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Abstract
A complete understanding of cognitive function in humans
must incorporate a model of interactions between networked
brain regions. Alterations to these network interactions under-
lie cognitive impairment in many neurodegenerative diseases,
providing an important physiological link between brain struc-
ture and cognitive function. Cognitive architectures have of-
ten been used to explain how healthy brains function, typi-
cally using task-based activity. However, this description is
incomplete. Most systems-level brain activity is spontaneous,
or intrinsic, and occurs whether or not a subject is performing
a task. Here, we provide evidence that the Common Model
of Cognition, a consensus model derived from an analysis of
existing cognitive architectures, can (a) be generalized to ac-
count for brain activity at rest, rather than during tasks, and (b)
correctly identify differences in basal ganglia connectivity in
Parkinson’s Disease.
Keywords: Common Model of Cognition; Resting-state
fMRI; Parkinson’s Disease; Dynamic Causal Modeling

Introduction
Cognitive architectures aim to provide an explanation for cog-
nition in terms of interacting brain modules. They support
a broad framework for which specific models are created
and in theory these models, provided the correct assump-
tions within a sufficient framework, replicate how the brain
accomplishes a task. The modules that make up an archi-
tecture are functionally defined and in many cases have been
successfully identified with brain regions during the analy-
sis of task-based activity (Anderson, 2007; Anderson, Al-
bert, & Fincham, 2005; Anderson, Fincham, Qin, & Stocco,
2008; Borst, Taatgen, Stocco, & Rijn, 2010). This has en-
abled architectures to form neuroimaging predictions, greatly
expanding the space in which models can be compared and
validated.

While cognitive architectures have been extremely suc-
cessful in replicating healthy brains and even individual dif-
ferences (Daily, Lovett, & Reder, 2001), they have been sel-
dom applied to neurological diseases and, therefore, have had
limited translational applications. We see this as a promising
area of research in cognitive modeling. In accounting for de-
ficiencies, we are able to provide a litmus test of sorts. Given
that assumptions of the architecture do not hold in modeling
brains with neurological diseases, we may better understand
the impact of such diseases on the brain, and reevaluate the
validity of assumptions made. This will increase the legiti-
macy of the architecture and provide a more holistic under-
standing of brain and disease.

Here, we show that the Common Model of Cognition
(CMC), a consensus architecture derived from an analysis of
a existing cognitive architectures (Laird, Lebiere, & Rosen-
bloom, 2017), can be successfully applied to the the clin-
ical problem of identifying abnormal functional connectiv-
ity in Parkinson’s Disease (PD). This application is impor-
tant as results of functional connectivity abnormality in PD
have yielded inconsistent and contradictory results (Baggio,
Segura, & Junque, 2015; Göttlich et al., 2013). To further
compound the perplexity of the situation, the etiology of PD
is well understood – its symptoms quite apparent and clear –
and yet, its brain signatures difficult to catch.

Parkinson’s Disease
Parkinson’s Disease is a neurodegenerative disease that tar-
gets predominantly dopaminergic neurons in the basal gan-
glia. Contemporary accounts of basal ganglia function
(Stocco, Lebiere, & Anderson, 2010; Frank, Seeberger, &
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O’Reilly, 2004), suggest that they work by controlling or
“gating” the influx of signals from other cortical areas to the
prefrontal cortex. In PD, the loss of dopamine inputs to the
basal ganglia causes an upregulation of their inhibitory path-
ways (and a downregulation of their excitatory pathways), re-
sulting in more conservative gating (Albin, Young, & Penney,
1989). Symptoms include visible motor impairments such
as shaking and slowness of movement, as well as non-motor
complications such as depressive disturbances and cognitive
impairment (Marsh, 2013; Watson & Leverenz, 2010).

We hypothesized that a potential problem with previous
work is that it has been almost entirely data driven, rather than
theory-driven. Thus, it is possible that the effects of PD are
buried in subtle patterns of data, and that these patterns might
not be observable through traditional analyses. For this rea-
son, we decided to specifically model the loss of dopamine in-
puts, using an architecture from Cognitive Science, the CMC.

The Common Model of Cognition
The CMC is a consensus architecture for general intelligence
that is the culmination of work from over five decades in
artificial intelligence, cognitive science, neuroscience, and
robotics (Laird et al., 2017). Rather than a formal implemen-
tation, it serves as a blueprint to understand the organization
of a human-like mind. There are five functional components:
long-term memory, working memory, procedural memory,
perception systems, and action systems.

Figure 1: (A) Architecture of the Common Model of Cog-
nition, as described by (Laird et al., 2017). (B) Theoretical
mapping between CMC components and homologous corti-
cal and subcortical regions.

Importantly, the CMC provides theory-driven hypothe-
ses about the functional relationship between brain regions.
Some of these hypotheses have a clear connection with PD,

since the loss of dopamine neurons has cognitive conse-
quences that can be computationally characterized (Frank et
al., 2004) and have been successfully modeled in cognitive
architectures (Stocco, 2018).

Although the CMC is a purely functional architecture,
whose components are characterized in terms of abstract
computations, researchers have proposed, developed, and
even tested methods to map the components of the CMC onto
homologous brain region (1B) and to translate the relation-
ships between CMC components into predicted patterns of
functional connectivity, (Stocco, Laird, Lebiere, & Rosen-
bloom, 2018; Steine-Hanson, Koh, & Stocco, 2018). Ulti-
mately, these efforts have shown that the CMC provides a
remarkably good fit to fMRI data from over 200 participants,
across a variety of representative tasks (Stocco et al., 2019).

The success of this approach suggests that the CMC might
provide a new, theoretically-driven way to look at functional
connectivity data in the human brain. Inspired by its success
in accounting for functional connectivity in healthy young
adults, we decided to extend this approach to the case of PD.

To do so, the original approach was extended to apply the
CMC to resting-state fMRI (rs-fMRI), instead of task-based
fMRI. While all previous applications of the CMC to neu-
roimaging data have focused on task-based fMRI, in contem-
porary clinical research the dominant approach is to use rs-
fMRI.

Resting-state fMRI
rs-fMRI consists of continuous recordings of brain activity
while participants are awake but not engaged in any particu-
lar task; the analysis of such recordings has become integral
in the identification and investigation of networks within the
brain. Although it is most intuitive to think about measur-
ing network function during tasks (when cognitive networks
are specifically recruited), it is now known that the major-
ity of brain activity occurs spontaneously and in the absence
of specific stimuli. Analysis of rs-fMRI data has shown that
intrinsic activity has a rich spatiotemporal structure, reflect-
ing how networks of cortical regions combine and recombine
over time.

Investigations into intrinsic activity have led to the discov-
ery of many innate networks, the best known being the De-
fault Mode Network (DMN). This network, as well as many
others, inform us about the intrinsic rhythms and oscillations
in healthy and disordered brains. Irregularity in network func-
tioning has been discovered in conjunction with neurode-
generative diseases, psychiatric disorders, aging, and more
(Hohenfeld, Werner, & Reetz, 2018; Sambataro et al., 2010).
While the extent to which network function impacts cog-
nition is lesser understood, networks can nonetheless serve
as biomarkers to help diagnose and track disease progress
(Hohenfeld et al., 2018).

Further, rs-fMRI has been shown to be highly predictive
of brain activity during cognitive tasks (Cole, Ito, Bassett, &
Schultz, 2016). The same structural networks that are ac-
tivated at rest provide a base for which cognitive activation
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flows. In better understanding how resting networks are af-
fected by PD, we are able to investigate potential abnormali-
ties in the building blocks that give rise to cognition.

Dynamic Causal Modeling
As in previous investigations into the relationship between
the CMC and brain data (Stocco et al., 2018; Steine-Hanson
et al., 2018; Stocco et al., 2019), functional connectivity be-
tween brain regions is analyzed in terms of effective connec-
tivity using Dynamic Causal Modeling (Henceforth, DCM:
Friston, Harrison, & Penny, 2003). DCM estimates func-
tional connectivity between pairs of regions by iteratively re-
fining the parameter estimates of a dynamic system, in which
brain regions are approximated as neural mass points. Thus,
in contrast to most functional connectivity analyses, which
are “bottom-up” and data-driven, DCM is a “top-down”,
model-based technique, in which a theoretical model of net-
work connectivity is fit to the data. As such, it provides a
natural way to implement the CMC.

DCM was preferred over other approaches such as Struc-
tural Equation Modeling (SEM) and Granger Causality Mod-
eling (GCM) due to convenience. This choice was made for
three reasons. First, it can account for the temporal dynam-
ics of an fMRI time-series, whereas SEM cannot (Friston,
2011). This is important as without temporal dynamics the
data is effectively reduced by one dimension, leaving out a
significant source of variability. Second, it allows us to bet-
ter model directed causal influences, which are implied in the
directed arrows between CMC components (Fig. 1A). Al-
though GCM can disentangle the direction of influence, DCM
has proven superior at dealing with the variable nature of the
BOLD response timing (Friston, 2009). Finally, DCM, but
neither SEM nor GCM, is capable of modeling second-order
interactions between nodes in a network, i.e., cases in which a
region modulates the connectivity between two other regions.
This specific case, as it will be shown, is of particular interest
in PD, as it plays a significant role in capturing the nature of
basal ganglia function.

DCM is composed of both a neural model, that receives
experimental stimuli and predicts the underlying dynamics
of brain activity, and an observational model, that takes in
the predicted underlying dynamics and outputs predictions
of observed brain activity. In the case of fMRI, the neural
model is given regions of interest (ROIs) and represents the
time course of activity in each region i as a nonlinear state
equation:

ẏ =Ay+∑
i

xiB(i)y+Cx+∑
i
yD(i)yi (1)

In this equation A defines intrinsic connectivity between
different regions (fixed connectivity), B defines the modula-
tory effects that task conditions have on the connectivity be-
tween regions (modulation of connectivity), C defines effects
by task inputs, D defines the modulatory effects that regions
have on the connections between other regions, x defines task
inputs, and y defines brain activity.

The observational model is composed of a hemodynamic
model that uses neural activity to cause changes in blood flow,
which in turn causes changes in blood volume and the amount
of deoxyhemoglobin. From there, the volume of blood and
deoxyhemoglobin concentration are entered into an output
nonlinearity, and give rise to an observed BOLD response
(Friston et al., 2003).

DCM and Resting-State
Because during rs-fMRI there is no task to be performed nor
significant external events driving brain activity, the applica-
tion of DCM to rs-fMRI posed a significant challenge. With-
out any task conditions or external input to initiate network
dynamics, and therefore a null C matrix, the DCM would
simply remain uninitialized with all parameters left at the de-
fault values. Friston, Kahan, Biswal, and Razi (2014) cir-
cumnavigated the problem by creating a deterministic DCM.
Their version of resting-state DCM estimates effective con-
nectivity based on second-order statistics rather than on the
time-series of activation. This transforms analysis from the
computationally expensive issue of estimating hidden neu-
ronal states to the more efficient problem of estimating the
spectral density of activity changes (Friston et al., 2014).
While more computationally efficient, by using second-order
statistics their method can no longer capture temporal dynam-
ics in the estimation of effective connectivity. For this rea-
son, we adopted an alternative procedure proposed by Di and
Biswal (2014).

One of the characteristics of resting-state brain activity
is the presence of spontaneous correlations at very low-
frequencies, which organize brain networks along different
rhythms (Fox et al., 2005). Di and Biswal (2014) explicitly
modeled these low-frequency fluctuations (LFF) within the
resting-state signal using deterministic inputs. They used pe-
riodic sine and cosine functions at 0.01, 0.02, 0.04, and 0.08
Hz (Di & Biswal, 2014) as task conditions for the C ma-
trix. As drivers for activity in DCM cannot be partial, the
periodic functions were transformed into boxcar functions.
There were two boxcar functions for each frequency with a
90 degree lag in between, at cycles of 100, 50, 25, and 12.5 s.
The boxcars were used as input to every node in their analysis
replacing traditional task-based inputs. To validate their pro-
cedure, they showed that an F-test based on their sinusoidal
regressors correctly identified the main nodes of the DMN,
and they successfully fitted DCMs based on the regions thus
identified. (Di & Biswal, 2014).

Because this study similarly dealt with rs-fMRI, we bor-
rowed the procedure developed by Di and Biswal (2014),
making use of eight boxcar regressors derived from sine
waves of different frequencies and phases (Fig. 2).

CMC Implementations for PD
As the correct interpretation of the role of the basal ganglia
within the CMC is crucial to understanding PD, two different
interpretations of the CMC were explored and tested against
controls and PD patients.
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Figure 2: (A) Illustration of how low-frequency fluctuations
were transformed into boxcar functions, which where then
(B) used as drivers for the activity in all ROIs.

The first model, the Direct CMC, is perhaps the most
straightforward translation of the CMC into patterns of func-
tional connectivity. Specifically, in this model all connections
between ROIs are implemented as patterns of direct connec-
tivity (i.e., matrix A). Critically, Procedural Memory directly
projects to Working Memory (Figure 3), reflecting the as-
sumption that procedural knowledge directly manipulates the
contents of working memory. This implementation has been
previously tested in Stocco et al. (2019).

The second model, the Modulatory CMC, incorporates ad-
ditional assumptions that capture our modern understanding
of the basal ganglia, the brain region associated with the
CMC’s Procedural Memory component. As its name implies,
this model replaces the direct connections from Procedural
Memory to Working Memory with two second-level, modu-
latory connections that control projections from Perception to
Working Memory, and from Long-Term Memory to Working
Memory (Figure 3). Thus, in this model, the connectivity be-
tween ROIs involves both matrices A and D of Eq. 1. This
implementation was previously tested in Stocco et al. (2018).
The use of the modulatory, instead of direct, connections re-
flects a different functional view of the basal ganglia; accord-
ing to this view, the basal ganglia do not directly manipulate
the contents of working memory, but rather ”gate” (Frank et
al., 2004) or ”route” (Stocco et al., 2010) information from
other areas.

Experimental Predictions
Based on the existing literature, two predictions were made.

Our first prediction is that the modulatory model would
provide a better fit than the direct model to the data across
both groups of participants, PD patients and controls. This
prediction is supported by the fact that the modulatory model
better captures the functional role of the basal ganglia, as
seen in contemporary models (Stocco et al., 2010; O’Reilly
& Frank, 2006).

Our second prediction is that, within the modulatory
model, a difference will be found between PD patients and
controls in the parameters that regulate modulatory connec-

Figure 3: (A) In the Modulatory Model, the Procedural Mem-
ory component modulates the signals flowing through in-
coming connections to Working Memory. (B) In the Direct
Model, Procedural Memory has a direct connection to Work-
ing Memory. (Regions are labelled as follows: 1. Action, 2.
Working Memory, 3. Procedural Memory, 4. LTM, 5. Per-
ception)

tivity (i.e., matrix D in Eq. 1). Specifically, we predict
that modulatory signals will be lower in PD patients than in
controls. This is because dopamine depletion in PD is typi-
cally understood as causing an increase in the filtering activ-
ity of the basal ganglia (the “brake” in the so-called “brake-
accellerator” model: Albin, Young, and Penney (1989)),
which, in DCM, would be reflected in a lower or negative
value in the D matrix.

Materials and Methods
Participants
Participants were recruited from a larger, multimodal study
of functional networks in PD. As part of a comprehensive
protocol involving EEG and MRI, 111 participants received
a resting fMRI scan. Participants were monitored using eye-
tracking for wakefulness. Of these, 6 participants were ex-
cluded due to insufficient data quality. Among the 105 re-
maining participants (PD: N = 67, Age = 67.54 ± 8.03, Fe-
male = 26; Controls: N = 39, Age = 69.41 ± 8.88, Female =
15), 2 participants were diagnosed at consensus with demen-
tia (PD = 2; Controls = 0), and 37 participants were diagnosed
at consensus with Mild Cognitive Impairment (PD = 26; Con-
trols = 11).

Image Acquisition and Processing
MRI data was acquired on a research-dedicated 3T Philips
Achieva whole-body scanner (Philips Medical Systems,
R5.1.7) with a 32-channel SENSE head coil at the Integrated
Brain Imaging Center of the University of Washington, Seat-
tle. Functional resting-state data was acquired while partic-
ipants were instructed to lay quietly and focus on a fixation
cross, using a gradient echo-planar multi-echo pulse sequence
with TR = 2,500 ms, a 79◦ flip angle, and TE = 9.5/27.5/45.5
ms. Multiecho recordings allow for increased sensitivity and
a reduced amount of artifacts. Each volume acquisition con-
sisted of 37 oblique axial slices, each of which was 3.5 mm
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thick with 0-mm gap and contained 64 × 64 voxels with an
in-plane resolution of 3.5 × 3.5 mm.

In addition to functional images, a T1-weighted structural
scan was acquired as an anatomical reference (1-mm isotropic
multiecho MP-RAGE: Sagittal TR = 10.019 ms, TE = 4.61
ms, FoV = 260x260x189.6 mm, and an 8◦ flip angle).

Resting-state fMRI data were processed using a combi-
nation of FSL, AFNI, and SPM. Functional data underwent
slice-timing correction, motion correction and realignment,
removal of baseline drift, and then spike detection and re-
moval. From there the data were co-registered to the skull-
stripped T1-weighted structural scan, normalized to the MNI
ICBM152 steoretactical space, and smoothed using an 3D
Gaussian filter with 8-mm full-width half maximum.

Bilateral Regions of Interest
Departing from previous work that has focused on left-
hemisphere regions, this study used bilateral, instead of uni-
lateral ROIs. While unilateral ROIs are understandable for
task-based fMRI due to the prevalence of increased activity in
the left hemisphere (Barch et al., 2013; Stocco et al., 2019), it
was not justifiable in our case. Bilateral ROIs were obtained
by combining homologous regions in the left and right hemi-
sphere.

The ROIs were selected following the procedure described
in Stocco et al. (2019) to translate CMC components into
anatomical regions. This procedure proceeds by first iden-
tifying the candidate regions in a group-level analysis of all
data. To account for individual differences in functional neu-
roanatomy, the precise coordinates of each ROI are then lo-
calized on an individual brain by identifying the peak of func-
tional activity that is closest to the centroid of the group-level
ROIs. The distribution of the centroids of the individual-level
ROIs are visually represented in Figure 4. All ROIs were bi-
lateral with the exception of the Action ROI. The Action ROI
was lateralized to the left hemisphere.

Figure 4: Location of the centroids of each individual ROI.
Each point represents the centroid of one ROI; variations in
the centroids account for individual differences in functional
anatomy.

Model Comparison Procedure
Given two or more architectures designed to reproduce the
timecourse of brain activity, it is possible to compare them by
estimating a likelihood function L(m|y) that assigns a poste-

rior probability to a given model m, given the data y. Like-
lihood functions are typically chosen to balance between re-
warding higher model fit (i.e., minimizing the residuals) and
penalizing model complexity (i.e., reducing the number of
parameters). Two common examples of these metrics are the
Bayesian Information Criterion (BIC) and the Akaike Infor-
mation Criterion. In DCM, it is customary to use a metric
known as Free Energy (Kasess et al., 2010), which is simi-
lar to the BIC but, importantly, does not assume that param-
eters are independent of each other. Group-level likelihood
values for a model m can then expressed as the product of
the likelihood of that model fitting each participant p, i.e.,
∏p L(m|yp). In terms of log-likelihood, this translates to the
sum of all of the individual log-likelihoods: ∑p logL(m|yp).
Although more sophisticated model comparison procedures
have been proposed (Stephan, Penny, Daunizeau, Moran, &
Friston, 2009), the log-likelihood based metric used here is
not only the most easily interpretable, but also the most rele-
vant, as it specifically applies to cases in which it is assumed
that the model is constant or architectural across individuals
(Kasess et al., 2010).

Results

Prediction 1: Model Comparison

To test the first experimental prediction, the log likelihoods
L(m|yp) of the two models were compared in PD and con-
trols. The comparisons provided unequivocal support for the
modulatory version of the CMC architecture in both cases.
The modulatory model’s log-likelihood exceeded the direct
model’s by 90 in the case of controls, and by 20 in the case of
PD patients (Fig. 5A-B). Since a difference in log-likelihoods
represents a ratio of likelihoods, modulatory model is approx-
imately e20 to e90 times more likely than the direct model,
given the observed timecourses of neural activity in the five
ROIs.

This difference in log-likelihoods can also be translated
and interpreted as an equivalent p-value in statistical anal-
ysis using Wilk’s theorem (Wilks, 1938). The theorem
states that, given a likelihood ratio λ between two models,
the value −2log(λ) approximates the corresponding statis-
tic of a χ2 distribution with the degrees of freedom cor-
responding to 1 + the difference in parameters between
models. Thus, log(λ) = log(L(mdirect)/L(mmodulatory)) =
logL(mdirect)− logL(mmodulatory) = −90 (for Controls) and
−20 (for PD). The difference in the number of parameters
between the two models can be set to n = 2, which is the
number modulatory parameters in the matrix D in Eq. 1; this
matrix is present in the modulatory model but absent in the di-
rect model. The p-value associated with χ2

(n=3) is p < 0.0001
for both groups (Fig. 5C), thus suggesting almost zero chance
that the alternative hypothesis (that is, the direct model) could
better explain the data.
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Figure 5: (A) Absolute log-likelihoods for models in the PD
group and (B) in the Control group. (C) Corresponding values
on a χ2 distribution.

Prediction 2: Group Differences
Having established the superiority of the modulatory model,
we analyzed whether there were significant differences be-
tween PD and Control modulatory connection strengths. The
mean square error (MSE) between groups was computed us-
ing the D matrices of functional connectivity, MSE = 0.0952.
To account for potentially non-normally distributed parame-
ter values, we completed non-parametric permutation tests.
For these tests, group membership was assigned randomly
and the MSE was computed separately 10,000 times. Out
of 10,000 tests, there were 192 instances where the computed
MSE was equal to, or larger than, the original value, implying
that the difference is significant (p < 0.02).

On average, the modulatory connectivity was negative in
both groups, confirming our second prediction on the role of
the basal ganglia in gating and filtering cortical signals to the
prefrontal cortex (Stocco et al., 2010; Frank et al., 2004). As
hypothesized, patients exhibited stronger (i.e., more negative)
modulatory effects than controls, consistent with a downreg-
ulation of the direct, or excitatory, pathway of the basal gan-
glia.

Group Differences in Intrinsic Connectivity
In addition to the modulatory connectivity, group differences
were also investigated across all other connectivity parame-
ters in the modulatory model, that is, those encapsulated in
matrices A and C of Eq. 1. The comparison was carried out
using the same procedure outlined in the previous section. No
significant differences were found in functional connectivity
between PD and Controls in either model. This lack of effect
is broadly consistent with the general lack of effect that is re-
ported in the literature, and is consistent with the specificity
of PD in targeting the basal ganglia

Discussion
In this paper, we have shown that cognitive architectures can
be applied in clinical neuroscience to identify abnormal pat-
terns of brain activity that are characteristic of neurologi-
cal diseases, such as PD. Specifically, we have show that
by adapting the consensus architecture known as the Com-
mon Model of Cognition (Laird et al., 2017), we could suc-
cessfully identify abnormal patterns of functional connec-
tivity in PD patients, which have proven otherwise elusive
when bottom-up approaches were attempted. The direction of
the results, with PD patients exhibiting greater inhibition of
cortico-cortical connectivity from the basal ganglia, are also
consistent with the known etiology of the disease.

These results should be considered in light of a number
of limitations. The first being that they were derived from a
reasonable but still small number of individuals. Further, the
method used for resting-state DCM does not allow for dy-
namic changes in effective connectivity. It uses data from the
entire 10 minute resting-state scan to create a single account
of brain connectivity. We understand that this account is in
part naive, as the brain fluctuates throughout resting, and see
this as an area for future research.

These limitations notwithstanding, we believe that our re-
sults have several implications. First, our results demonstrate
the potential of using cognitive architectures in the domain
of clinical neuroscience. By distilling decades of brain and
cognitive research, cognitive architectures provide a funda-
mental tool to implement a-priori hypotheses and informed
dimensionality reduction in the analysis of brain data for pa-
tients.

At the same, our findings provide further credibility to the
Common Model of Cognition. Specifically, they show that
it can be applied to resting-state as well as task-based neu-
roimaging data, significantly expanding its application and
bringing it into the fold of contemporary approaches in neu-
roscience.

Finally, our results also suggest important modifications to
the Common Model of Cognition. Specifically, they suggest
that the CMC should be revised to explicitly include the mod-
ulatory role of the basal ganglia as part of the function of the
Procedural Memory component.
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