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Abstract
Appropriately calibrating trust in autonomous systems is es-
sential for successful collaboration between humans and the
systems. Over-trust and under-trust often happen in dynami-
cally changing environments, and they can be major causes of
serious issues with safety and efficiency. Many studies have
examined the role of continuous system transparency in keep-
ing proper trust calibration; however, not many studies have
focused on how to find poor trust calibration nor how to miti-
gate it. In our proposed method of trust calibration, a behavior-
based approach is used to detect improper trust calibration, and
cognitive cues called “trust calibration cues” are presented to
users as triggers for trust calibration. We conducted an on-
line experiment with a drone simulator. Seventy participants
performed pothole inspection tasks manually or relied on the
drone’s automatic inspection. The results demonstrated that
adaptively presenting a simple cue could significantly promote
trust calibration in both over-trust and under-trust cases.
Keywords: Trust Management,Trust Calibration

Introduction
Rapid advances in autonomous technologies are changing all
aspects of our daily life. One of the early works (Chambers
& Nagel, 1985) on human factors in flight automation already
investigated a wide range of design considerations to realize
a safe and efficient relationship between the pilot and the sys-
tem.

Trust is known as one of the critical concepts in collabo-
ration between human users and autonomous systems. Suc-
cessful collaboration requires the users to appropriately adjust
their level of trust to the actual reliability of systems. This
cognitive process is called trust calibration (Muir, 1994; Lee
& See, 2004). Users often fail to calibrate their trust in a sys-
tem and end up in a state called over-trust or under-trust when
the system’s reliability changes for various reasons in an en-
vironment. Over-trust is poorly calibrated trust in which the
user overestimates the reliability of the system, Under-trust is
poorly calibrated trust in which the user underestimates the
system’s capability. Poor trust calibration often causes not
only the performance of the collaboration to degrade but also
serious safety issues (Parasuraman & Dietrich H. Manzey,
2010; NHTSA, 2017).

In keeping appropriate trust, it is necessary to be able to
measure trust and to influence trust if necessary. However,
these two elements are still challenging issues.

Measuring trust is difficult, as trust is a latent construct.
Self-reported trust measures used by most of the trust re-
search are too intrusive to use them during task executions.

Trust questionnaires conducted at the end of an experiment
sometimes do not correctly reflect real-time trust during
the experiment (Desai, Kaniarasu, Medvedev, Steinfeld, &
Yanco, 2013). Some studies examined the effectiveness of
physiological and neural measures such as gaze (Hergeth,
Lorenz, Vilimek, & Krems, 2016), heart-rates, and EEG.
Although these are promising approaches, further research
would be necessary to clarify the correlation between trust
and these metrics.

Many studies (Rempel, Holmes, & Zanna, 1985; Muir,
1987; Hoff & Bashir, 2015; Schaefer, Chen, Szalma, & Han-
cock, 2016) investigated the factors influencing trust. They
suggested that it would be complex and difficult to calibrate
trust by manipulating those factors, since there are many in-
teractions and dependency among them.

Most of the existing research on trust calibration, such
as (McGuirl, Sarter, John M. McGuirl, & Nadine B. Sarter,
2006; de Visser, Cohen, Freedy, & Parasuraman, 2014;
Helldin, 2014; Haeuslschmid, Buelow, Pfleging, & Butz,
2017), emphasized the importance of system transparency to
maintain appropriate trust. Studies on trust in autonomous
driving such as Helldin, Falkman, Riveiro, and Davidsson
(2013); Haeuslschmid et al. (2017) also demonstrated that
providing good transparency by constantly presenting the
system information helps maintain the proper trust in the
vehicles. They claimed that appropriate trust could be de-
veloped if an AI system provides enough information for a
human user to obtain a good understanding of the system.
Their primary goal is how to avoid trust miscalibration. How-
ever, once human users fall into the categories of over-trust or
under-trust, it might not be easy for them to escape from the
miscalibration status with the system transparency informa-
tion.

Although recent works such as (de Visser et al., 2019;
Tolmeijer et al., 2020) proposed trust calibration models for
human-robot teams, not many studies have focused on how
to detect improper trust calibration nor how to mitigate it.

To address the research challenges, we propose a frame-
work to define the status of improper trust calibration with a
behavior based-measurement of trust. We also examine cog-
nitive cues to notify the users of miscalibration status. A
method of adaptive calibration is proposed with the frame-
work and the cognitive cues. We conducted an online experi-
ment using a drone simulator with the ABA/BAB scenarios of
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under-trust(A) and over-trust(B) by manipulating the weather
conditions. The results demonstrate that adaptively present-
ing a simple cue could significantly promote trust calibration
in both over-trust and under-trust cases. As the proposed
method is simple but task-independent, we believe it could
be a good design baseline for better human-autonomous sys-
tem collaborations.

Current study
Detection Framework
Suppose a user and an autonomous system are jointly work-
ing on a set of tasks. The user should decide whether to rely
on the system or do each task manually. In our framework,
we focus on performance related factors for trust. Three prob-
abilites, Pauto, Ptrust , and Pman, are defined as follows.
• Pauto: Probability that a task done by a system will be suc-

cessful. This is called the “reliability of the system.”
• Ptrust : User’s estimation of Pauto. This is the user’s trust in

the system.
• Pman: Probability that a task done manually by a user will

be successful. This is called the “capability of the user.”
Note that “man” means “manual.”
Pauto changes depending on the conditions of the system.

Ptrust also changes accordingly and becomes equal to Pauto if
trust is appropriately calibrated. Over-trust occurs if Ptrust >
Pauto, and under-trust occurs if Ptrust < Pauto. Since directly
measuring Ptrust is quite difficult, we modified the definitions
of over-trust and under-trust by introducing a third probability
Pman in addition to Ptrust and Pauto as follows:
• Over-trust: the user estimates that the system is better at a

task than the user even though the actual reliability of the
system is lower than the user’s capability.

(Ptrust > Pman)∧ (Pman > Pauto) (1)
• Under-trust: the user estimates that they are better at a task

than the system even though the actual reliability of the
system is higher than the user’s capability.

(Ptrust < Pman)∧ (Pman < Pauto) (2)
The reliance behaviors of a user can be explained by the

user’s perception of the reliability of a system and the user’s
own capability (Gac & Lee, 2006). When a user decides to
rely on a system, it is reasonable to say that this behavior indi-
cates Ptrust > Pman. If the user decides to do a task manually,
it means Ptrust < Pman. Thus, the first terms of (1) and (2) can
be estimated by observing the user’s reliance behavior. As
for the second terms, Pauto could be calculated with the sen-
sor models and algorithms used to implement the system, and
Pman could be estimated by using the parameters of a tar-
get task and environmental conditions. Therefore, the second
terms of (1) and (2) can be also estimated.

Trust Calibration Cue
The second element of the proposed method involves the idea
of giving a cognitive cue to users when over-trust or under-
trust is detected. This cue is called a “trust calibration cue”

(TCC). The four types of TCCs (visual, audio, verbal, and
anthropomorphic) were originally proposed in (Okamura &
Yamada, 2018). These were designed to be intuitive and ef-
fective warning signals (Laughery & Wogalter, 2014). Many
studies examined the information associated with trust. de
Visser et al. (2014) proposed a design guideline for trust cues,
which are information elements used to make a trust assess-
ment about a system. Unlike our TCC, their trust cues were
used to display information specific to trust dimensions and
stages.

Adaptive Trust Calibration
With the detection framework and TCCs described above, we
propose a method of adaptive trust calibration as follows. De-
tails of the detection algorithm in the step 3 will be described
in the next section.

Method Adaptive Trust Calibration
1: while collaboration tasks are performed do
2: Observe a user’s behavior of reliance on a system.
3: Evaluate the expression (1) and (2) in the framework.
4: if over-trust or under-trust is detected then
5: Present a TCC to the user.
6: end if
7: end while

If our method can effectively mitigate over-trust or under-
trust, the following are hypothesized:

[H0] the manual choice rates increase if TCCs are presented
in cases of over-trust or decrease if TCCs are presented in
cases of under-trust.

[H1] users with TCCs perform better and more robustly than
the users without TCCs.

[H2] adaptively presenting TCCs could trigger the trust cal-
ibration process more effectively than continuously main-
taining system transparency in a conventional way.

Method
Apparatus and Materials
We developed a drone simulator based on an open-source 3D
map library CesiumJS(The Cesium Consortium, 2018). Fig-
ure 11 shows a screen image of the simulator running in the
Chrome browser.

Pothole Inspection Task
A pothole is a bowl-shaped depression in the surface of a road
and can be a possible cause of traffic accidents. The partic-
ipants of the experiments were asked to inspect road images
from a drone to check if there were any potholes.

A route with 24 checkpoints (CKPs) was defined in the
simulated environment. Each CKP was shown as a small
yellow circle on the screen. When the drone came close to
one of the CKPs on the route, the message shown in Fig-
ure 2 (A) popped up and asked the participants to choose

1The map images in this manuscript are from the Geospatial In-
formation Authority of Japan (https://maps.gsi.go.jp) CC BY 4.0.
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Figure 1: Drone simulator

Auto Manual

Check point No. 3
Auto or Manual?

Auto Manual

Check point No. 3
Auto or Manual?

This choice might not be a good idea.

(A) (B)

(C)

Checkpoint No. 3

Figure 2: (A) Pop-up for selection, (B) reliability indicator,
and (C) verbal TCC

whether to rely on the drone’s automatic inspection or to in-
spect the CKP manually. The indicator shown in Figure 2 (B)
always displayed the reliability of the automatic pothole in-
spection. When the participants selected the “Auto” button,
an automatic-inspection result was shown for three seconds
with a road image. When the “Manual” button was selected,
a road image of the area around the CKP was displayed, and
the participants had to make a pothole report manually. Both
cases with potholes are shown in Figure 3. Potholes were ar-
tificially rendered as irregular shapes in a dark brown color on
the road images in the pop-up window. As the pothole inspec-
tion task is a remote sensing task, it would be quite difficult
for an autonomous system to know the correct answer at the
time of each inspection in practical situations. Therefore, the
correct answer was not presented to the participants.

We used the verbal TCC shown in Figure 2 (C) because a
preliminary experiment revealed that the verbal TCC showed
a strong effect on changing participants’ behavior. When the

Pothole was found

Figure 3: Pothole inspection windows

framework detected over-trust or under-trust depending on
the choice a participant made, this TCC was presented right
after the choice was made (pushing a button).

Participants and Scenarios
A total of seventy participants (51 male, 19 female) took
part in the experiment online. Their ages ranged from 25 to
75 years old (M = 44.2,SD = 10.3). They were recruited
through a cloud-sourcing service provided by Yahoo! Japan.
We defined the ABA/BAB scenarios of under-trust (A) and
over-trust (B) by manipulating the weather conditions in or-
der to evaluate the proposed method for both bidirectional
trust changes. The performance of the automatic pothole in-
spection Pauto was configured on the basis of signal detection
theory (SDT) (Stanislaw, 1999). SDT describes the detection
of signals in noisy environments. Noise and signals are repre-
sented as two overlapping density distributions. The distance
between the two curves represents the sensitivity d′ of a sys-
tem.

In the A condition, good weather conditions were simu-
lated. The screen brightness was 100%, and there were no
sound effects except for the sound of the drone flying. Pauto
and the corresponding sensitivity d′ defined in SDT were ma-
nipulated to be 0.88 and 2.35, respectively, indicating that the
system has a very high discrimination ability. In contrast, the
weather conditions were bad in the B condition. A thunder-
storm was simulated with a blurred and dark (40% brightness
on average) screen and with sound effects. Pauto dropped to
0.50, and the corresponding sensitivity d′ became 0.1, mean-
ing that the reliability of the automatic pothole inspection had
greatly deteriorated. In both ABA/BAB scenarios, each con-
dition continued until eight CKPs were inspected so that the
total number of CKPs was twenty four. Participants were ran-
domly assigned to one of four groups: NoTCC-ABA group
(without TCC in the ABA scenario), TCC-ABA (with a ver-
bal cue in the ABA scenario) group, NoTCC-BAB group, and
TCC-BAB group. Hereinafter, two groups with a common
attribute are called the TCC groups, the NoTCC groups, the
ABA groups, and the BAB groups.

Estimation of Pman and Manipulation Check
Although providing a general estimation model of Pman is be-
yond the scope of this paper, Pman under the conditions of
the current experiment can be estimated as follows. Geirhos
et al. (2018) demonstrated that human image recognition is
still better than the top-performing deep neural networks in
the case of image degradation such as Gaussian blur or ad-
ditive Gaussian noise. This finding could provide a basis
for estimating the second terms of the proposed framework
in the experiment because the pothole inspection became an
image recognition task with blurred and noisy road images
when the weather conditions turned worse. We assumed that
Pauto would fluctuate more widely than Pman under chang-
ing weather conditions, and we estimated that the inequal-
ity Pauto > Pman was true during the good weather period and
false during the bad one.
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Algorithm Adaptive Trust Calibration
Initialize:
Total number of checkpoints(CKPs): M = the number of CKPs.;
Over-trust flag list: OT[1], ..., OT[M] are initialized with zero;
Under-trust flag list: UT[1], ..., UT[M] are initialized with zero;
Number of current CKP: i⇐ 1;

while i 5 M and not time-over do
if the drone reached a CKP then

Estimate Pman and Pauto;
if choice behavior is AUTO and Pman > Pauto then

OT [i]⇐ 1;
if i = 3 and (OT [i−2]+OT [i−1]])= 1 then

Over-trust is detected and TCC is presented to the user;
end if

else if choice behavior is MANUAL and Pman < Pauto then
OU [i]⇐ 1;
if i = 3 and (OU [i−2]+OU [i−1]])= 1 then

Under-trust is detected and TCC is presented to the
user;

end if
end if
i⇐ i+1;

end if
end while

We checked the validity of this estimation by measuring the
manual success rates (Pman) in a pre-experiment. Thirty-two
participants [25 male, 7 female, mean age 42(SD=12)] were
recruited through a cloud-sourcing service provided by Ya-
hoo! Japan. None of them joined the main experiment. They
inspected the prepared CKPs manually in accordance with the
same procedure of the main experiment. The results indicated
that the mean of the manual success rates and the sensitivity
d’ was 0.83 (SE = 0.02) and 1.85 for the A condition and
0.79 (SE = 0.02) and 1.69 for the B condition. One sample
t-test revealed that Pauto > Pman in the A condition [t(47) =
−2.26, p = 0.01,Cohen′sd = 0.33] and Pauto < Pman in the B
condition [t(47) = −13.66, p < 0.01,Cohen′sd = 1.97]. We
concluded that the estimation was valid under the conditions
of the main experiment.

Procedures

The online experiment started with an instruction phase.
The participants were given an instruction stating that the goal
of the experiment was to inspect 24 CKPs within 20 minutes.
They were told that the average success rate of manual pot-
hole inspection was around 75%. They also learned that the
reliability of the drone’s automatic inspection, which is con-
tinuously displayed on the indicator, was very high, although
it could fluctuate depending on the weather conditions. Next,
in the training phase, the participants started a practice flight
of the drone and learned how to inspect the CKPs. This phase
was finished after the first three CKPs were inspected, and the
main phase of the experiment was started with either condi-
tion A or B depending on the scenario of the group. The
algorithm Adaptive Trust Calibration based on the proposed
method was applied.

A simple moving average of three CKPs was used in the al-
gorithm to capture the participants’ behavior changes in each

condition with eight CKPs. If the participants completed the
24th inspection or the elapsed time exceeded 20 minutes, the
main phase was finished.

In this experiment, the three things were measured as the
dependent variables. TCC rates are the rates of the frequency
at which TCCs were presented to the participants at each
CKP, indicating how our method was working during the
experiment. Manual rates are the mean values of the man-
ual choice ratio for each condition, showing how the partic-
ipants relied (or did not rely) on the drone’s automatic in-
spection and therefore indicating their trust calibration status.
The sensitivity d′ demonstrates the performance of human-
autonomous system collaborative tasks.

Results
Seventy participants completed all 24 CKPs within the time
limit. Of the 70, 17 were in the NoTCC-ABA group, 18 in
the TCC-ABA group, 21 in the NoTCC-BAB group, and 14
in the TCC-BAB group. The average time taken to finish the
main phase of the experiment was 9 minutes 5 seconds, which
means 22.5 seconds per CKP.

TCC Rates
Within each condition, the TCC rates showed a similar trend
in which the values were initially higher and then decreased
along the CKP series. For example, for the B condition in the
group TCC-ABA, the mean of the TCC rates from CKP 11 to
13 was 0.48(SE = 0.11), which then significantly decreased
to 0.19(SE = 0.08), that is, the mean value from CKP 14 to
16 [t(17) = 4.53, p < 0.01,Cohen′sd = 0.99]. The TCC rates
for all B conditions (M = 0.31 SE = 0.03) were significantly
higher than those for all A conditions (M = 0.15 SE = 0.02)
[t(514) = 4.69, p < 0.01,Cohen′sd = 0.39].

Manual Rates
We evaluated the proposed method by comparing the eight-
CKP mean values of the manual rates for each condition so
that we could capture the accumulated effects of presenting
TCCs. Table 1 shows the means of the manual rates for each
condition. C1, C2, and C3 mean A, B, and A for the ABA
groups, B, A, and B for the BAB groups.

We conducted a one-way ANOVA [within-subjects design;
independent variable: the scenario conditions of three levels,
A, B, and A (B, A, and B), dependent variable: manual rate]
for each group. All post-hoc analyses were done by using
the Holm-Bonferroni method. Figure 4 illustrates the results
of the ANOVA. ABA groups: The NoTCC-ABA group did
not show any significant difference in manual rates among the
three conditions [F(2,32) = 0.20, p = 0.82, η2

p = 0.01]. In
comparison, the TCC-ABA group showed significant differ-
ences [F(2,34) = 6.50, p < 0.01, η2

p = 0.28]. The post-hoc
analysis indicated that the manual rate significantly increased
from the first A condition to the B condition [t(17) = 3.56,
ad justed.p < 0.01], and the rate for the second A condi-
tion then significantly decreased [t(17) = 2.45, ad justed.p =
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Table 1: Means of manual rates

Condition C1 C2 C3

NoTCC-ABA 0.23 (0.08) 0.28 (0.09) 0.26 (0.07)
TCC-ABA 0.19 (0.06) 0.50 (0.06) 0.22 (0.07)
NoTCC-BAB 0.46 (0.08) 0.32 (0.08) 0.63 (0.09)
TCC-BAB 0.45 (0.09) 0.22 (0.08) 0.71 (0.06)

(Standard errors in parentheses.)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80
* * ** * *

*

Rate

NoTCC-ABA TCC-ABA NoTCC-BAB TCC-BAB

BA B B B BA A A A A B

* p<0.05

** p<0.01

Figure 4: Manual rates

0.03]. BAB groups: The NoTCC-BAB group showed sig-
nificant differences [F(2,40) = 6.41, p < 0.01, η2

p = 0.24].
The post-hoc analysis showed that the manual rate for the A
condition did not change significantly from the first B condi-
tion [t(20) = 1.46, ad justed.p = 0.16]; however, the rate for
the second B condition significantly increased [t(20) = 3.14,
ad justed.p = 0.02]. The TCC-BAB group showed signif-
icant differences [F(2,26) = 14.48, p < 0.01, η2

p = 0.53].
The post-hoc analysis indicated that the manual rate for the
A condition significantly decreased from the first B condition
[t(13) = 2.65, ad justed.p = 0.02], and the rate for the sec-
ond B condition then increased significantly [t(20) = 4.47,
ad justed.p < 0.01].

Sensitivity d′ (Performance)
Table 2 shows the means of the sensitivity d′ for each
condition. We conducted the same one-way ANOVA and
the results are illustrated in Figure 5. ABA groups: For
the NoTCC-ABA group, a significant effect was found
[F(2,32) = 14.8, p < 0.01, η2

p = 0.48]. The post-hoc analy-
sis indicated that the mean value of d′ significantly decreased
from the first A condition to the B condition [t(16) = 5.26,
ad justed.p < 0.01] and then significantly increased from
the B condition to the second A condition [t(16) = 4.05,
ad justed.p < 0.01]. For the TCC-ABA group, a significant
effect was found [F(2,34) = 7.52, p < 0.01, η2

p = 0.31]. The
post-hoc analysis indicated that the mean value of d′ signif-
icantly increased from the B condition to the second A con-
dition [t(17) = 5.44, ad justed.p < 0.01] and also showed a
significant difference between the first A condition and the
second A condition [t(17) = 2.61, ad justed.p = 0.04].
BAB groups: For the NoTCC-BAB group, a siginificant ef-
fect was found [F(2,40) = 7.45, p < 0.01, η2

p = 0.27]. The
post-hoc analysis revealed that the mean value of d′ signif-

Table 2: Means of the sensitivity d′

Condition C1 C2 C3

NoTCC-ABA 1.67 (0.05) 1.02 (0.11) 1.74 (0.10)
TCC-ABA 1.46 (0.12) 1.29 (0.09) 1.80 (0.04)
NoTCC-BAB 0.53 (0.21) 1.39 (0.12) 0.67 (0.26)
TCC-BAB 0.88 (0.20) 1.47 (0.10) 0.73 (0.21)

(Standard errors in parentheses.)

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00
d’

NoTCC-ABA TCC-ABA NoTCC-BAB TCC-BAB

BA B B B BA A A A A B

*
** ** ** ** * *

Figure 5: Sensitivity d′

icantly increased from the first B condition to the A con-
dition [t(20) = 3.76, ad justed.p < 0.01] and significantly
decreased from the A condition to the second B condition
[t(20) = 2.98, ad justed.p = 0.01]. For the TCC-BAB group,
the significant effect was found [F(2,26) = 4.75, P = 0.02,
η2

p = 0.27]. The post-hoc analysis indicated that the mean
value of d′ for the A condition marginally increased from that
for the first B condition [t(13) = 2.46, ad justed.p = 0.06].
The mean value of d′ for the second B condition signifi-
cantly decreased from that for the A condition [t(13) = 3.13,
ad justed.p = 0.02].

Discussion
In the ABA scenario, the manual rates for the B condition
increased significantly from the first A condition in the ABA-
TCC group, while no significant change was observed in the
ABA-NoTCC group. These results indicate that the partic-
ipants got into the state of over-trust in the B condition and
that TCCs successfully promoted the participants in the ABA-
TCC group to calibrate their trust properly. Similarly, the re-
sults of the BAB scenario indicate that the participants under-
trusted the system in the A condition and only the participants
with TCCs managed to adjust their trust. These results sup-
port hypothesis H0. Note that the manual rate for the second
B condition in NoTCC-BAB group were significantly higher
than that for the A condition. This implies that the 16 tasks
would be enough for the participants to learn the system and
the environment so that they could calibrate their trust better.

Regarding the performance, the sensitivity d’ for the first A
condition of the NoTCC-ABA group significantly dropped,
while that of the TCC-ABA group did not change signifi-
cantly. The sensitivity d’ of the NoTCC-BAB group showed
a significant difference between the first B condition and the
A condition, while that of the TCC-BAB group stayed at a
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higher level with no significant change. These results indi-
cate that the participants in the groups with TCCs performed
better and more robustly; therefore, hypothesis H1 was con-
firmed to be true.

Although the reliability information was continuously dis-
played with the indicator, the participants of the NoTCC
groups did not significantly change their choice behaviors
at the first change in weather when the automatic reliabil-
ity greatly deteriorated. In contrast to this, the participants
of the TCC groups successfully altered their choice behav-
iors accordingly at the first change in weather. The results for
the NoTCC groups were not in line with the previous studies
that emphasized the importance of continuous system trans-
parency. One possible interpretation is that it might not have
been easy for the participants to rectify an improper trust sta-
tus once they fell into the categories of over-trust or under-
trust. Adams, Bruyn, and Houde (2003) suggests that cali-
bration can only occur in response to new evidence that may
change the users’ prevailing recognition, while no new evi-
dence can be learned without changing the current behavior
first. The TCCs successfully played the role of a new trig-
ger to solve this cognitive dilemma (Llinas, Bisantz, Drury,
Seong, & Jian, 1999). TCCs were presented adaptively to the
trust calibration status so that it would be easier for the partic-
ipants to understand the implication of the cues. We believe
that the results demonstrate the effectiveness of the adaptive
presentation method and confirmed hypothesis H2.

Finally, the several limitations of our study suggest the
need for further experiments and future research. The cur-
rent framework focuses on performance-related factors to de-
tect over-trust and under-trust. However, automation could
be beneficial beyond providing better performance, such
as to faster task completion, lighter workloads, and fewer
risks. For example, Naujoks, Wiedemann, and Schö mig
(2017) discussed the desire to do non-driving-related tasks
during autonomous driving, which leads the driver to se-
lect autonomous mode. The proposed framework could
be integrated with such factors by considering the utilities
of choices. The second terms of the framework Pman ≷
Pauto could be replaced with EU(auto) ≷ EU(man), where
EU(x) = Us(x) ∗ P(x) +U f (x) ∗ (1− P(x)), P(x) is either
Pauto or Pman, and Us(x) and U f (x) are the utility functions
of choice x if a result is a success and a failure, respectively.
Further research should be done to investigate ways to define
these utility functions. In the proposed detection algorithm, a
binary decision is made with a simple moving average value
of three CKPs. Future research should explore a different
way of representing the over-trust or under-trust status, such
as defining the status as a probability depending on the de-
gree of over- or under-trust. Future research should explore
different task difficulties or complexities as well as different
types of tasks, such as autonomous driving, decision aids, and
interactive games. In the current experiment, a simple pop-up
dialogue was used to observe the participants’ behavior. Fur-
ther studies should investigate the continuous measurement

of behaviors that could work well with real-time tasks. For
example, a driver’s intention to use automatic driving could
be inferred with a touch sensor on a steering wheel to check
if the driver’s hands are on the wheel. Further experiments
should be done to evaluate our method with different types of
TCCs as well as different presentation timings to investigate
the requirements of effective cues.

Conclusion
Previous studies on trust calibration mainly examined the fac-
tors contributing to system transparency. Not many studies
provided a practical model of trust calibration. In the current
study, we investigated a method to detect the improper status
of trust calibration and notify the users of the miscalibration.
We proposed a formal framework to define the status of trust
calibration with a performance-centric view of trust, which
makes it possible to measure the calibration status by observ-
ing human behaviors. We also examined giving a cognitive
cue to notify the human users of miscalibration status. We de-
veloped a method of adaptive trust calibration by combining
the framework with the cognitive cue. The empirical study re-
sults demonstrated that the proposed method successfully de-
tected the miscalibration and helped the participants change
their behaviors to achieve better performances. Although we
used a simple image screening task in the evaluation, the pro-
posed method, which is based on the task-independent frame-
work, could be applied to other collaborative applications of
human and autonomous systems. Despite several limitations,
we believe that our proposed method could contribute to bet-
ter interaction designs for collaboration with autonomous sys-
tems.
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