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Abstract

Learning to learn is a reduction in the amount of training needed
for task attainment across a series of similar tasks. Transfer
differentiates (adult) humans from other species, portending a
window into unique aspects of human learning. However, its
unclear whether such differences are quantitative, or qualitative
and what it means for the evolution/development of cognition.
In this paper, learning is regarded as a (categorical) limit. A
limit is a universal construction, and so transfer follows from
a (generalized) optimization process. This result provides a
formal basis for comparison/contrast of learning transfer in hu-
mans and other species—another step to bringing the empirical
question into sharper relief.
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Introduction

Learning to learn (also called learning set transfer) refers to an
improvement in training rate across a series of similar learning
tasks (Harlow, 1949). For example, suppose each task is
to learn a configural association, where the target responses
depend on interacting cues (colour and shape): in one task
instance, subjects are trained to select square over triangle
when presented with a square on a blue coloured background,
and triangle over square when a square is presented on a
green background; in another instance, subjects are trained
to select circle over cross when a circle is presented on a
red background, and cross over circle when the background
for the presented circle is yellow. Evidence of learning to
learn is observed when the number of training trials needed
to reach some criterion for successful learning decreases on
subsequent instances of the task.

Many species have a capacity for learning, yet its unclear
whether differences in transfer are quantitative, or qualitative
(Bitterman, 1975; Warren, 1965). For instance, some authors
have argued for an association-based account of learning that
is extendable to propositions, so providing a basis for higher
cognition (Mitchell, Houwer, & Lovibond, 2009). An asso-
ciative model could assume that learning rate changes with
prior experience (Miller, Barnet, & Grahame, 1995), thereby
providing a quantitative explanation for differences in learn-
ing transfer: greater transfer is linked to greater change in
learning rate. Yet, other authors argue that the propositional
(relational) aspects of cognition—inferring targets from re-
lations between stimuli—are qualitatively unique to humans
(Penn, Holyoak, & Povinelli, 2008), and most developed in
adults (Halford, Wilson, & Phillips, 1998). Resolving such
disputes over accounts of learning transfer should inform the
nature, evolution and development of cognition.

To this end, the relational schema induction paradigm was
developed to distinguish associative versus relational mod-
els of learning transfer (Halford, Bain, Maybery, & Andrews,

1998; Halford & Busby, 2007). These models make contrast-
ing predictions following feedback on information trials that
are necessary to determine the responses to the other stim-
uli. For example (above), having seen that circle is preferred
over cross when presented on a red background (information
trial), a relational model predicts that cross is preferred over
circle when the background is yellow, because the second
task involves the same relation(al schema). By contrast, the
associative model makes no prediction for a novel stimulus,
having not been paired with a target before. The empirical re-
sults support a relational model for learning transfer (Halford,
Bain, et al., 1998; Halford & Busby, 2007).

Relational schema induction is ideal for comparing species
and age groups, because it does not require language to admin-
ister. Yet, the empirical results raise a conundrum. On one
hand, associative processes appear incapable of accounting
for this form of transfer. On the other hand, this form of trans-
fer may be beyond the capacities of non-humans and young
children (Halford, Wilson, Andrews, & Phillips, 2014). How,
then, does a systematic capacity for learning transfer develop?

A first step towards redressing this conundrum is to employ
a more general theory incorporating both relational and asso-
ciative aspects of cognition. So, the purpose of this paper is to
provide a common theoretical grounding of relational schema
induction and learning set transfer. That common ground is
the category theory concept of limit (Mac Lane, 1998), which
is motivated by the following points. Consistent induction
of relational schemas (Halford, Bain, et al., 1998) is another
form of systematicity (Fodor & Pylyshyn, 1988), which is
explained by the category theory concept of universal mor-
phism (Phillips & Wilson, 2010). And, universal morphisms
are equivalently certain kinds of limits (Mac Lane, 1998). Ac-
cordingly, we show that these two forms of learning to learn
obtain from a particular kind of limit process.

The paper proceeds with an outline of the basic theory of
limits, in the next section. This categorical theory of limits is
then applied to examples of relational schema induction and
learning set transfer in the subsequent two sections, where it
is shown that both forms of learning to learn are captured by
a certain kind of limit, called the end of a functor. (Formal
details appear in the Appendix.) These results are discussed
in the broader context of learning transfer, comparative and
developmental cognition, in the final section.

Limits
A (categorical) limit is a kind of optimal solution to a given
problem. Such limits generalize the more familiar limit of a

function. This section provides an intuitive guide to categor-
ical limits for the purpose of modeling learning transfer.
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A categorical limit depends on more basic concepts, which
are introduced first. In brief, category theory starts with the
concept of a category (definition 1), which consists of objects,
relations between objects, called morphisms, and an operation
for combining morphisms, called composition. Most models
of cognition involve sets and functions, which are objects and
morphisms in the category Set (example 1). A map between
categories is a functor (definition 3), preserving categorical
structure in the homomorphic sense—a functor is a category
homomorphism. Two functors are compared by a natural
transformation (definition 4), and an optimal comparison is a
universal morphism (definition 5). A [limit (definition 6) is a
kind of universal morphism, and so an optimal construction.

A product (definition 2) is a limit, affording a basic form of
compositonality (example 2) in models of cognition. Products
are: constructed by functors (example 3), instances of univer-
sal morphisms (example 4), and derived by limit processes
(example 5). So, categorical limits provide a framework for
inducing (compositional) structure and learning transfer.

Learning transfer is modeled by a further generalization of
limit, called the end of a (bi)functor (definition 8). A bifunctor
is an analog of bivariate function. The intuition here is to
regard each variable as pertaining to a task instance, whereby
the end computes (reconstructs) the common relation between
the structures underlying each instance (theorem 1). As we
shall see in the following two sections, this reconstruction
process is the formal foundation for our categorical treatment
of learning to learn.

Relational schema induction

First we describe the relational schema induction paradigm
and then we provide a category theory account of induction.

Relational schema induction consists of a series of tasks
conforming to a group-like structure (Halford, Bain, et al.,
1998; Halford & Busby, 2007). Suppose stimuli are drawn
from the set of shapes Sh = {©,&} and the set of trigrams
Tri = {BEH,FUT,PEJ,ROY}, and the task is to learn a
map from the set of shape-trigram pairs to the set of tri-
grams: T; = Sh x Tri — Tri, e.g., (O,BEH) — FUT and
(&%,FUT) — PEJ. If we view trigrams as vertices of a square,
the shapes correspond to horizontal and vertical reflections.
Shapes and trigrams are unique across tasks and each task
conforms to the same group-like structure: e.g., in another
task, shapes are drawn from the set {{>, #} and trigrams from
the set {HUQ, KES,NIZ, XAY } and the mappings follow ac-
cordingly (see figure 1). Participants consistently induce the
relational schema after several task instances (Halford, Bain,
et al., 1998): the limit of learning transfer as indicated by
correct prediction on novel trials.

This form of induction is modeled as a kind of limit in
category theory. Specifically, the relations between cues and
targets are modeled as monoid (definition 9) actions on a set
(definition 10): each shape is treated as an action that sends
trigrams to trigrams (example 8), and the set of trigrams for
each task instance is called an M-set. Each M-set corresponds
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BEH <~ FUT HUQ <> KES
TR
ROY <T> PEJ XAY ? NIZ

Figure 1: Two task instances for relational schema induction.

to a task, and a map between tasks that is compatible with (i.e.
“preserves”) the actions on trigrams is an equivariant map
(definition 11). The collection of (possible) tasks and (action-
preserving) maps between tasks, for a monoid M, forms a
category, denoted MSet (remark 10). Participants are only
given feedback on the target (trigram) that is associated with
the given cue (shape-trigram pair), not the monoid generating
those associations. This situation is modeled as the forgetful
functor U : MSet — Set; (S, 6) — S, which supplies the set of
elements, S, forgetting the actions, ¢ (remark 11). Computing
the end of a functor involving U recovers the monoid M, which
contains the actions (theorem 1). (The unit of the monoid, e,
corresponds to the “no-change” action where trigrams map
to themselves, which is assumed but not part of the experi-
ment.) The recovered monoid affords correct predictions on
novel task instances: the two information trials determine the
correspondence between shapes and elements of the monoid,
hence how those shapes act on the other trigrams in novel
trials of a new task instance.

In detail, suppose the task instances depicted in figure 1.
The first task is represented as the pair (S,0) consisting of
the set of trigrams S = {BEH, FUT,PEJ,ROY } and the set of
shapes (actions) ¢ = {©, &} where, e.g., © : BEH — FUT
and & : BEH — ROY. The second task is represented as
(R,p), where R = {HUQ,KES,NIZ,XAY} and p = {{, M},
e.g., ¢ : HUQ — KES and & : HUQ — XAY. Computing the
end of the functor Hom(U —,U —) reconstructs the monoid,
i.e. fyset Hom(U—,U—) = M, consisting of the set of actions
{h,v} and monoid operation: e.g., i-h = e (see example 8).
Ends are limits, which are unique up to unique isomorphism
(Mac Lane, 1998), so this monoid is essentially the same as
the monoid with the two actions relabeled as particular shapes.

Ends obtain as optimal constraint satisfaction (remark 12),
where the constraints are implicitly specified by feedback on
stimulus-response trials for the tasks. Sets Hom(S,S) and
Hom(R,R) consist of all possible maps between trigrams
within a task, and Hom(S,R) consists of all possible maps
of trigrams between tasks. Commutativity (diagram 4) con-
strains the candidate solution sets to only those sets whose
elements pick out the trigram mappings for each task instance
that conjointly satisfy equivariance (definition 11) between
task instances. Universality (remark 4) further constrains the
candidates to only those sets whose elements are necessary
and sufficient for commutativity, i.e. the relational schema
(monoid) common to all task instances. In this way, relational



schema induction is a form of optimal constraint satisfaction.

Learning set transfer: configural association

Configural association can be seen as a kind of relational
schema induction (Halford, Bain, et al., 1998), which has the
structure of the logical operation, exclusive-or (remark 7). In
this section, we show how learning set transfer for configural
association is also a limit in the same manner as relational
schema induction, as shown in the previous section.

In a configural association task, participants learn to asso-
ciate cues to targets depending on context: e.g., in the context
of a green display background, triangle is associated to tri-
angle and square is associated to square; in the context of
a blue background, triangle associates to square and square
associates to triangle. After learning these associations a new
instance of configural association is administered. This new
instance consists of different shapes and colours: e.g., in the
context of a yellow display background, circle associates to
circle and cross associates to cross; in the context of a brown
background, circle associates to cross and cross associates to
circle. Learning set transfer is observed when the number of
training trials to criterion for subsequent tasks decreases.

Configural association is also modeled as monoid actions
on sets, whereby colours correspond to actions on shapes:
eg,.G:A—A,G:0—0,B:A—0O,B: 0+ A. Inthis
case, the monoid corresponds to exclusive-or: Z, (remark 7).
Accordingly, the collection of such tasks and their equivari-
ant maps forms a category, and the monoid is reconstructed
by computing the end of the functor, Hom(U—,U—), as in
the previous example. The monoid is then applied to a new
task instance given a single information trial, affording tar-
get prediction for the other three cues. In this way, learning
set transfer for configural association and relational schema
induction are two instances of reconstruction.

Discussion

The approach presented here places relational schema induc-
tion and learning set transfer on a common footing: both
forms of learning to learn obtain from the same (general)
limit process—the end of a functor. Indeed, this approach
clarifies the close connection between the two examples of
relational schema induction and configural association: the
common structure underlying task instances of the former is
the (categorical) product of the common structure underlying
task instances of the latter (remark 8). The rest of this sec-
tion considers the implications of this theory for the nature,
development and evolution of cognition.

Relational versus associative processes

The relational schema induction paradigm was introduced to
assess whether learning transfer depends on relational or asso-
ciational processes (Halford, Bain, et al., 1998). On one hand,
some authors have argued that developmental differences de-
pend on a capacity to process relational information (Halford,
Wilson, & Phillips, 1998; Penn et al., 2008). However, other
authors argue that associative processes are sufficient (Leech,
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Mareschal, & Cooper, 2008; Mitchell et al., 2009). Our ap-
proach shows how these disparate views are reconciled.

Specifically, to induce the common structure, subjects must
first learn the basic cue-target associations that constitute a
task instance. The trigram-trigram associations for a task S
and a given action constitute a map in the set Hom(S, S). Thus,
there is an associative (first-order) component to induction.
However, to recover the structure, subjects must also compute
a limit (end): a relation between the associations within task
instances, i.e. Hom(S,S) and Hom(R, R), that is constrained
by equivariance, i.e. the maps Hom(1g, ) and Hom(f, 1z).
So, there is also a relational (second-order) component in both
paradigms. These components are independently manipulated
as the cardinalities of set X: number of elements acted on,
and monoid M: number of relations acting on X, respectively.
The arity of the (product) monoid can also be varied from
unary to binary, and so on—i.e. as the n-ary product monoid,

5 = I1} Z, (remark 8). Hence, the empirical implications of
associative and relational information on learning transfer can
both be assessed.

Notice that although the relational schema induction and
learning set paradigms (as considered here) involve one-to-
one correspondence between the elements (e.g., shapes and
trigrams) of different task instances, this principle is derived
by our approach, not assumed. Relational schema induction
was considered to involve the mapping of structure (Halford,
Bain, et al., 1998), for example, as specified by structure
mapping theory (Gentner, 1983). However, structure map-
ping theory and related models of analogy generally assume
a one-to-one correspondence constraint (Gentner & Forbus,
2011). Here, this principle is derived from computing the
end of a functor, which affords a further generalization of the
induction/transfer paradigm whereby task instances are ho-
momorphic but not necessarily isomorphic. This situation is
automatically captured by the theory of ends.

Systematicity

The systematic consistency with which subjects induce the
relational schema and transfer this knowledge across task in-
stances (Halford, Bain, et al., 1998; Halford & Busby, 2007)
raises a familiar systematicity challenge (Fodor & Pylyshyn,
1988). In the current context, this challenge is to explain why
subjects who exhibit transfer on one task also exhibit trans-
fer on another task. This property pertains to a systematic-
ity of learning, or second-order systematicity (Aizawa, 2003;
Phillips & Wilson, 2016a).

A category theory explanation is that systematicity obtains
from a universal construction (Phillips & Wilson, 2010). Ends
are a form of universal construction (Mac Lane, 1998). Hence,
the explanation for the (second-order) systematicity of learn-
ing exhibited in the relational schema induction experiments
(Halford, Bain, et al., 1998; Halford & Busby, 2007) follows
from computing the end of the appropriate functor. Com-
puting the end (or universal morphism) follows from another
kind of universal process: categorical (co)recursion (Phillips
& Wilson, 2016b). So, the current work affords both structural



and computational explanations for learning to learn.

Continuous versus punctate development

An overarching question concerns the development of such
learning to learn capacity, Is development of a capacity for
learning transfer continuous, or punctate (i.e. a change in
quantity, or quality)? Some authors have argued that a capac-
ity for processing relational information is unique to humans
(Penn et al., 2008). And, other authors have gone further
to argue that relations of varying complexity also differentiate
age groups within humans (Halford, Wilson, & Phillips, 1998;
Halford etal., 2014). Our approach provides two intimately re-
lated perspectives on this issue of evolution/development. On
one hand the relational induction task involves a (binary) prod-
uct of the structure of the configural association task (unary),
indicating discontinuity. On the other hand unary relations
are equivalent to binary relations with one argument fixed,
suggesting continuity from the lower to higher complexity
situation. This equivalence is expressed as the isomorphism
A x 1 =A, where 1 is the terminal object—another kind of
limit—which is any singleton setin Set. There is a quantitative
difference in terms of product arity (i.e. one versus two) and
a qualitative difference in terms of relations (i.e. unary versus
binary). In this regard, the transition from unary to binary
products is essentially a transition between binary products
with one variable argument to two variable arguments, which
concords with relational complexity theory as the number of
dimensions of variation that must be considered conjointly
(Halford, Wilson, & Phillips, 1998; Halford et al., 2014).

Further work

New approaches raise new questions and directions for further
work. In this paper, we focused on the induction of common
structure, but we have not provided a categorical account of
how that structure affords generalization to novel cues given
the information trials. One approach to generalization is to
employ a free functor (Mac Lane, 1998), whereby partial
knowledge of the task instance learned from the information
trials is “freely” completed for prediction of the targets for
the other (novel) cues. This functor constructs the free M-set
representation on the given set, i.e. F :S+— (S,0), which is
the “pseudo-inverse” of the forgetful functor U : (S,0) — S
(remark 11). Free and forgetful functors form an adjoint pair,
which is another kind of universal construction (Mac Lane,
1998), hence related to our categorical explanation for induc-
tion. (Diagonal and product functors also form an adjoint
pair.) The details are beyond the space available, but a closely
related example was given in regard to systematicity with re-
spect to this task (Phillips & Wilson, 2010).

Another important direction is to extend this approach to the
probabilistic setting. Typically, transfer is multi-shot, not one-
shot. We focused on one-shot transfer, because it is regarded
as a hallmark of human-level transfer (Halford et al., 2014).
Further work is needed to understand the link between one-
shot and multi-shot learning transfer, as commonly exhibited
in non-human studies (Bitterman, 1975; Harlow, 1949).
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Our approach has been to consider a more general theory
to incorporate apparently different forms of cognitive pro-
cess: relational versus associative. Yet, more general theory
seems more removed from the underlying neuroscience, which
raises questions about the link to the neurocomputational sys-
tem. As observed elsewhere (Phillips, 2019), some category
theory constructions pertaining to constraint satisfaction, like
the ones employed here, are reminiscent of a neural network
model of analogy (Doumas, Hummel, & Sandhofer, 2008).
So, another direction is to investigate the formal links between
the current theory and such models.

The theorem used here is a simple case of a far more gen-
eral theory that affords the reconstruction of other kinds of
algebras and is not limited to just sets. Thus, we expect our
approach also applies to other forms of induction beyond the
examples presented here. The present work is an entrée to a
course of cognitive theory, whereby induction is modeled as
reconstruction and generalization as completion.

Despite the formal elegance of a category theory approach,
this approach does not directly say why subjects fail to induce
the relevant structure. Inducing structure depends on both
associative and relational components, as discussed earlier,
which are putatively linked to differences in working memory
systems across different cohorts (Halford et al., 2014). By
unifying various forms of learning transfer, the theory makes
clearer how such questions can be addressed experimentally.
A valuable aspect of good theory is to bring such questions
into sharper relief.
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Appendix A: Basic theory

Definition 1 (Category). A category C consists of a collec-
tion of objects, O(C) = {A,B, ...}, acollection of morphisms,
M(C)={f,g,... }—amorphism written in full as f : A — B
indicates object A as the domain and object B as the codomain
of f—including for each object A € O(C) the identity mor-
phism 14 : A — A, and a composition operation, o, that sends
each pair of compatible morphisms f:A - Bandg: B — C
(i.e. the codomain of f is the domain of g) to the composite
morphism go f : A — C, that together satisfy the laws of:

e identity: foly=f=1po f forevery f € M(C), and

* associativity: ho(go f) = (hog)o f for every triple of
compatible morphisms f,g,h € M (C).
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Remark 1. The collection of morphisms in C with domain A
and codomain B is called a hom-set, denoted Hom(A, B).

Example 1 (Set). In Set, the objects are sets, the morphisms
are functions, and composition is composition of functions.
The identity morphisms are the identity functions.

Remark 2. The opposite category, denoted C°P, has all the
objects and “reversed” morphisms of C: a morphism f: A —
B in C is the morphism f°P : B — A in C°P.

Definition 2 (Product). In a category C, a product of objects
A and B is an object P, also denoted A x B, together with
morphisms T : P — A and &t : P — B, called projections, such
that for every object Z and morphisms f: Z —Aandg:Z — B,
all in C, there exists a unique morphism u : Z — P such that
(f,8) = (£, %) ou. Morphism u is also denoted (f,g) as it is
determined by f and g.

Example 2 (Cartesian product). In Set, the product of sets A
and B is the Cartesian product: A x B={(a,b)|a € A,b € B}
and projections % : (a,b) — a and 7t : (a,b) — b. The unique
morphism, u, is the function (f,g) : z+ (f(2),8(2)).

Definition 3 (Functor). A functor is a “structure-preserving”
map from a category C to a category D, written ' : C — D,
sending each object A and morphism f: A — B in C to the
object F(A) and the morphism F(f) : F(A) — F(B) in D
(respectively) that satisfies the laws of:

* identity: F(14) = 1p(a) for every object A € O(C), and

* compositionality: F(goc f) = F(g) op F(f) for every pair
of compatible morphisms f,g € M (C).

Example 3 (Diagonal, product). The diagonal functor A :
C — C x C sends each object and each morphism to their
pairs, and the product functor I1 : C x C — C sends each pair
of objects and each pair of morphisms to their products:

¢ ArA= (AA),f = (f,f), and
« I1: (A,B)—AxB,(f,g) —~ fxg.

Definition 4 (Natural transformation). Let F,G : C — D be
functors. A natural transformation m : F — G is a family
of D-morphisms {n4 : F(A) — G(A)|A € O(C)} such that
G(f)ona =npoF(f) for every morphism f: A — Bin C, as
indicated by the following commutative diagram:

F(A) —%> G(4) (1)

F(f)l iG(f)

F(B) ? G(B)

Remark 3. 7 : 11 = IT and &t : IT = II, where functors IT :
(A,B) — A and Il: (A, B) — B, are natural transformations.

Definition 5 (Universal morphism). Let F : C — D be a func-
tor and Y an object in D. A universal morphism from F to Y
is a pair (B, y) consisting of an object B in C and a morphism



Y : F(B) =Y in D such that for every object X in C and every
morphism g : F(X) — Y in D there exists a unique morphism
u:X — Bin C such that g = yo F(u).

Example 4 (Product as universal morphism). A product of A
and B is the universal morphism (A x B, 1) from the diagonal
functor, A, to the pair of objects (A, B), where Tt = (%, ).
Definition 6 (Limit). A limit of a functor D: C — C’ is a
universal morphism from D to an object in C/—the category
of functors (from J to C) and natural transformations.

Example 5 (Product). A product of sets A and B is the limit
of the functor A : Set — Set” to (A,B). (NB. C2=Cx C.)

Definition 7 (Wedge). A wedge to a functor F : C°? x C — D
is a dinatural transformation ® : D-5F consisting of a family
of D-morphisms {®4 : D — F(A,A)|A € O(C)} such that for
each f: A — B in C the following diagram commutes:

D—> F(4,A) )

O)B\L lF(lA,f)

Definition 8 (End). The end of a functor F : C°P x C — D
is a pair (E,®) consisting of an object E in D and a wedge
o : DF such that for every wedge P : Z-3F there exists a
unique morphism u : Z — E such that B = @ou. Object E is
also denoted [, ¢ F(A,A), or [oF.

Remark 4. An end is a universal wedge; equivalently, a limit
in two variables.

Example 6 (Hom-set). Hom-sets of natural transformations,
Nat(F,G), are constructed from the ends of hom-functors.

a fcHom(—,—) = Nat(1¢, 1¢).
b [cHom(F—,G—) = Nat(F,G).
Remark 5. For example 6(b), substitution yields

()

E Hom(FA,GA) 3)

mgl lHom(eraGf)

Hom(FA,GB)

Hom(FB,GB) Hom(F f,16p)

where E identifies with the set of natural transformations, {1},
and w4 with the component, N4 € Hom(FA,GA), according
to the naturality condition (see diagram 1).

Definition 9 (Monoid). A monoid (M,-,e) consists of a set
M, a (closed) binary operation -, and an element e € M, called
the unit, such that for all elements a,b,c € M the operation is:

e associative: a-(b-c) = (a-b)-c, and
* unital: a-e=a=-e-a.

Remark 6. A monoid is a one-object category—morphisms
are the elements and composition is the monoid operation.
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Example 7 (Integers). Examples of monoids include:
* (Z,+,0): the integers together with addition,

* Zy: {0,1} together with addition modulo-2, and

o Z% = 7y X Zp: the product of monoid Z; with itself.

Remark 7. Z, is isomorphic to exclusive-or, as indicated by
the following tables for the respective operations:

+]0 1 G|F T
00 1 F|[F T
11 0 T|T F

Remark 8. Z; x Z, (with projections) is a categorical product
in the category of monoids and monoid homomorphisms.
Definition 10 (Monoid action). Let (M, -,e) be a monoid and
X aset. A (left) monoid action on X is a function ¢ : M x X —
X that satisfies the following laws for all a € M and x € X:

* identity: ¢(e,x) = x, and
* compatibility: 0(a-b,x) = 0(a,d(b,x)).
The set X is called an M-set.

Remark 9. A monoid action is a functor, M — Set, which
identifies each action in M with an endomorphism X — X.

Example 8 (Actions). The actions of Z; (Z%) on a set of
shapes (trigrams) is shown in the following left (right) table:
Z, | A O Z3 | BEH FUT PEJ] ROY
0|A D h | FUT BEH ROY PEJ
1 |o A v | ROY PEJ] FUT BEH

where & (horizontal) and v (vertical) in Z% correspond to the
elements (0,1) and (1,0) in Z, X Z,, respectively. Actions e
(no change) and d (diagonal) in Z2, corresponding to elements
(0,0) and (1,1) in Z, x Z;,, are not shown.

Definition 11 (Equivariant map). Let X and Y be M-sets for a
monoid M. An equivariant map is a function f : X — Y such
that f(a-x) =a- f(x) foralla € M and x € X.

Remark 10. An M-set S is represented by the functor (S,0)
identifying set S and the homomorphism ¢ : M — (X — X).
M-set representations (functors) and equivariant maps (natural
transformations) form a (functor) category, denoted MSet.
Remark 11. The forgetful functor U : MSet — Set forgets
the actions, i.e. U : (S,0) — S.

Theorem 1 (Reconstruction). Let MSet be a category of M-
set representations for a monoid M, and U : MSet — Set the
forgetful functor. We have [yge Hom(U—,U—) =M.
Remark 12. Substituting Hom(U—,U—) for functor F in
definition 8 yields commutative diagram

E & Hom(s, S) €
(J)bl \LHOm(ls,f)
Hom(R,R) Hom(S,R)
Hom(f,1g)

where E identifies with (set) M, and ®,/®; identifies action
a/b with the endomorphism. See Tannaka duality.



