieder and Griffiths (2020) recently introduced a new the-
ory of bounded rationality that provides a realistic normative
standard for human judgment and decision-making. Unlike
previous normative theories, such as expected utility theory
(von Neumann & Morgenstern, 1944), it takes into account
that people’s time and cognitive resources are bounded. Its
prescriptions for good decision-making (Lieder & Griffiths,
2020; Lieder et al., 2017) thus, at least sometimes, resemble
simple fast-and-frugal heuristics (Gigerenzer & Todd, 1999).

Lieder and Griffiths (2020) define the extent to which using
the cognitive strategy /4 in an environment E constitutes effec-
tive use of the limited computational resources of the agent’s
brain B as the strategy’s resource-rationality

RR(h,E,B) - EP(resu]t\sg,h,E.B) [“(result)]
= Ep(y, 0 Mhs0,8.5) [c0st(tn,)],

ey

where u(result) is the agent’s subjective utility u of the out-
comes (result) of the choices made by the heuristic &, s =
(0,bp) comprises the observed information about the initial
state of the external world (o) and the agent’s initial internal
state by, and cost(#,, p) denotes the total opportunity cost of
investing the cognitive resources p used or blocked by the
heuristic & for the duration #;, of its execution. Both the re-
sult of applying the heuristic and its execution time depend
on the situation in which it is applied. The expected values
(IE) weigh the utility and cost for each possible situation by
their posterior probability given the environment E and the
observed characteristics of the current situation (o).

How resource-rational people’s strategies can be is con-
strained by the brain’s computational limitations and uncer-
tainty about the environment. That is, the set of cognitive
strategies that the brain can execute (Hp) is limited and the
extent to which people can adapt to their environment is con-
strained by the limited information i that they have about the
environment (Lieder & Griffiths, 2020) . Under these con-
straints, the resource-rational heuristic is

h* = argmax Eg; [RR(h,E,B)]. 2)
heHp

Automatic strategy discovery

Given a model of the environment, the resource-rational
heuristic #* for an agent with the computational resources
B can be computed by reformulating the definition of the
resource-rational heuristic as the solution to a metalevel
Markov Decision Process (MDP) and applying methods from
dynamic programming or reinforcement learning to compute
its optimal policy. This approach models the decision process
as series of computations that can be chosen one by one. Each
computation updates the person’s beliefs about the returns of
alternative courses of action. Rules for selecting computa-
tions correspond to alternative decision strategies.

2406

24 3 <Y m
! 8}@8 ! EE e
2 8 48 “ \: /
\i,/ \"-‘},/1)

Figure 1: a) Screenshot of the Mouselab-MDP task as
shown to participants. b) The environment can be rep-
resented as a grid of three types of nodes whose val-
ues are independently sampled from uniform distributions
with high (H), medium (M), and low (L) variance respec-
tively (i.e., U({—48,—-24,24,48}), U({—8,—4,4,8}) and
U({-2,-1,1,2}).

Formally, a metalevel MDP is a four-tuple Mpen =
(B, C, Theta, 'meta) comprising the set of possible beliefs B
that the agent can have, the set of computational primitives
C, a probabilistic model Tpnera (b, c,b’) of how possible com-
putations ¢ might update the belief state (e.g., from b to &),
and the metalevel reward function rpe; Which encodes the
cost of computations ¢ € C and the utility of the action cho-
sen when computation is terminated. In this formal frame-
work, cognitive strategies correspond to metalevel policies
(Tmeta © B — C) that specify which computation will be per-
formed in a given belief state.

The Mouselab-MDP Paradigm

As it is not possible to observe human planning directly, the
underlying cognitive processes must be inferred from peo-
ple’s behavior. This makes it difficult to study what strate-
gies they discover, learn and use. Process tracing paradigms,
such as the Mouselab paradigm (Payne, Bettman, & Johnson,
1988), present participants with tasks that make their behav-
ior highly diagnostic of their unobservable cognitive strate-
gies. The Mouselab-MDP paradigm (Callaway et al., 2017)
is a process-tracing paradigm for measuring how people plan.

An example Mouselab-MDP environment used in this
study is shown in Figure la. Participants are tasked to select
one of several possible paths through a spatial environment,
where each location harbors a reward. The participant’s goal
is to maximize the sum of the rewards along the chosen path.
All of the rewards are initially concealed, but the participant
can uncover them by clicking on the locations. Critically,
each click has a cost of $1. Thus, the participant has to trade
the cost of collecting information off against the value of the
collected information for making a better decision. Figure
1b) illustrates the statistical structure of one of the Mouselab-
MDP task environments we used in this study.This environ-
ment is motivated to capture sequential nature of decision-
making in real-life.

Cognitive tutors

Building on automatic strategy discovery, Lieder et al. (2019)
developed an intelligent tutor that teaches people optimal de-
cisions strategies in the Mouselab-MDP paradigm. Partici-
pants learned to use the automatically discovered strategies,
remembered them, and used them in novel environments with
a similar structure. These findings suggest that automatic
strategy discovery can be used to improve human decision-
making if the discovered strategies are well-adapted to the
situations where people might use them.

The problem of robust strategy discovery

The challenge of robust strategy discovery is to derive strate-
gies that work well in the real-world environments (e) from
potentially incorrect information about what those environ-
ments are like (7). This information takes the form of a poten-
tially misspecified model provided by a person who has expe-
rienced the real-world environment e but might misremember
parts of their experience. We propose that this problem can
be solved by developing probabilistic models of model mis-
specification, P(i|e), invert them using Bayesian inference,
and then train machine learning methods for automatic strat-
egy discovery on the posterior distribution over possible true
environments given the provided information, P(eli).

Modeling model misspecification

One approach to modeling model misspecification is to build
on the previous literature on the systematic errors of hu-
man memory and human judgment known as cognitive biases
(Tversky & Kahneman, 1974). For instance, people tend to
remember more recent events better than earlier ones (Deese
& Kaufman, 1957) and tend to underestimate the frequency
of rare events in decisions from experience (Hertwig, Barron,
Weber, & Erev, 2004).

As a first proof of concept, we worked with two admittedly
simplistic models of how the recency effect and the underes-
timation of rare events affect how a person would describe
a 3-step Mouselab-MDP environment they experienced by

L
L
UNDERESTIMATION
BIAS L
P(ijle)
RECENCY L
BIAS —IM [L
/./'/
/_—"Plije) [M |L

Plige)

Figure 2: Tllustration of how cognitive biases might give rise
to misspecified models of the environment shown on the left.

2407

P(ile, Myecency) and P(ile, Munderestimation). Figure 2 illustrates
these two models. In brief, our model of the recency bias al-
ways misremembers the rewards in the first two steps (i.e.,
the two rows at the bottom) as having been identical to the
reward in the last step (top row). Our model of the underesti-
mation of the frequency of rare events always remembers the
rare event in each column as the more frequent one.

For simplicity, we assume that half of the time model mis-
specification arises from the recency bias and other half of the
time it arises from the underestimation of the frequency of
rare events. We therefore model the probability that a person
with experience in environment e will describe this environ-
ment by the specification i as

. | |
P(l|e) = 5 'P(l|eamrecency cffect) + 5 'P(l|eamunderestimation)

3)
These assumptions merely serve as a placeholder for a
more realistic model of model-misspecification to be devel-
oped in future work. The contribution of this article is the
general approach that combines the Bayesian inversion of

such a model with automatic strategy discovery methods.

Benchmarks

To create a first set of benchmarks for robust strategy discov-
ery, we build a data set D comprising 66 (e, i, p)-tuples where
the environment e is a version of the task illustrated in Fig-
ure 1, the description i is generated according to the model of
model-misspecification described above, and the probability
p = P(E = e) - P(i|e) specifies the relative frequency of this
pair in the set of benchmarks. There are 36 equally-probable
true environments (P(E = e) = 1/36). They all share the prop-
erty that each row contains one high (H), one medium (M),
and one low (L) variance node. Furthermore, the arrange-
ment of node types is the same in the bottom two rows. For
each true environment e, we obtain 2 possible descriptions i
- one generated according to the recency effect and the other
from the underweighting of rare events. For six such environ-
ments, the resulting descriptions from the two biases turned
out to be the same.

What makes these benchmark problems difficult is that
many different true environments can give rise to the same
specification. As a result, each description i could have plau-
sibly been generated from 11 different true environments.

Measuring robustness

We define the robustness p of a strategy discovery method
m as the expected performance of the algorithm m(i) that
it discovers based on the provided information i on the true
environment e in expectation across all » benchmarks D =

{(elvilapl); Tty (enyinypn)}, that iS
n
p(m) =Y pu-E[RIE = e, m=m(ir))], “4)
k=1
where the random variable R denotes the return that the strat-

egy m(ix) will achieve when applied to a randomly-generated
instance of the environment ey.

To make the robustness score more interpretable, we nor-
malize the expected benefit of the discovered strategy over
choosing moves randomly without any planning (T planning)
by the corresponding benefit of the strategy that is optimal
for the true environment (7.,), that is

p(m) —Eg [ER [R|E77'cno planning”
Eg [ER [R|Evn;1eta,E} —Eg [R|E77tno planning]}

Prel (m) = s
(5)

where the expectation [Eg is taken with respect to the prior
over environments. The best possible score is 1 (optimal per-
formance in the true environment) and when the discovered
heuristics perform at chance level in the true environment,
then the method’s relative robustness is 0.

Standard methods are not robust enough

Dynamic programming (DP) and standard RL methods like
the Deep Q-Network (DQN) are not robust to model mis-
specification. For instance, if a person has recency bias and
remembers only his last observations, they might erroneously
claim that all of the high-variance nodes are located in the
rightmost column because this is true in the top row (last step;
see Figure 2). Applying DP or a DQN directly to this bi-
ased model would produce a strategy that only considers the
right column (see Figure 3). But, this strategy is clearly sub-
optimal for the true environment where the structure of the
top row is different.

In the next section, we develop strategy discovery methods
that are robust to errors in the environment model. In this
example, a robust method should produce a strategy that con-
tinues searching the top row for a high variance node when,
contrary to the model, the value on the top-right is small.

The solution: ML methods for robust strategy
discovery

Here we evaluate three approaches to achieving robustness:
Handling uncertainty about the true environment according
to Bayesian inference, meta-reinforcement-learning (Wang et
al., 2016), and building adaptive inductive biases into the
space of possible policies (Callaway, Gul, et al., 2018).

The Bayesian approach to robustness

According to Equation 2 the optimal heuristic given a spec-
ification i achieves the best possible cost-benefit trade-off in
expectation across all possible environments. In this expec-
tation, the heuristic’s performance in each possible environ-
ment e is weighted by the posterior probability of that envi-
ronment given the specification i. This suggests that strategy
discovery algorithms can be made robust by applying them
to samples from the posterior distribution P(E|i) instead of
applying them to the specification i itself. Therefore, our so-
lution proceeds in two steps:

1. Estimate P(E|i). We use Bayesian inference to get a dis-
tribution over the possible true environments. The posterior

2408

distribution over possible environments is

P(E —efi) = TE _}f()l'i’(é—ile)7 6)

where P(E = e) is the prior over possible environments
and the likelihood function P(I = ile) is a probabilistic
model of model-misspecification (e.g., Equation 3). A good
prior distribution should reflect the statistical structure of
the environment so that each situation’s prior probability
corresponds to how often the situation tends to occur in the
modeled environment. Since each possible situation occurs
equally often in the set of benchmarks defined above, we
chose a uniform prior. To accommodate complex likelihood
functions that do not admit a closed-form solution, we
approximate the posterior by training a neural network on
simulated data where the ground truth is known.

2. Apply strategy discovery algorithms to samples from
the posterior To generate a training set that encourages ro-
bust solutions, we sample the training environments from the
posterior, that is eaining, 15 * s €wraining, v ~ P(E). Given suffi-
ciently many samples from the posterior, standard reinforce-
ment learning methods can be used to compute a robust policy
Tobust DY Maximizing the average return across the MDPs de-
fined by eraining, 1, * * » €training,v- Here, we evaluate how much
this Bayesian approach increases the robustness of a standard
deep reinforcement learning algorithm, a meta-RL algorithm,
and metalevel reinforcement learning algorithm.

Algorithms

We consider four algorithms ranging from standard reinforce-
ment learning methods to a newly developed metalevel re-
inforcement learning method. The first algorithm we eval-
uate is a deep Q-learning method that uses a recurrent net-
work (Hausknecht & Stone, 2015). The second algorithm we
evaluate is the metalevel reinforcement learning method in-
troduced by Wang et al. (2016). This method learns to learn
how to perform well in an initially known environment. This
capacity might allow this method to learn different strategies
for different types of environments and to adaptively select
between them by first exploring the environment.

The third method we evaluated is the Bayesian metalevel
Policy Search (BMPS) algorithm (Callaway, Gul, et al.,
2018). It learns to approximate the value of computation by
a linear combination of information-theoretic features. The
weights of these features are learned using Bayesian opti-
mization. The features of BMPS rely on a model of the envi-
ronment. For the basic version of the BMPS algorithm we set
this model to the specification i.

The robust version of BMPS performs online inference
on the environment based on the description i and the belief

state b that the agent has formed by interacting with the en-

’) A (BMPS
vironment, that is Eg); , aneta E>

imation becomes computationally expensive when there are

(b,c)}. Since this approx-

many possible environments, we approximate this expected
value by the normalized weighted average across the small-
est set of possible environments £ whose combined posterior
probability pioar 1S at least presh = 0.99, that is

A (BMPS
EEW’ [Qr(neta,E)<b7 C):| ~

meta,e

Protal o

)

Simulation results

As shown in Figure 4, we found that the BMPS algorithm
with Bayesian inference on the true environment achieved an
almost perfect relative robustness score (pr) = 0.99, abso-
lute score = 53.25) and outperformed all of the other methods
(all p < .0001). The second-best method was meta-RL with
Bayesian inference on the true environment (pe; = 0.91, ab-
solute score = 49.16). The addition of Bayesian inference
on the true environment significantly improved the robust-
ness of all methods: It improved the performance of BMPS
from 42.474+0.41 to 53.25+£0.42 (1(47914) = —34.78, p <
.001; effect size d = .318) and had similar effects on the
performances of meta-RL (35.54 £0.43 vs. 49.16 +0.41;
1(47894) = —44.60, p < .001, d = .408) and DRQN (35.75+
0.42 vs. 46.26 +0.40; 1(47894) = —35.38, p < .001, d =
.323).

Figure 3, illustrates the behavior of two strategies discov-
ered by the most robust method versus the least robust strat-
egy discovery algorithm in two different scenarios.

In Example A, where the true environment matches the
model, both algorithms make similar clicks. But in Exam-
ple B, when the true environment differs from the model, the
non-robust algorithm fails to uncover the high-variance nodes
because it inflexibly follows the strategy that would have been
optimal if the model were correct. By contrast, the robust
strategy quickly adapts to the discrepancy between the model
and the true environment and collects all of the most valuable
information.

Application to improving human planning

To explore whether teaching the heuristics discovered by our
robust strategy discovery methods is a viable approach to
improving human decision-making, we leveraged the robust
strategy discovery methods introduced above to develop a ro-
bust version of the cognitive tutor introduced by Lieder et al.
(2019). This tutor uses our most-robust and best-performing
strategy discovery algorithm, the robust BMPS algorithm, to
discover a robust planning strategy from a description of the
environment and then teaches it to people by showing them
video demonstrations of its planning behavior.

To evaluate how beneficial it is for people to be trained by
the robust tutor, we conducted a behavioral experiment. For
simplicity, we conducted this behavioral experiment in the
same setting we simulated above. That is, for each participant
we sampled one of the 66 benchmark problems defined above
according to their respective probabilities; for instance, the

2409

P(E =e|i,b)- O8NS (1, ¢).

MODEL GIVEN TO BOTH ALGORITHMS

M |L
M |L
M [L

STRATEGY
DISCOVERED BY THE
NON-ROBUST METHOD

STRATEGY
DISCOVERED BY THE
ROBUST METHOD
A ENVIRONMENT = MODEL a) b)
M |L 48 -48y 48y,
- RS 1 3ORK
M |L 24,

B SLIRE =oSk
oS T N

B ENVIRONMENT # MODEL c) d)
m 24 24
M 1R 12 XA
M| 2y 2
t ng t t ng 12
LR ~
NS NG

Figure 3: Comparison of the planning strategies discovered
by a robust algorithm (BMPS with Bayesian inference) ver-
sus a non-robust algorithm (DRQN without Bayesian infer-
ence). Example A illustrates the strategies in the specified en-
vironment. Example B illustrates their behavior in a different
environment that could have given rise to the same specifica-
tion. Critically, the planning strategy discovered with the ro-
bust method performs well in both environments whereas the
strategy discovered with the non-robust strategy fails when
the true environment does not match the specification.

50
o 40
e
[Algorithm
£ 30 mmm Random
g s DRQN
O 20 B Meta-RL
o == BVPS
10
0

No Bayesian Inference Bayesian Inference

Figure 4: Performance of different strategy discovery algo-
rithms with versus without Bayesian robustness.

benchmark problem (e, ix, px) would be sampled with prob-
ability pg. The participant was assigned the role of the novice
who is being trained by the robust cognitive tutor and then
tested on the true environment e. Critically, the cognitive tu-
tor does not know the true environment e; but only the usually

erroneous description i;. The robust tutor infers what the true
environment might be given the description (P(E|ix)), derives
the optimal strategy from this probabilistic knowledge, and
then demonstrates it on environments sampled from its pos-
terior distribution over possible environments (P(E|i;)). We
compared the robust tutor against having people perform the
task without tutoring and a conventional cognitive tutor that
assumes that i is the true environment (non-robust tutor).

Participants and procedure

We recruited 300 participants on Amazon Mechanical Turk
(average age 38.9 years, range: 19-72 years; 152 female).
Participants were paid $1.20 plus a performance-dependent
bonus (average bonus $1.45). The average duration of the ex-
periment was 9.8 min. Participants were randomly assigned
to the control condition without tutoring (100 participants),
the experimental condition with the non-robust cognitive tu-
tor (99 participants), or the experimental condition with the
robust cognitive tutor (101 participants). All three groups
went through 5 practice trials to get used to the environment
and 15 test trials. Additionally, in the two experimental con-
ditions, participants were shown 10 tutor demonstrations be-
tween the practice trials and the test trials. To ensure high
data quality, we applied two pre-determined exclusion crite-
ria. We excluded the 3% of participants who affirmed that
they had not paid attention to the instructions or had not tried
to achieve a high score in the task. We excluded 15% of the
remaining participants who did not make a single click on
more than half of the test trials because not clicking is highly
indicative of speeding through the experiment without engag-
ing with the task.

The experimental task is based on the Mouselab-MDP
paradigm (Callaway et al., 2017). The experiment was struc-
tured into instructions that introduced the Mouselab-MDP
paradigm, a quiz that tested people’s understanding of the
paradigm, a training block (only in the experimental condi-
tions), and a test block. Participants were randomly assigned
to one of three conditions (2 experimental conditions and 1
control condition). In the training block of the two experi-
mental conditions, each participant was shown a series of 10
demonstrations of an automatically discovered strategy (see
Figure 3a-c). Each demonstration started from a different
fully occluded instance of the environment illustrated in Fig-
ure la. The demonstration then showed the participant the
first click that the automatically discovered strategy would
make and the reward that it revealed. After a 1.1 seconds
delay the demonstration showed the second click that the
strategy would make based on the outcome of the first click.
This continued until the strategy decided to terminate plan-
ning. At this point, the participant was shown the sequence
of moves that the strategy would choose and the rewards col-
lected along the way. In the first experimental condition, the
demonstrations showed the strategies that the DRQN method
without Bayesian inference derived from the potentially mis-
specified models (Non-Robust Tutor). These strategies al-
ways click on the same three nodes that should have high vari-

2410

ance according to the models regardless of what their values
are (see Figure 3b and d). In the second experimental condi-
tion, the demonstrations showed the strategies discovered by
BMPS with Bayesian inference (Robust Tutor). When a high
variance node is not in its expected location, then those ro-
bust strategies continue to search for it until they find it (see
Figure 3a and c). In the Non-Robust Tutor, all demonstra-
tions were performed on the reward structure specified by the
model, as illustrated in Figure 3b. By contrast, in the Ro-
bust Tutor the reward structures were sampled from the pos-
terior distribution over the true environment given the model
specification; thus, some demonstrations were performed on
environments that differed from the model as illustrated in
Figure 3c. To motivate participants to pay close attention to
these demonstrations, they were told that their bonus would
depend on correctly answering a quiz about the demonstrated
strategy and were given the option to review the demonstra-
tions before moving on to the quiz. In the control condition
there was no training block and participants were not shown
any demonstrations.

Results

A Kruskal-Wallis ANOVA showed that the three groups dif-
fered significantly in their performance on the test trials
(H =15.3, p < .001). Planned pair-wise comparisons con-
firmed that teaching people strategies discovered by the ro-
bust method significantly improved their performance (39.5
points/trial) compared to the control group (29.9 points/trial,
t(162) = 3.75, p = .001, d = .587). By contrast, teaching
strategies discovered by the non-robust method failed to im-
prove people’s performance (32.9 points/trial, 7(157) = 1.20,
p = .265, d = 0.178) and led to significantly lower per-
formance than teaching strategies discovered by the robust
method (#(167) = 2.75, p = .007, d = .425). Each person’s
score in the Mouselab-MDP task is the sum of the rewards
they collected minus the cost of their clicks. We can therefore
interpret it as a measure of how well their strategy trades off
the quality of the resulting decisions with the cost of decision-
making. To make the scores more interpretable, we com-
pute each group’s resource-rationality quotient (RRpeople/RR «
where RRpeople is the group’s average score). As shown in
Figure 5, teaching people strategies discovered by the robust
method brought their performance closer to the performance
of the resource-rational heuristic for the test environment.
Concretely, people’s resource-rationality quotient increased
from 56.8% in the control group to 73.6% in the robust tutor
group and to only 61.5% in the non-robust tutor group.

These differences in performance reflect differences in
the underlying planning strategies. Inspecting the planning
strategies that participants used in the test block showed that
participants who had been taught by the robust tutor inspected
the values of all of the most informative high-variance nodes
on 62.0% of the trials whereas participants in the non-robust
tutor condition or the control condition did so significantly
less often (41.3% and 46.7%, respectively, x*(2) = 117.3,
p < .001).

ient

RRpeople
RRyp+

Resource-Rationality Quotient =

80%
= 60%

40%

20%

Resource-Rationality Quot

0,
0% Robust

Non-robust
Condition Tutor Tutor

Control

Figure 5: Resource-rationality quotient by condition.

Discussion

Discovering and teaching clever heuristics is a promising ap-
proach to improving human decision-making. Previous work
has suggested that it might be possible to leverage machine
learning to automate the process of strategy discovery if the
method is given a highly accurate model of the decision prob-
lems to be solved. But uncertainty and cognitive biases put a
fundamental limit on how accurate we can expect people’s
descriptions of real-life scenarios to be. With previous meth-
ods, even small errors in the model of the decision environ-
ment can lead to strategies that perform very poorly in the
real-world. In this article, we presented robust strategy dis-
covery methods that overcome this problem by taking into
account that the model might be a biased description of re-
ality. Our simulations show that the developed methods are
significantly more robust to model misspecification than pre-
vious methods and can discover strategies that tend to work
very well in the true environment even when the provided
model is compromised by cognitive biases. The findings of
our behavioral experiment show that robust strategy discov-
ery methods can allow us to improve human-decision-making
in cases where non-robust methods fail. One limitation of the
present work is that it assumed a perfect model of the biases
in the generation of model specifications. The methods in-
troduced in this article are an important step towards leverag-
ing automatic strategy discovery to improve human decision-
making in the real world. The findings of our first proof-of-
concept case-study show that uncertainty about the real-world
and the errors that experts may commit when describing their
domain do not have to hold us back from developing intel-
ligent cognitive tutors that automatically discover and teach
clever strategies that enable people to make better decisions.
The progress reported in this article opens up several ex-
citing avenues for future work. One line of future work is to
apply robust strategy discovery methods to human-generated
descriptions of decisions they face in the real world. To
support this application, we will refine our method’s model
of people’s cognitive biases based on empirical data. In a
related line of work, we will apply robust strategy discov-
ery to increasingly more realistic decision-problems, such
as online shopping and investing, and investigate transfer to
decision-making in the real world. As the decision problems
and strategies become more complex, it might become chal-

2411

lenging for people to grasp them from seeing demonstrations
alone. To overcome this challenge, we will develop cognitive
tutors that combine demonstrations with automatically dis-
covered interpretable descriptions of the demonstrated strate-
gies (Skirzynski, Becker, & Lieder, 2020) and give people
feedback on their attempts to apply the taught strategy to
practice problems.

References

Callaway, F., Gul, S., Krueger, P., Griffiths, T. L., & Lieder, F.
(2018). Learning to select computations. In Uncertainty in ar-
tificial intelligence: Proceedings of the thirty-fourth conference.

Callaway, F., Lieder, F., Das, P, Gul, S., Krueger, P., & Griffiths,
T. (2018). A resource-rational analysis of human planning. In
C. Kalish, M. Rau, J. Zhu, & T. Rogers (Eds.), CogSci 2018.

Callaway, F., Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017).
Mouselab-MDP: A new paradigm for tracing how people plan. In
The 3rd Multidisciplinary Conference on Reinforcement Learn-
ing and Decision Making, Ann Arbor, MI. Retrieved from
https://osf.io/vmkrq/

Deese, J., & Kaufman, R. A. (1957). Serial effects in recall of
unorganized and sequentially organized verbal material. Journal
of experimental psychology, 54(3), 180.

Gigerenzer, G., & Todd, P. M. (1999). Simple heuristics that make
us smart. Oxford University Press.

Hausknecht, M., & Stone, P. (2015). Deep recurrent Q-learning for
partially observable MDPs. In 2015 aaai fall symposium series.
Hertwig, R., Barron, G., Weber, E. U., & Erev, 1. (2004). Decisions
from experience and the effect of rare events in risky choice. Psy-

chological science, 15(8), 534-539.

Hertwig, R., & Griine-Yanoff, T. (2017). Nudging and boosting:
Steering or empowering good decisions. Perspectives on Psycho-
logical Science, 12(6), 973-986.

Hertwig, R., Pleskac, T. J., & Pachur, T. (2019). Taming uncertainty.
Cambridge, MA: MIT Press.

Lieder, F., Callaway, F., Jain, Y., Krueger, P., Das, P., Gul, S., & Grif-
fiths, T. (2019). A cognitive tutor for helping people overcome
present bias. In RLDM 2019.

Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: un-
derstanding human cognition as the optimal use of limited com-
putational resources. Behavioral and Brain Sciences, 3, 1-85.

Lieder, F., Krueger, P. M., & Griffiths, T. L. (2017). An automatic
method for discovering rational heuristics for risky choice. In
G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.),
Cogsci 2017.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1988). Adaptive
strategy selection in decision making. Journal of experimental
psychology: Learning, Memory, and Cognition, 14(3), 534.

Skirzynski, J., Becker, F., & Lieder, F. (2020). Automatic
discovery of interpretable planning strategies. arXiv preprint
arXiv:2005.11730.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty:
Heuristics and biases. Science, 185(4157), 1124-1131.

von Neumann, J., & Morgenstern, O. (1944). The theory of games
and economic behavior. Princeton, NJ: Princeton University

Press.
Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z.,
Munos, R., ... Botvinick, M. (2016). Learning to reinforcement

learn. CogSci 2016.

