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Abstract 
Human learning has been characterized by three robust effects (i.e. 
power law of learning, power law of decay, and spacing), which 
have been validated across multiple domains and time intervals. To 
account for these different effects mathematical model of learning 
and retention have been developed. These models hold a great deal 
of potential for application a wide range of educational and training 
scenarios. However, many models are not validated according for 
their ability to make accurate predictions of human performance. 
The predictive demand of these models is made increasingly 
complex by the needs of training domain, needing both to predict 
both skill decay and reacquisition from little historical data. In this 
paper, we examine the predictive capability of the Predictive 
Performance Equation (PPE) implemented in a Bayesian 
hierarchical model. Through a comparison of two Bayesian 
hierarchical models we show how hierarchical model fit to a 
participant’s performance across a set of items compared to only a 
single item improves PPE’s predictive accuracy of both skill decay 
and reacquisition over multiple learning schedules 
 
Keywords: Mathematical Model, Bayesian Hierarchical Model, 
Prediction, Skill acquisition, skill decay, spacing effect, Learning 
management system 
 

Introduction 
The increase in availability of personal technologies such as 
mobile phones, computers, and laptops are becoming a 
ubiquitous part of everyday lives. The availability of personal 
technology gives individuals the opportunity for greater 
access to a variety of educational resources, such as learning 
management systems. Learning management systems (LMS) 
offer personalized education curriculums and training on a 
wide range of topics and a platform to record performance 
history. The flexibility and personalization that learning 
management systems afford makes their utility appealing to 
a variety of military, education, and medical applications for 
key reasons. First, LMS can be used to train an individual up 
to a particular performance standard. Second, LMS can 
schedule additional training events in way so that the 
individual performance stays at or exceeds a defined 
standard. Each of these goals can be achieved by applying 
robust empirically grounded findings from the psychology of 

human learning to the construction of training content and 
assessment. 
    Three general components of human learning have been 
identified across a diverse range of domains and time scales 
and are seen as critical to human learning in education. First, 
the power the law of learning (Newell & Rosenbloom, 1981) 
reveals that performance improves over the course of 
repeated trainings exposures. Second, the power law of decay 
reveals that performance decreases non-linearly as the time 
between exposures increases. Third the spacing effect reveals 
when the exposure to a task is distributed over time (i.e., 
spaced) as opposed to condensed within a short duration (i.e., 
mass practice) individuals retain the spaced information 
better than if under massed practice (Carpenter, Cepeda, 
Rohrer, Kang, Pashler, 2012).  
    Multiple mathematical models of learning and retention 
have been developed that attempt to account for the 
previously discussed learning phenomena. (Pavlik & 
Anderson 2005; Raaijmakers 2003; Walsh, Gluck, 
Gunzelmann, Jastrzembski 2018). For a formal model 
comparison across these three models of learning and 
retention see Walsh et al. (2018). In this paper, we focus 
solely on the Predictive Performance Equation (PPE) as it has 
been found to account for a variety of learning and retention 
phenomena and has shown potential for real world 
application.  
 
Predictive Performance Equation 
The Predictive Performance Equation (PPE) is a 
mathematical model of learning and retention that makes 
performance predictions at an individual-level based on prior 
performance and the temporal schedule training. In short, 
PPE is composed of five equations which represent the power 
law of learning, the power law of decay, and the spacing 
effect (for a detailed description see Walsh et al., 2018). The 
power law of learning (Eq.1, first term) is a function of N, the 
number of exposures to a task, and the learning rate, which 
is held constant at .1. 
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The power law of decay (Eq.1, second term) is a function of 
model time (T) and the decay rate. Model time T Eq. 2 is 
weighted according to a factor of time (Eq. 3).  
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The spacing effect is represented within the decay rate 
equation (Eq. 4), which includes two free parameters defined 
as the decay intercept (b) and the decay slope (m).  

𝑑𝑒𝑐𝑎𝑦	𝑟𝑎𝑡𝑒 = 𝑏 + 𝑚 ∗ 	𝑎𝑣𝑒𝑟𝑎𝑔𝑒 O =
%P+(%'+Q)

R (Eq.4) 
In effect, as practice events occur more tightly spaced in time 
(i.e., massed), the decay rate increases, and as practice events 
become more distributed in time (i.e., spaced), the decay rate 
decreases. Finally, M (Eq.5) is placed within a logistic 
function and adjusted according to the two final free 
parameter τ and s. 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1

1 + 𝑒𝑥𝑝Oτ −𝑀𝑠 R
	(𝐸𝑞. 5) 

Model Limitations 
     A benefit of using mathematical models of learning and 
retention is that they can be used to infer an individual's 
current state of knowledge on a particular task (Eq.5) and 
predict how their knowledge will change over time based on 
psychological principles of memory. However, the predictive 
accuracy of these models of psychological models are often 
not assessed (Yarkoni & Westfall, 2017). Instead prior 
research has  focused on evaluating models of spacing based 
on their fit to empirical data sets. (Walsh et al. 2018, Pavlik 
& Anderson, 2005; Ragermaker 2003). Though validating 
models by their ad-hoc fit to empirical datasets is an 
important component of model development, it does not 
allow for an evaluation of a model’s predictive ability or 
utility in an applied domain, which can be difficult. In an 
applied setting, a model needs to accurately predict skill 
decay between learning sessions, as well as skill reacquisition 
within a new session so that adequate training prescriptions 
can be made. Developing these types of predictions is made 
more difficult by the fact that often little historical data is 
often available to calibrate to. This is also often the case for 
machine learning models, which have been shown to reach a 
high degree of predictive accuracy in particular learning tasks 
(Settles, 2018). 
     One way that these predictive goals can be achieved in 
psychological models is through the use of a Hierarchical 
Bayesian Model (HBM) (McElreath 2018). Bayesian 
implementations of psychological models have a number of 
benefits that can be leveraged to improve a model’s 
predictive accuracy (Lee & Wagenmakers, 2014). First, prior 
knowledge about the probable model parameters can be 
explicitly implemented into the model. Second, Bayesian 
methods allow for an integration of prior information with a 
set of observations into a posterior distribution, from which 
predictions can be made. Finally, hierarchical Bayesian 

models allow for dependencies across parameters to be 
specified, allowing free parameters to be estimated at 
different levels of aggregation. These multi-level parameter 
dependencies allow for greater constraint to be placed on a 
model, which guards against over fitting.  
    In this paper, we explicitly examine the predictive 
accuracy of the PPE for individuals learning Japanese-
English word pairs under different within and between 
session spacing conditions. Additionally, we compare two 
different Bayesian implementations of the PPE. The first 
implementation is an Item model, where the model was 
calibrated separately to performance on each of the Japanese-
English word pair learned by a subject during the experiment. 
The second implementation was a subject model, where the 
PPE was fit simultaneously to all Japanese-English word 
pairs learned by a subject during the experiment. In the 
simulations we examine the PPE’s predictive ability across 
various period of time and the additional benefit of taking 
account all of the subject data.  
 

Method 
Participants  
Sixty-one participants were recruited from a midwestern 
university in this paired-associate learning study. All 
participants completed a total of three experimental sessions 
spanning a three-week period. 
 
Task Stimuli 
Over the course of the experiment participants memorized a 
set of 30 Japanese-English words. All of the words used in 
this study were taken from the Medical Research Council 
(MRC) Psycholinguistic Database manual and have been 
used in other previous memory studies (e.g., Pavlik & 
Anderson, 2005). 
 
Experimental Design and Procedure 
During the experiment, an item’s training schedule was 
manipulated according to inter-session interval (ISI) and 
inter-trial interval (ITI) over the course of experimental 
sessions. The ISI controlled the amount of time between the 
1st and 2nd experimental session. The ISIs in this study were 
fixed at short (5 min), medium (7 days), and long (14 days) 
delay. The ITI manipulated the number of trials between 
presentations of the same item. Two ITI consisting of a short 
(items repeated every 2 trials) and long (items repeated every 
11 trials) delay were embedded in each experimental session. 
     During the study, participants, with no knowledge of the 
Japanese language, were given instructions for the paired 
associate learning task and had an opportunity to ask any 
questions.  Once participants began the experiment, they 
were shown a Japanese word (e.g., “kanboku”) on the screen 
and asked to type the English translation (e.g., “bush”) to the 
Japanese word. Upon first presentation of a word participants 
were shown the English translation and asked to type the 
correct answer to ensure the item was studied. During all 
subsequent presentations, participants were asked to recall 
and type the English translation from memory. Participants 
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Figure 1. The two graphical representations of the item (left plot) and subject model (right plot). 
 
 were given a maximum of 7 seconds to type their answer 
during each trial. If a participant could not generate a 
response within 7 seconds, then their answer was considered 
incorrect. At the end of each trial participants were given 
feedback (correct or incorrect) and given 2 seconds to study 
the correct answer.  

 
Hierarchical Bayesian Implementation of PPE 
    To examine the PPE’s predictive ability, two Bayesian 
hierarchical models of PPE were developed – Item and 
Subject model. Each model made predictions of the 
participants’ performance on the Japanese - English word 
pairs over the course of the experiment (Figure 1). Each 
model was represented as a graphical model (Lee & 
Wagenmakers, 2011) to allow each variable, variable type 
and dependencies across variables to be observed. All 
observed variables (participants’ performance - Perf, time 
variables - lagi, T, N) are represented as shaded circles. 
Estimated parameters (b, m, a, tau) are represented as 
unshaded circles. Stochastic variables are represented by a 
single open circle, while deterministic variables are 
represented by two open circles.  The multiple panes within    
each figure represent redundancies within the model for each 
participant, items (Japanese-English word pair), and trials  
     Both of the Item and Subject models share a similar 
structure, differing only in the constraints placed on each of 
the parameter estimates for each item. The Item model 
estimates PPE’s free parameters (bi, mi, ai, taui) individually 
 for each of the Japanese-English word pairs attempted by an 
individual. PPE’s free parameters sampled from these 
distributions are then combined together with the individual's 
unique time variables (lagi, Tj, Nj) and PPE’s equations to 
calculate activation (Mj) for a particular trial. The estimated 
activation for a particular trial is then transformed into PPE’s 
logistic distribution to estimate a participant’s performance 
ability on a particular item for a particular trial. PPE’s 
performance estimate is then placed within a likelihood 
function a Bernoulli distribution (θ), which is then compared 
to the subject’s performance (i.e., correct or incorrect) during 
a given trial. 
     The Subject model uses a similar structure to the 
individual-item level model, with one key difference. Both 
models estimate individual parameters for each subject on a 

particular item (bi, mi, ai, taui,), but unlike the individual Item 
model, the Subject model constrains parameters at participant 
level while generating estimates for each item. Thus, the 
Subject model estimates the mean (b_ah, m_ah, a_ah, tau_ai) 
and degree of certainty (b_kh, m_kh, a_kh, τ _kh) for each of 
the free parameters for each subject’s performance across all 
of the learned items. The additional parameters estimated for 
each participant across all of the Japanese-English word 
pairs, allows for the parameter estimates of a particular item 
to be constrained by the subject’s performance of all other 
items.  
 
Model Fitting Procedure In these simulations we were 
interested in examining PPE’s predictive ability across 
periods of time consistent with real -would applications. For 
this reason, both the Subject and Item models were 
independently fit and used to predict performance during two 
segmented portions of the experiment. The first fit and 
prediction period was over the 1st and 2nd experimental 
session. Each model calibrated to participants’ performance 
during the 1st session (10 trials), and used the resulting 
parameters to generate predictions of the participants’ 
performance during the 2nd session. During the second fit and 
prediction period both models were calibrated to the 
performance during the 1st and 2nd experimental session to 
predict performance during the 3rd session. When calibrating 
to the participants’ performance, the Item model was applied 
separately to the participants’ performance on each Japanese-
English word pairs while the Subject model was calibrated 
simultaneously to all Japanese- English word pair. Though 
both models were calibrated to different portions of a 
subject’s performance, a single item (Item model) or all items 
(Subject model), both models used PPE’s estimated free 
parameters (bi, mi, si, and τ*) during each calibration section 
to make predictions for each future repetition of each item for 
all participants.  

Results 
The two models’ fits and predictive accuracy were evaluated 
using three formal evaluation metrics. First, we assessed the 
correlation and root-mean squared error (RMSD) between the 
participants’ average performance and each model’s average 
calibrations and out of sample prediction for each of the 6 
unique ISI and ITI conditions. An evaluation of the 
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participants’ overall average performance and each model’s 
prediction allows for an overall evaluation of how well each 
model could account for the participants’ performance. In 
addition, we used the area under the curve (AUC) metric. 
AUC can be interpreted as the probability that the model will 
rank a randomly sampled item that is correct higher  than a 
randomly chosen item that is incorrect. Each of these three 
metrics was computed individually for within sample 
performance (calibration) and out of sample (predicted) 
performance as well as individually for each experimental 
condition (see Table 1 & 2). Evaluations of each of these 
measures allows for an examination of the characteristics of 
each model is well-suited to explain and predict. 
 
Predicting 2nd Session 
Fit to Calibration Phase Both the Item and Subject models 
were found to fit the average performance of the participants 
during the first session fairly well (Table 1) and possessed 
high correlations to performance within the first session. 
However, evaluation using RMSD revealed a different 
picture. For each of the experimental conditions, the Item 
model was found to have a higher RMSD compared to the 
Subject model. As shown in Figure 2, when models are 
calibrated to the participants’ performance during the 1st 
session (Trials 1 – 10), the Item model estimates the 
participants’ performance to be lower than their average 
performance. The Item model’s under estimation of 
performance was a result of its greater uncertainty in the 
participants’ performance, as seen in the model’s 95% HDI. 
The Subject model by comparison, not only obtained average 
fit to the participants’ average performance more accurately 
but did so with greater certainty, as indicated by the tighter 
95% HDI. These differences in each model’s ability to 
calibrate to the participants’ performance translated into 
differences in each model’s predictive ability.  
 
Out of sample performance Both models revealed high 
correlations for participants’ average performance and each 
model’s average predictions during the 2nd session across the 
three different ISI (5 min, 7 days, and 14 days). However, the 
difference in the RMSD between Item and Subject model 
during the calibration persisted. Again, the difference in the 
RMSD between the participants’ performance during the 2nd 
session and each of the model’s predictions was a result of 
each model’s uncertainty in the participants’ ability. The 
uncertainty in predictions of the Item model was found to 

increases over time, relative to the Subject model (Figure 2). 
The higher uncertainty in the Item model’s predictions 
decreased in the Item model’s ability to predict the subjects’ 
performance during the 2nd session.  
     Finally, differences in the AUC between the predictions 
made by both models and the participants’ performance on 
each individual item was found. Both models had a high AUC 
scores across each of the 6 spacing conditions (Table 1). The 
high AUC across all conditions revealed that despite the 
difference in average performance predictions between the 
Subject and Item models, both models were able to account 
for the relative performance of participants on the individual 
Japanese-English word pairs during the second session. 
Nonetheless, AUC for the Subject model was higher 
compared to the Item model across all conditions, 
highlighting the better predictive ability of the Subject model.  
Taken together, these results show that the Subject model 
made more precise predictions—both relative and absolute— 
compared to the Item model.  

Table 1. The Subject and Item Model’s correlation(r), RMSD, and AUC when calibrated to the 1st session predicting the 2nd session 
across 6 unique learning schedules.  

 

ISI ITI r 1st session
RMSD 1st 

session 
r 2nd 

Session
RMSD 2nd 

Session 
AUC 2nd 
Session 

r 1st 
Session 

RMSD 1st 
Session 

r 2nd 
session 

RMSD 2nd 
Session 

AUC 2nd 
Session 

5 min Short 0.99 0.04 0.93 0.10 0.90 0.99 0.12 0.91 0.11 0.80
5 min Long 0.99 0.07 0.72 0.02 0.89 0.96 0.13 0.71 0.17 0.79
7 days Short 0.99 0.02 0.22 0.06 0.95 0.99 0.11 0.99 0.25 0.88
7 days Long 0.99 0.08 0.99 0.05 0.94 0.98 0.12 0.99 0.24 0.84
14 days Short 0.99 0.01 0.99 0.06 0.96 0.99 0.12 0.99 0.25 0.90
14 days Long 0.98 0.08 0.99 0.05 0.93 0.96 0.13 0.99 0.22 0.87

Subject ItemSpacing Condion

Figure 2.  The average accuracy of participant’s recall of 
Japanese - English word pairs (connected black points) on the 
short (top panel) and long (7 bottom panel) Inter-Trial-Interval 
(ITI) and three unique Inter Session Interval (ISI - 5 minutes, 7 

days, and 14 days) schedules. The subject (dashed blue line) 
and item (dashed red line) mean and 95% Highest Density 
Interval (HDI) of each model’s calibration (Trials 1-10) to 

performance during the 1st session and predictions of the 2nd 
session (Trials 11-20). 
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Predicting 3rd Session 
Fit to Calibration Phase  For the second prediction, both the 
Subject and Item models were calibrated the participant’s 
performance on each item during the first two sessions. As 
seen in Table 2, both models outperformed the fits observed 
when calibrating to the 1st session alone (cf. Table 1). 
Unsurprisingly, the additional data over the course of two 
sessions allowed for better performance tracking for 
individual participants (Figure 3).  

Out of sample prediction Each of the model’s predictions of 
the participants’ performance within the 3rd session revealed 
a similar pattern. High correlations were found between the 
participants’ average performance and each of the model’s 
average predictions (Table 2). As observed during the 
calibration period, models differed slightly in the RMSD 
between their predictions and participants’ performance. 
Both models over predicted initial performance for items in 
two of the three ISI levels on the long ITI manipulations, but     

 the Item model under predicted skill acquisition. In contrast, 
both models predicted initial skill decay on the 3rd session 
across all ISI levels in the short ITI manipulation, but the 
Subject model was found to slightly over predict skill 
acquisition. These differences decreased the differences 
between both model’s predictions of the 3rd session. 
      Finally, despite the differences between models both 
models are found to have a fairly high AUC when predicting 
the subjects’ performance on the 3rd session. However, again 
across each of the six experimental conditions, the AUC of 
the predictions from the Subject model are found to be higher 
relative to the Item model. Taken together, evaluation of the 
predictions for the 3rd session confirm and reinforce the 
results of the predictions for the 2nd session.  
     
Individual Item Predictions 
Up to this point, each model’s ability to predict the 
participants’ performance over time has been evaluated. 
However, each model’s ability to account for individual 
differences has not been measured. To address this question, 
the average performance and each model’s average 
prediction ±95% HDI for a given subject during each 
calibration and prediction event was calculated (Figure 4). 
Across all participants, both the Item and Subject model were 
able to match the participants’ average performance. 
However, a large difference in the average 95%HDI was 
found between the Item and Subject model. Across all 
participants, the Item model was less certain of each 
participant’s average performance compared to the Subject 
model over the set of Japanese-English word pairs. These 
differences in the models’ certainty in the participants’ 
average performance led to differences in the accuracy of its 
predictions. When predicting performance during both the 2nd 
and 3rd session, the Subject model was able to accurately 
predict the subjects’ average performance, with a majority of 
the participant’s performance falling within the predicted 
95% HDI. The same level of accuracy was not observed for 
the Item model’s predictions, showing consistent 
underprediction of the participants’ performance.  
 

Discussion 
In this paper, we explored the predictive capability of the 
PPE, which holds potential for real world application. 
However, often models of learning and retention are often not 

Table 2. The Subject and Item Models (r), RMSD, and AUC when calibrated to the 1st  and 2nd session predicting the 3rd session 
across 6 unique learning schedules.  

 

ISI ITI
r 1st & 2nd 

session
1st & 2nd 

session  RMSD
r 3rd 

Session
RMSD 3rd 

Session 
 AUC 3rd 
Session

1st & 2nd 
Session r

1st & 2nd 
Session RMSD

r 3rd 
Session

RMSD 3rd 
Session 

 AUC 3rd 
Session

5 min Short 0.96 0.06 1.00 0.03 0.95 0.97 0.06 1.00 0.24 0.80
5 min Long 0.97 0.08 0.98 0.12 0.94 0.95 0.09 0.98 0.34 0.76

7 days Short 0.99 0.05 0.99 0.06 0.93 0.98 0.06 0.99 0.13 0.82
7 days Long 0.98 0.05 0.99 0.11 0.92 0.93 0.09 0.99 0.22 0.85
14 days Short 0.99 0.04 1.00 0.11 0.91 0.98 0.06 1.00 0.08 0.81
14 days Long 0.99 0.05 0.99 0.12 0.90 0.95 0.09 0.99 0.22 0.83

ItemSubjectSpacing Condition

Figure 3.  The average accuracy on the Japanese - English 
word pairs given on the short (top panel) and long (7 bottom 

panel) Inter-Trial-Interval (ITI) and three Inter Session 
Interval (ISI - 1 hour, 7 Days, and 14 days) schedules. The 

subject (blue line) and item (red line) mean and 95% Highest 
Density Interval (HDI) of each model’s calibration (Trials 1-

30) to performance during the 1st & 2n session and 
predictions of the 3rd session (Trials 21-23). 
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If the PPE are used to be used in in real-world applications, 
then it must be able to make use of a limited amount of 
performance data from an individual to extrapolate its 
estimates of performance into the future. In this paper, we 
explored using Bayesian hierarchical modeling to 
simultaneously fit all of a participant’s data compared to the 
Item model where the standard PPE was fit only to the 
performance of a single word pair. Overall our results showed 
that the PPE captured the relative trends observed in the 
human data across a variety of different spacing 
manipulations as measured by the AUC metrics. These 
results show that both the Item and Subject model predicted 
performance under conditions where little information was 
available. Differences in the average predictions of each 
model stem from the confidence in each models’ 
predictions. Due to the fact that the item model only 
calibrated to the performance of a single item during the 1st 
session (10 trials) or 1st and 2nd session (20 trials), it had a 
higher degree of uncertainty in its estimate of the individuals 
knowledge of a given word pair compared to the Subject 
model that simultaneously fit the performance of all word 
pairs learned by a participant. While the Subject model 
calibrated to all of a participant’s performance allowed for 
more certain performance estaminets and accurate 
predictions. 
     Given the results presented in this paper, two avenues of 
future research are seen. First, we evaluated the predictive 
accuracy of the PPE under laboratory conditions, where the 
training schedule was tightly controlled. Future research 
should explore applying these methods to real world data. 
Second, exploration in PPE’s ability to account for 
performance at an item level over time should be explored. In 
this paper, we explored predictive accuracy of each model at 
an aggregate level. Human performance at an aggregate level 
often follows a power law, but individual item level 
performance is found to follow an exponential function. An 
evaluation of PPE’s predictive accuracy at this lower level of 
analysis, might warrant further model modification. 

     In conclusion, the results presented in this paper show that 
PPE is capable of making valid performance predictions over 
various periods of time. Furthermore, in cases where little 
data is available, the model’s predictions can be improved by 
using a hierarchical modeling approach, conditioning 
estaminets of performance of a single item based on a set of 
multiple items, allowing for more precise estimates of 
performance. By utilizing these statistical approaches, 
psychological models of learning and retention can better 
predict both skill decay and requisition, allowing 
psychological models to meet the needs of real-world 
application.  
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