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Abstract 
Elementary math instruction traditionally has emphasized 
procedures rather than concepts. Thus, students tend to lack a 
strong understanding of foundational concepts like 
mathematical equivalence. Cognitive scientists and 
mathematics educators have found small yet effective ways to 
modify traditional arithmetic instruction to promote students’ 
conceptual understanding of math equivalence. Educational 
standards also now reflect this academic research. However, it 
is unclear whether classroom practices have caught up with 
research and policy. In the current study, we observed teachers’ 
practices during arithmetic instruction. The goal was to 
determine if teachers are using research-based practices that 
promote understanding of math equivalence and if variation in 
use of research-based practices is associated with students’ 
growth in understanding of math equivalence across the school 
year. Eight second and third grade classrooms (M students per 
classroom = 23) were observed twice during math instruction. 
Students completed a math test both before and after the 
observation period. Research-based practices were rarely 
observed in any classrooms, so there was not much variation in 
classroom use of research-based practices to predict student 
growth. Students improved their performance on all problem 
types tested, but performance on math equivalence problems 
was significantly lower than on other problem types. Results 
suggest that policies and practices designed to improve 
students’ understanding of math equivalence may not have 
filtered down to affect instructional practices in classrooms. 
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Deep mathematics learning involves understanding how to 
work with symbols, systems, and problem-solving 
procedures (i.e., procedural knowledge), as well as 

understanding the underlying relations among these symbols, 
systems, and problem-solving procedures (i.e., conceptual 
knowledge; Hiebert & Lefevre, 2013). However, students 
often struggle to connect their conceptual knowledge to the 
procedures they are performing (Carpenter, Franke, & Levi, 
2003; McNeil & Alibali, 2005; Seo & Ginsburg, 2003). One 
possible source of students’ difficulties connecting concepts 
to procedures is the way mathematics is traditionally taught 
in school. Mathematics classrooms in the United States 
traditionally have used a method of teaching that emphasizes 
how a problem is solved rather than why it is solved that way 
(e.g., Carpenter, Fennema, Peterson, & Carey, 1988; Cobb, 
1987). This procedural emphasis leads children to treat 
mathematics as a series of isolated facts rather than as a 
coherent set of “big ideas” and associations among concepts 
(Charles, 2005; Cobb, 1987; Jacobs, Franke, Carpenter, Levi, 
& Battey, 2007). Consequently, students have trouble 
transferring the knowledge gained from experience with 
arithmetic to the novel equations they see later in algebra 
(e.g., McNeil & Alibali, 2005).  

The disconnect between students’ procedural knowledge 
and conceptual understanding is particularly evident when 
assessing students’ formal understanding of mathematical 
equivalence (Knuth, Stephens, McNeil, & Alibali, 2006; 
Rittle-Johnson & Alibali, 1999). Math equivalence, or the 
relation between two mathematical expressions that are equal 
and interchangeable, is a foundational concept in 
mathematics (Baroody & Ginsburg, 1983; Blanton & Kaput, 
2003; Charles, 2005; Knuth et al., 2006). Formal 
understanding of this concept predicts later math 
achievement (McNeil, Hornburg, Devlin, Carrazza, & 
McKeever, 2019) and algebra performance (Hornburg, 
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Devlin, & McNeil, 2020; Matthews & Fuchs, 2020). Yet, this 
concept is difficult for many children ages 7-11 (e.g., Falkner, 
Levi, & Carpenter, 1999; McNeil, 2007; McNeil & Alibali, 
2005; McNeil, Hornburg, Fuhs, & O’Rear, 2017). Instead of 
viewing the equal sign as demonstrating that both sides of an 
equation have the same value, many students view it as a 
signal to do something, such as add up all the numbers in an 
equation (Baroody & Ginsburg, 1983; McNeil & Alibali, 
2005). This operational understanding of the equal sign 
reflects a larger trend of shallow mathematical understanding 
in the United States. Indeed, the United States was largely 
outperformed by its peers on a global high school math 
assessment (Hanushek, Peterson, & Woessmann, 2010); 
while performance between states varied, all states were 
outperformed by over a dozen countries. A more recent 
assessment shows a similar trend (Organisation for Economic 
Co-Operation and Development, 2019).  

To address children’s woeful understanding of 
mathematical equivalence and underperformance in 
mathematics, math educators have called for more emphasis 
on pre-algebraic concepts in the early grades (e.g., Blanton & 
Kaput, 2003). This has led to changes to both national and 
state standards in the United States, such as the Common 
Core State Standards (NGA Center & CCSSO, 2010), that 
have been designed to incorporate understanding of the equal 
sign and math equivalence into the early grades. These 
changes are now several years old.  

Researchers also have identified specific instructional 
practices that teachers can use to help children meet these 
standards. One practice is to use a variety of problem formats 
when teaching arithmetic, including non-traditional problems 
(e.g., c = a + b, a = a), as opposed to merely using traditional 

problem formats (e.g., a + b = c, 
   a
+	b
   c

) (McNeil, 2008; McNeil, 
Fyfe, & Dunwiddie, 2015; McNeil, Fyfe, Petersen, 
Dunwiddie, & Brletic-Shipley, 2011). Another is using a 
“concreteness fading” technique, by demonstrating 
equivalence first with physical objects before slowly fading 
them away to create a bridge to the abstract symbols (Fyfe, 
McNeil, & Borjas, 2015). Two other research-based practices 
have focused specifically on improving children’s 
understanding of the equal sign: (a) using relational language 
that describes the equal sign as representing two equal and 
interchangeable quantities (e.g., “is the same amount as”) and 
(b) explicitly referring to the equal sign verbally or through 
gesture (Carpenter et al., 2003; Cook, Duffy, & Fenn, 2013). 
These practices yield a deeper understanding of mathematical 
equivalence, particularly for students who struggle in 
mathematics (Powell & Fuchs, 2010).   

We now have specific standards for students in the early 
grades that promote understanding of mathematical 
equivalence, as well as a set of small yet impactful changes 
to arithmetic instruction that can help children meet these 
standards. Yet, it is unclear whether these advances in policy 
and research have translated into changes in teaching 
practices. Do teachers use instructional strategies that 
promote understanding of math equivalence, or do they still 
use traditional methods for teaching arithmetic? Traditional 

practices, which tend to promote procedural understanding 
over conceptual understanding, may hinder students’ 
understanding of math equivalence. For example, writing 
problems with the operations on the left side and the equal 
sign and answer blank at the end promotes a unidirectional, 
procedural view of equations. Using arithmetic-specific, 
operational language (e.g., saying “the total” or “makes”) in 
reference to the equal sign can also be detrimental, given that 
students with arithmetic-specific interpretations of the equal 
sign are less likely to learn from instruction on early algebra 
concepts (Byrd, McNeil, Chesney, & Matthews, 2015). 
Classroom-specific case studies and textbook analyses have 
been conducted to observe teaching practices related to the 
equal sign (see Powell, 2012; Seo and Ginsburg, 2003), but 
there have been no studies examining arithmetic teaching 
practices across several diverse classrooms since the change 
in standards. 

The primary goal of this study was to determine what 
arithmetic instruction looks like in early elementary 
classrooms. Another goal was to analyze whether individual 
differences in teachers’ use of research-based practices was 
correlated with students’ growth in understanding of math 
equivalence over the course of a school year. If classroom 
practice is a source of students’ difficulties in understanding 
math equivalence, then differences in input should predict 
student growth. We hypothesized that teacher practices 
would remain largely unchanged from the traditional 
practices, but teachers who had begun to shift to research-
based practices would have greater classroom-wide 
improvement in understanding of math equivalence. 

Method 

Design 
The study was a pretest, observation, posttest design, with 
two classroom observations occurring between pretest and 
posttest administration. Two classrooms administered the 
posttest prior to the second observation. However, 
administration was still within one week of the observation 
and thus did not change our approach for analysis.  

Participants 
Eight second and third grade classrooms (M = 23 students per 
classroom, min = 16, max = 26) within four schools 
participated. Schools included both public and parochial 
schools recruited through discussions with principals and 
included schools at both ends of the socioeconomic spectrum. 
There were 186 students across the eight classrooms, but only 
174 students completed the pretest and posttest. Table 1 
shows the demographics of each school.  

Procedure 
Teachers administered a pretest (described below) within a 
week prior to the first observation. Each classroom was then 
observed twice, once in the fall (October or November) and 
once in the spring (February).
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Table 1: Demographic characteristics by school. 
 

Classrooms Race/Ethnicity of Students in 
the School  

Percentage of Students 
with Free/Reduced Lunch 

Grade(s) Number of Students 
Completing Pre and Post 

A, B 2.2% Black, 6.8% Hispanic, 
87.1% White, 3.9% Other 

0.0% 2, 2 26, 26 

C, D 27.3% Black, 8.5% Hispanic, 
48.3% White, 15.9% Other 

87.5% 2, 2a 20, 22 

E, F 0.4% Black, 93.1% Hispanic, 
2.6% White, 3.9% Other 

98.3% 2, 3 23, 21 

G, H 1.6% Black, 13.3% Hispanic, 
81.9% White, 3.2% Other 

32.5% 2, 3 16, 20 

aClassroom D was a mixed classroom of 2nd graders and high-achieving 1st graders.  
 
Classrooms were observed during direct arithmetic 
instruction by two trained observers for an average of 30.5 
minutes. Efforts were made to observe both classrooms in the 
same school within the same week. Observers noted 
behaviors specified in an observation checklist (described 
below) and made a tally each time a specific behavior 
occurred. Teachers administered a posttest within one week 
of the second observation. The average time between pretest 
and posttest was 122 days.  

Measures 
Pretest and Posttest The pretest and posttest were identical 
paper-and-pencil assessments administered by teachers. 
There were four math equivalence problems, which are 
problems that had operations on both sides of the equal sign 
(e.g., 8 + 2 = __ + 6), one simple arithmetic problem 
presented in a nontraditional format (12 = 7 + __), and five 
problems assessing general math achievement appropriate for 
second grade (California Department of Education, 2009). 
Problems were intermixed in a set order, with one problem 
presented per page. Teachers were provided a script to ensure 
uniform administration, and each problem was read aloud.  
 
Observations Observers were trained to use an observation 
checklist by watching publicly available videos of math 
instruction. Videos included example behaviors within each 
of four categories. Observers then compared observations to 
establish reliability of the checklist and among observers. The 
checklist consisted of four research-based practices shown to 
affect students’ understanding of math equivalence. The first 
category looked at teachers’ use of various problem formats. 
These included traditional problems in both left-to-right and 
vertical formats, non-traditional problems in both right-to-
left and reflexive (e.g., a = a) formats, and math equivalence 
problems. The second category observed teachers' use of 
concreteness fading and, more globally, tracked the use of 
concrete (e.g., blocks) and abstract (e.g., symbols) examples 
in instruction. The third category focused on the language 
teachers used in reference to the equal sign. Language could 
either emphasize the relational nature of the equal sign (e.g., 
“is the same as”), or it could emphasize an operational 
definition of the equal sign that was specific to arithmetic 
(e.g., “the total”) or generally procedural (e.g., “the answer”). 

The fourth category tracked if teachers explicitly referred to 
the equal sign verbally or through gestures. Observers also 
made note of anything that could potentially affect 
conceptual understanding of math equivalence, including 
wall posters, and use of run-on equations that hinder 
understanding (e.g., 20 + 30 = 50 + 7 = 57; Carpenter et al., 
2003). 

Data Analysis Approach 
Pretest and Posttest Coding Correctness was determined 
based on the students’ written responses. Given that 
performance historically has been so low on math 
equivalence problems, with students using incorrect 
strategies like adding all the numbers (e.g., McNeil & Alibali, 
2005), we gave students credit if they were within ±1 of the 
response that would be achieved using a correct strategy if 
they also solved another math equivalence problem exactly 
correct (cf. Hornburg, Rieber, & McNeil, 2017; McNeil, 
2007). Thus, our strategy for coding correctness on math 
equivalence problems should make it easier (not harder) to be 
correct on those problems compared to the other problems.  
 
Observation Coding Observers observed arithmetic 
instruction during 13 of the 16 classroom observations, and 
they observed arithmetic instruction in all classrooms during 
at least one of the two observations. Observers made a tally 
mark in the specific category whenever the format or 
behavior occurred. Correlations between the count of 
behaviors noted by the two observers were calculated for 
each category. The average correlation between observers 
was .98. One observation was excluded from analyses due to 
lack of adherence to observation protocol; in this case, 
analyses were based on the other observer’s observation.  

Once reliability among observers was established, the two 
totals within each category were averaged to create classroom 
scores for each category. In some cases, observations of the 
practices were so infrequent that an average score did not 
make sense to compute. In these cases, a dichotomous 
variable was created to analyze whether the practice was or 
was not ever observed.  

Results 
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Classroom Use of Research-Based Practices 
Teachers used traditional practices during observations, and 
they rarely used research-based practices. Fewer than 1% of 
problems observed across classrooms were written in a 
format other than the traditional formats. Out of 572 observed 
problems across 16 classroom observations, only two non-
traditional (e.g., __ = 3 + 7) equations were observed, and 
both occurred during the same observation of Classroom E.  
Although most teachers (75%) used concrete examples, this 
accounted for only 12% of the types of examples used 
overall, and none were observed using the “concreteness 
fading” technique to link concrete representations to abstract 
math symbols. Four teachers (Classrooms B, E, F, and G) 
used relational language, but it was rare compared to other 
types of language. It accounted for only 5% of teachers’ 
language overall. The other 95% of observed language 
referred to the equal sign operationally. 

Finally, observers noted a large emphasis on math fact 
fluency, with few references to mathematical relations or 
equality. Three teachers (Classrooms B, F, and G) referred to 
the equal sign verbally or through gesture, but within those 
observations it was seldom referenced (only 12 times across 
those observations). Observers also noted posters on two 
classroom walls that showed traditional formats which may 
have promoted an operational view of the equal sign (e.g., 
addition and subtraction “doubles” facts; 5 + 5 = 10, 10 – 5 = 
5), as well as practices in one classroom (Classroom G) that 
may have reinforced an operational view (e.g., using run-on 
equations like 10 × 6 = 60 – 6 = 54).  

As observers visited the classrooms, they noted that half 
the teachers emphasized conceptual understanding of 
problem-solving strategies, whereas the other half focused 
primarily on procedural understanding. The emphasis on 
conceptual understanding involved behaviors such as 
allowing students to reason why problems were solved a 
certain way or asking them to generate multiple strategies. 
These observations inspired a post-hoc category based on the 
classroom’s emphasis on conceptual versus procedural 
understanding. Classrooms A, B, D, and E were categorized 
as “conceptual,” whereas the remaining classrooms, which 

exhibited no noted behaviors to promote conceptual 
understanding, were categorized as “procedural.” 

Classroom Mathematics Performance 
Table 2 presents math test performance by classroom. We 
analyzed classroom performance on the math test from 
pretest to posttest based on student accuracy (%) on each 
problem type in each classroom. We conducted a 3 (problem 
type: math equivalence, nontraditional arithmetic, general 
mathematics) x 2 (time of observation) repeated measures 
ANOVA and found two large main effects. Averaging across 
time, classroom accuracy solving math equivalence problems 
(M = 37.73, SE = 6.78) was much lower than the percentage 
for nontraditional arithmetic (M = 71.45, SE = 6.75) or 
general mathematics (M = 72.26, SE = 5.11) problems, F(2, 
14) = 46.34, p < .001, 𝜂"# = .87. Averaging across problem 
type, classroom accuracy was higher at posttest (M = 68.44, 
SE = 5.16) than at pretest (M = 52.52, SE = 6.87), F(1, 7) = 
19.45, p = .003, 𝜂"#  = .74. We did not find evidence of an 
interaction, F(2, 14) = 1.40, p = .28, 𝜂"#  = .17, but we 
recognize power for detecting an interaction was low. 

Although research-based practices were not often 
observed, some classrooms did demonstrate use of a few 
research-based practices, and all classrooms improved at 
least some in understanding of math equivalence over the 
time studied (see Table 2). Descriptively, there were no 
obvious associations between use of research-based practices 
and change in understanding of math equivalence other than 
the fact that the least improvement in understanding of math 
equivalence occurred in Classroom C, which had no evidence 
of using research-based practices and was classified as 
procedural, whereas the greatest improvement occurred in 
Classroom B, which had evidence of two research-based 
practices and was classified as conceptual. Note that this did 
not seem to be an across-the-board “better classrooms use 
better practices and produce better growth” phenomenon, as 
growth on the general math problems for Classroom C was 
above the median and for Classroom B it was below the 
median.

 
Table 2: Math test performance by classroom. 

 
 Performance on Each Problem Type (M % Accuracy) 
Classroom Math 

Equivalence 
Non-traditional 

Arithmetic  
General 

Mathematics  
Pre Post Pre Post Pre Post 

A 62.50 79.81 84.62 84.62 83.08 83.85 
B 25.00 71.15 69.23 92.31 74.62 80.77 
C 5.00 10.00 25.00 60.00 44.00 58.00 
D 25.00 56.82 45.45 81.82 44.55 70.91 
E 34.78 44.56 91.30 91.30 89.57 88.70 
F* 8.33 28.57 47.62 52.38 47.62 69.52 
G 37.50 48.44 93.75 93.75 81.25 88.75 
H* 23.75 42.50 45.00 85.00 72.00 79.00 

Note. Asterisks next to classroom letters indicate third grade. 
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Discussion 
The arithmetic lessons we observed focused primarily on 
traditional practices for teaching arithmetic and did not 
contain much evidence of the research-based practices for 
promoting understanding of math equivalence that align with 
policy changes. This was most evident in the lack of variety 
in problem format, as teachers primarily presented problems 
in traditional formats, the format most often presented in 
math textbooks (Powell, 2012). Although teachers sometimes 
used concrete examples in instruction, we did not see 
evidence of them using the research-based concreteness 
fading technique in which they start with a concrete 
equivalence context, like sharing or balancing, and explicitly 
link to symbols while slowly fading out the context (see Fyfe 
et al., 2015). Furthermore, although half of the classrooms 
used relational language (e.g., “same as”) at least once and 
nearly half referenced the equal sign verbally or through 
gesture at least once, it was rare for a teacher to engage in 
these behaviors more than once or twice within a lesson. Only 
Classroom E used relational language more than twice, and 
only Classroom F ever referenced the equal sign more than 
once. Even classrooms that used research-based practices 
used traditional practices far more often.  

Overall, teachers tended to emphasize traditional practices 
and fact fluency, with many observed lessons containing 
warm-up problems with addition and subtraction and with 
multiplication tables. While procedural understanding of 
facts such as these are crucial for the development of 
mathematical cognition (Rittle-Johnson & Alibali, 1999; 
Rittle-Johnson & Siegler, 1998), there was little conceptual 
teaching to bolster the procedural practice. Occasionally the 
research-based practices used were not clear to both 
observers, suggesting that they may not be noticeable to 
students, particularly when procedural practices are much 
more prevalent in the classroom. 

Other times, when research-based practices were evident, 
they were often brief and overshadowed by the prevalence of 
traditional practices. For example, during the first 
observation of Classroom E (which was categorized as 
“conceptual” and showed some use of research-based 
practices), the teacher presented two non-traditional 
problems (a reflexive equation, 140 = 140, and a right-to-left 
equation, 36 = 9 × 4) in addition to 28 problems presented in 
the traditional left-to-right format. However, the teacher then 
stated that one of the equations, 36 = 9 × 4, was “backwards” 
and rewrote it in a traditional format, 9 × 4 = 36. This may 
have further confused the meaning of the equal sign for 
students (see Capraro, Ding, Matteson, Capraro, and Li, 
2007; McNeil, 2008). Instances like these may explain why 
the overall accuracy on math equivalence problems was so 
low across classrooms compared to the other problem types 
tested. Incorporating more research-based practices into 
instruction, and using fewer traditional practices, may lead to 
greater student understanding of math equivalence.  

Perhaps the easiest change to make would be the 
incorporation of non-traditional problem formats (e.g., __ = 

3 + 4, 7 = 3 + __, 7 = __ + 4) into the classroom. These types 
of problems were rarely used by teachers during our 
observations even though they are relatively easy to integrate 
into the classroom and have been shown to improve students’ 
understanding of math equivalence (McNeil et al., 2011; 
McNeil et al., 2015). Incorporation of metacognitive 
strategies that emphasize conceptual thinking, such as self-
explanation and worked examples, may also lead to greater 
understanding of math equivalence (Barbieri, Miller-Cotto, 
& Booth, 2019; Carpenter et al., 2003; Rittle-Johnson & Star, 
2007). There was some evidence of metacognitive reflection 
in the four classrooms categorized into the posthoc, 
conceptual instruction category. 

Our original hypothesis was that use of research-based 
practices for teaching arithmetic would be positively 
associated with growth in students’ understanding of math 
equivalence across the school year (Johannes, Davenport, 
Kao, Hornburg, & McNeil, 2017; McNeil et al., 2015; 
McNeil, Hornburg, Brletic-Shipley, & Matthews, 2019). This 
hypothesis was based on prior work by McNeil, Hornburg, 
Brletic-Shipley, and Matthews (2019) demonstrating that an 
intervention incorporating a conglomerate of research-based 
practices, including introducing the equal sign outside of an 
arithmetic context, concreteness fading, non-traditional 
arithmetic practice, and comparing and explaining a variety 
of problem formats and problem-solving strategies, improved 
students’ understanding of math equivalence more than well-
structured non-traditional arithmetic practice alone. In the 
end, we could not conceptually replicate this finding in a 
naturalistic classroom setting because there was so little 
variability in use of research-based practices in the classroom 
lessons that we observed.  

Results of the present study highlight the disconnect 
between research-based practices and what actually occurs in 
classrooms. This disconnect may be mitigated through 
addressing these research-based practices in professional 
development seminars. In a study done by Jacobs et al. 
(2007), students of teachers who participated in a year-long 
professional development seminar that focused on relational 
thinking and student understanding of equivalence were 
better able to solve math equivalence problems than were 
students of teachers who did not participate in this seminar. 
These types of seminars may also help teachers recognize 
misconceptions in their own classrooms, since teachers often 
are unaware of the prevalence of misconceptions of math 
equivalence (Stephens, 2006). Additionally, incorporating 
aspects of teaching relational thinking in professional 
development seminars may encourage teachers to engage in 
some of these practices in their classrooms, increasing not 
only the quantity of research-based nontraditional practices, 
but potentially the quality of such practices, as well. 

One limitation to this study was its size and scope. 
Although it is striking that the research-based practices were 
relatively absent in all four schools, including the most 
affluent one, all eight classrooms were in same city in the 
Midwestern United States, and each classroom was only 
observed twice. Furthermore, we were not able to document 
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every instance of instruction that could have aided in 
students’ understanding of math equivalence, as we were 
limited by our particular checklist of research-based 
practices. This provides a very narrow picture of what 
behaviors teachers typically engage in. Additionally, in three 
observation periods, the math lessons observed did not focus 
primarily on arithmetic due to miscommunication with the 
teachers, which left us with only one observation to analyze 
for these classrooms. Also, observers were also only trained 
to note each instance of the observed behavior, not the 
behavior’s duration. Instances of practices that were 
implemented for longer periods of time may have had a larger 
influence over student understanding. Future research should 
include more classrooms and more observation sessions, as 
well as more precise observations with duration of the 
behaviors recorded, in order to capture a more complete 
picture of what teachers are doing when teaching arithmetic.  

Finally, even though children’s understanding of math 
equivalence was low and far below that of children in higher-
achieving countries (e.g., Capraro et al., 2010), children did 
grow in their understanding of math equivalence over the 
time period studied. This growth does not appear to merely 
be explained by an increase in general math understanding. 
Future work should explore what factors account for the 
growth seen across classrooms. If few research-based 
practices are being used, then how does children’s 
understanding of math equivalence grow? Identifying such 
factors could help expand the focus of current interventions. 

Teachers do not seem to be using research-based practices 
for improving students’ understanding of math equivalence 
that align with recent policy changes. Thus, it could be useful 
for future studies to examine how to improve teachers’ uptake 
of teaching practices that are effective. Doing so could help 
teachers align their practices with the recent standards 
changes and may bolster student understanding in 
mathematics.  
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