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Abstract

Successful teaching entails a complex interaction between a
teacher and a learner. The teacher must select and convey in-
formation based on what they think the learner perceives and
believes. Teaching always involves misaligned beliefs, but
studies of pedagogy often focus on situations where teachers
and learners share perceptions. Nonetheless, a teacher and
learner may not always experience or attend to the same as-
pects of the environment. Here, we study how misaligned per-
ceptions influence communication. We hypothesize that the
efficacy of different forms of communication depends on the
shared perceptual state between teacher and learner. We de-
velop a cooperative teaching game to test whether concrete
mediums (demonstrations, or “showing”) are more robust than
abstract ones (language, or “telling”) when the teacher and
learner are not perceptually aligned. We find evidence that (1)
language-based teaching is more affected by perceptual mis-
alignment, but (2) demonstration-based teaching is less likely
to convey nuanced information. We discuss implications for
human pedagogy and machine learning.
Keywords: communication; pedagogy; demonstrations; lan-
guage

Introduction
Humans leverage a vast body of shared experience and
knowledge when conducting and interpreting communicative
acts (Tomasello, 2008). But communicative acts come in dif-
ferent forms, each with their own strengths and weaknesses.
Language, particularly in the form of explanation, can be a
powerful and efficient means of conveying abstract informa-
tion about categories, relationships, and causal structures in
the world. However, interpretation of language relies heav-
ily on shared context between a speaker and listener (Grice,
1975; Clark & Wilkes-Gibbs, 1986; Clark, 1996; Goodman &
Frank, 2016). Without context to ground the meaning behind
linguistic acts, language can break down and become inef-
fective. As an example, consider trying to explain Einstein’s
Theory of General Relativity to someone with minimal math-
ematical or physics background.

At the same time, people readily use non-verbal means of
communication such as gesture (Goldin-Meadow, 1999) or
demonstration (Gergely & Csibra, 2006) in adaptive, context-
specific ways to convey relevant information about the world.
Non-verbal communication lacks the combination of expres-
sive richness and precision of language (imagine conveying
the Theory of General Relativity by acting it out instead), but
it also does not require the same foundation of shared expe-
rience. This may be why even 14-month-old infants show a

capacity to reason about the complex interaction of intentions
and physical context to recover the meaning behind commu-
nicative demonstrations (Király, Csibra, & Gergely, 2013).

Recent work on human pedagogy has examined the role
of language (Chopra, Tessler, & Goodman, 2019), demon-
stration (Ho, Littman, MacGlashan, Cushman, & Austerweil,
2016), and asymmetric information (Vélez & Gweon, 2019).
However, comparatively little work has studied the interplay
of these factors. Here, we investigate the interaction of shared
context with different forms of communication, exploring
their efficacy and robustness to changes in shared perception.

To address these issues, we develop a new cooperative
teaching game. We provide teachers and learners with dif-
ferent user interfaces and allow communication via chat mes-
sages or demonstrative play. We test differences in shared
context; in particular, we induce perceptual misalignment by
ablating visual information from the task interface. We show
that linguistic teaching suffers when teachers have limited ac-
cess to the learner’s perceptual state, whereas demonstration
does not. Intriguingly, we also find evidence that language
facilitates transmission of more nuanced concepts.

Collaborative Teaching Experiment
Teaching games can be used to model concept transmis-
sion between two parties (Shafto, Goodman, & Griffiths,
2014). Subsequent research has explored sequential teaching
(MacGlashan et al., 2017; Rafferty, Brunskill, Griffiths, &
Shafto, 2016). This work generally uses a single communi-
cation mechanism and does not study misaligned perception.

We develop a sequential teaching game to study (1) vari-
able visibility into the learner’s perceptual state and (2) dif-
ferent communication mechanisms. Basic gameplay, shown
in Figure 1(a), consists of one participant (the learner) mov-
ing a robot character to collect objects of various shapes and
colors. Each object is worth -10 to 10 points. Learners were
given 8 seconds to collect objects, then shown their score for
the trial (the net value of all the objects they collected). Each
trial consisted of twenty objects, distributed in clusters of five.
Players only had enough time to visit a single cluster, which
created a two-stage choice: choosing a cluster, then collect-
ing objects from that cluster. Examples of resulting trajecto-
ries are shown in Figure 1(c). The experiment consisted of
instructions and practice, followed by 10 trials.

We paired learners with a teacher, who watched the learner
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Figure 1: Our collaborative teaching game, which gave players 8 seconds to move a robot and collect objects. (a) All learners
saw this display, which masked object values with the target concept shown in Figure 2. (b) All teachers saw this display, which
showed the underlying object values. “Full” visibility teachers saw both (a) and (b) side-by-side and thus shared percepts
with the learner. “Partial” visibility teachers saw only (b), and so did not share color and shape percepts. In the single player
conditions, “Solo-Partial” players saw only (a), while “Solo-Full” saw only (b). (c): 25 randomly sampled player trajectories.
Each reflects a particular belief about the target concept. Intuitively, choosing the top-left cluster indicates a belief that circles
are valuable; the top-right that pink objects are valuable, the bottom-right that yellow objects are valuable, and the bottom-left
that pink circles are the most valuable (note all players here choosing the bottom-left avoided the negative objects there).

play and was given an opportunity to communicate after each
trial. We split teachers into two “Visibility” conditions, giv-
ing them either “Full” or “Partial” visibility of the learner’s
display. “Partial” teachers did not see the shapes and colors,
giving them less shared context with the learner. We further
split teachers into two “Communication” conditions, allow-
ing teaching via “Chat” or by “Demonstration.” This gave
us four multiplayer conditions: “Chat-Full,” “Chat-Partial,”
“Demo-Full”, and “Demo-Partial.” This allowed us to study
different forms of communication (“Demo” vs “Chat”) with
more or less shared perception (“Full” vs “Partial” visibility).
We hypothesized “Chat” pairs would be drastically affected
by “Partial” visibility, whereas “Demo” pairs would not.

Teaching

Target Concept Participants’ scores depended on the
learner collecting positive objects and avoiding negative ones.
This required them to learn a mapping of shape and color to
underlying object values. We designed the mapping to com-
bine independent perceptual dimensions (shape and color) in
a non-intuitive manner. Positive objects were rendered as cir-
cles, zero-valued objects as triangles, and negative objects as
squares. Score was encoded by a spectrum: pink-white-cyan-
white-yellow. We counterbalanced the high and low values,
presenting half of the players with pink-cyan-yellow and half
with yellow-cyan-pink. The full mapping is shown in Fig-
ure 2 and can be seen in practice in Figure 1(a) and (b). We
subsequently infer learners’ beliefs about the concept by esti-
mating their feature-based object value from their choice be-
havior (see Results: Utility Representation Estimation).

Visibility Teachers were given “Partial” or “Full” visibility
of the learner’s perceptual state. “Partial” visibility teachers
were shown only the interface in Figure 1(b). They could
watch the learner play and see the values of all of the ob-
jects. However, they did not know what shapes and colors
the learner saw, and thus could not teach the concept from the
player’s percepts. “Full” visibility teachers could see both
Figure 1(a) and (b). They could thus infer and teach the value
function directly.

Communication After each round, teachers communicated
via demonstrations (“Demo”) or language (“Chat”). “Demo”
teachers replayed the same level, with the same timing and
scoring conditions, while the learner watched. Both parties

Figure 2: The concept to be taught: a mapping of object value
to shape and color. Pink and yellow were counterbalanced.
Representative values are shown here, but the actual map used
a range (i.e. pink circles could be worth 8-10 points). Apply-
ing the value mapping to Figure 1(b) results in Figure 1(a).
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were informed the teacher’s score would be visible to the
learner, but would not count. Teachers could thus perform
informative actions without repercussion, including choosing
negative or zero-valued objects. “Chat” teachers were given
a chat interface and could send one-way free-form text to the
learner. There were no constraints on the amount of time
taken, content, length, or number of messages. Teachers were
required to send at least one message before advancing.

Single Player Conditions In addition to the multiplayer
conditions, we ran two single-player “Solo” conditions as
controls. “Solo” players were divided into two Visibility con-
ditions. “Solo-Full” players were shown the object values
(Figure 1(b)), “Solo-Partial” players were shown the learner
display (Figure 1(a)). “Solo-Full” players are used to baseline
perfect concept knowledge, whereas “Solo-Partial” provide a
baseline for incidental learning occurring without any teach-
ing.

Experiment Methods
Participants We recruited 547 participants via Amazon
Mechanical Turk using psiTurk (Gureckis et al., 2016). Par-
ticipants were paid $1.50 and a score-based bonus of up to
$1.00. Teachers and learner pairs received the same bonus
based on the learner’s score. Of the 547 participants, 111
were assigned to a single-player condition and completed all
10 trials. 400 of the remaining participants were matched
with a partner, yielding 200 pairs, of whom 167 completed all
10 trials. Dropout ranged from 9% to 25% by condition, but
the difference was not significant (χ2(3,N = 200) = 5.65, p=
.13). We filtered out 3 pairs for non-participation (one learner
and one “Demo” teacher who never collected an object, and
one chat teacher who only sent blank messages). This left
164 pairs and 111 single players, with n = 56 for “Solo-Full”;
55 for “Solo-Partial”; 47 for “Demo-Partial”; 36 for “Demo-
Full”; 39 for “Chat-Partial”, and 42 for “Chat-Full.”

Procedure Every participant (teachers, learners, and solo
players) received instructions and played two practice rounds.
They played first with the objects’ values (Figure 1(b)),
then with colors and shapes (Figure 1(a). This familiarized
them with the basic gameplay dynamics. Solo participants
proceeded to the experiment. Multiplayer participants were
paired, assigned a role, and given condition-specific instruc-
tions. They played a practice round with their partner with a
simplified value mask, consisting of both the gameplay and
teaching phases. Finally, they began the experiment, which
consisted of 10 rounds of interleaved gameplay and teaching.

Results
Participants’ final scores ranged from -54 to 186 (the high-
est possible). Scores across conditions are shown in Figure
3. Qualitatively, our six conditions fell into three distinct
groups. “Solo-Full” players, shown the object value directly
as in Figure 1(b), fared the best (mean=168, SD=27). We take
their actions as representative of perfect concept knowledge.
“Chat-Full” pairs (mean=100, SD=49), ”Demo-Full” pairs

(mean=98, SD=52), and ”Demo-Partial” pairs (mean=105,
SD=35) all performed reasonably well. Learners in these
conditions acquired most of the concept over the course of
the trials. Finally, “Chat-Partial” pairs (mean=59, SD=39)
and “Solo-Partial” players (mean=59, SD=49) performed the
worst. These players struggled to learn the concept; in post-
game surveys, many described confusion or incorrect beliefs.

Figure 3: Mean scores across the six conditions. Error bars
show 95% CI. Reduction in shared perception (“Full” to “Par-
tial”) drastically affected linguistic teaching (“Chat”), render-
ing it nearly worthless. “Demo” teachers performed similarly
in both visibility conditions. “Solo-Full” provides a baseline
for perfect concept knowledge, and “Solo-Partial” provides a
baseline for no teaching.

Visibility-Communication Interaction
Our central hypothesis was the presence of an interaction
effect: “Partial” visibility of the learner’s perceptual state
would affect linguistic teaching more than demonstration
teaching. To test this hypothesis, we ran a fixed-effects linear
regression with contrast coding on the four teaching condi-
tions. The outcome variable was the players’ final score, and
fixed effects were the teacher’s Visibility and Communica-
tion, as well as their interaction. All three effects were signif-
icant, with the interaction effect being the largest (interaction:
β = −47.81, SE = 13.73, t(160) = 3.48, p < .01; communi-
cation: β = −22.66, SE = 6.87, t(160) = −3.30, p < .01;
visibility: β =−17.22, SE = 6.87, t(160) =−2.51, p < .05).
This supports our hypothesis that language is differentially
sensitive to misaligned perception: “Partial” visibility teach-
ers taught more effectively with demonstrations than with
language (see Figure 3).

Survey results showed a similar interaction effect, with
“Chat-Partial” learners rating their teachers significantly less
helpful. 127 learners filled out a post-experiment survey (n
= 37 for “Chat-Full,” 29 for “Chat-Partial,” 25 for “Demo-
Full,” 36 for “Demo-Partial”). Learners rated how help-
ful their teacher was (a six-point scale ranging from “Very
Unhelpful” to “Very Helpful”). Mean ratings were 4.83
for “Chat-Full,” 3.83 for “Chat- Partial,” 4.16 for “Demo-
Full,” and 4.58 for “Demo-Partial”; a contrast-coded fixed-
effects linear regression on Communication, Visibility, and
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interaction effects showed significance for their interaction
(β = −1.43, SE=.49, t(123) = −2.92, p < .01) but not for
other effects.

Teaching Strategies
Demonstration Teaching “Demo” teachers in both condi-
tions adopted similar strategies, with most teachers simply
playing optimally (i.e. getting the highest possible score). We
assessed difference between the “Full” and “Partial” teachers
with a two-sided T-test on cumulative scores up to the ninth
level, which was the last opportunity for teaching. There was
not a significant difference between the conditions (t(82) =
−1.61, p = .11). “Demo” teachers resembled “Solo-Full”
players. A two-sided T-test for ninth-level cumulative scores
between the demonstrations and “Solo-Full” players did not
show a significant difference (t(137) = −.94, p = .35). Fi-
nally, analysis of the sub-optimal demonstration rounds did
not reveal any clear strategies (e.g. collecting a single object
to communicate its value).

Linguistic Teaching “Chat” teachers in the “Full” and
“Partial” visibility conditions used very different language.
After lemmaizing and filtering stop words, the most common
tokens and bigrams in the two conditions are shown in Tables
1 and 2. To facilitate comparison, we coded a subset of com-
mon words into “Shapes” (circle, triangle, square), “Colors”
(pink, white...), “Numbers” (zero, 0, one, 1...), and “Rela-
tional” (bottom, right, first, second...).

“Chat-Full” teachers generally taught the concept using the
visual features they shared with learners (e.g. “pink is high
positive, turquoise circle is low positive”). They used shape
terms (11.1% of all tokens, versus .2% for “Partial”) and
color terms (13.0% of all tokens, versus 1.7% for “Partial”).
The most common bigram was a reference to the most valu-
able shape-color combination (because pink and yellow were
counterbalanced, this was “pink” or “yellow” + “circle”). In
contrast, “Chat-Partial” teachers used spatial and behavioral
references to specific objects, then communicated their value
(e.g. “first one was -7, the others were small amounts 2,1,1”)
or provided high-level information (e.g. “top left corner is
the best”). They used relational terms (19.2% of all tokens,
vs 5.3% for “Full”) and tended to communicate specific num-
bers (11.4% of all tokens, versus 4.6% for “Full”).

The corpora arising from the two conditions reflect the
shared context between the two parties. “Chat-Full” teachers
used visual features to communicate generalized information
about relative object values. They almost never referenced
specific objects. With less shared context, “Chat-Partial”
teachers fell back to spatial relationships or the player’s prior
behavior to ground information.

Estimation of Learned Utility Representations
The previous analyses focused on the effect of different con-
ditions on behavior, but language and demonstration may
also affect the representations that people learn in system-
atic ways. Although demonstration is robust, it can also be

Token Count Bigram Count
circle 120 good job 44
good 102 yellow circle 27
job 69 white circle 25
yellow 62 circle worth 21
white 68 pink circle 20

Table 1: Top five tokens and bigrams in the “Chat-Full” con-
dition. Teachers used shared visual perception to commu-
nicate generalized information. Due to color counterbalanc-
ing, “yellow circle” and “pink circle” both refer to the most
valuable color-shape combination for teachers. This feature
was correspondingly weighed heavily by “Chat-Full” learn-
ers (see Figure 4, right).

Token Count Bigram Count
right 92 bottom right 26
was 82 lower right 20
good 74 great job 19
one 62 good job 18
left 56 hand corner 15

Table 2: Top five tokens and bigrams in the“Chat-Partial”
condition. Teachers used shared spatial relationships or the
player’s prior behavior (e.g. “the first one was good”) to ref-
erence specific objects.

imprecise (e.g., if a teacher collects a pink circle, the learner
faces ambiguity about whether this was due to the object be-
ing pink, circular, or both). In contrast, language can be pre-
cise and expressive (e.g. “one pink circle is worth 2x 1 white
circle”). Put another way, language gives teachers more con-
trol over the scope of what is communicated.

Players’ actions demonstrated preferences for different
subsets of possible objects. Figure 1(c) provides an illus-
tration of the trajectories individual players took, each indi-
cating a different belief about which set of objects was most
valuable. To assess learned representations, we modeled the
rewards that individual learners associate with each feature
based on observed choice behavior.

Model We modeled participants’ behavior using a nested
logistic choice model to characterize participants’ sequential
choices on each trial (McFadden, 1974; Train, 2003), similar
to procedures for estimating preferences from sequential be-
havior in machine learning (e.g., inverse reinforcement learn-
ing, (Abbeel & Ng, 2004)). We treat each trial as a two-stage
decision process: participants (1) choose a cluster of objects
to move towards, then (2) collect or avoid each object in that
cluster. We assume that people prefer to encode a sparse rep-
resentation of the utility function in that they will tend to use
only a few of the 19 available shape and color features to
choose objects.
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Formally, a particular trial consists of a set of N objects
X1:N , each of which has K binary features defined by a fea-
ture function φ : X → {0,1}K . We used colors (cyan, white,
yellow, pink), shapes (square, circle, triangle), and their con-
junctions (e.g., pink circle, yellow triangle, etc) as features.
Thus, the feature space is size K = 4+ 3+ 4× 3 = 19. The
utility associated with an object xi is determined by feature-
utilities, θ, which linearly combine with an object’s features
to produce a utility for that object: Uθ(x) = φ(x)>θ. Given
that a participant is in a cluster containing an object xi, the
event that they pick up the object (yi = 1,yi ∈ {0,1}) has a
probability defined by a binary logit model:

pθ(yi = 1 | xi) ∝ eUθ(xi) (1)

Assuming these object choice probabilities, the utility of a
cluster of objects c j is defined by the expected utility of that
cluster:

Uθ(c j) = ∑
xi∈c j

Uθ(xi)pθ(yi = 1 | xi) (2)

This utility is then used in a multinomial logit model to define
cluster-choice probabilities under a utility function, pθ(c j) =
exp{Uθ(c j)}. Thus, given utility weights θ, the probability of
a cluster choice c j and choices y1:N over objects x1:N is:

p(c j,x1:N ,y1:N | θ) = pθ(c j) ∏
xi∈c j

pθ(yi | xi) (3)

Finally, to model a preference for sparser utility represen-
tations, we used a Laplace prior over each utility weight,
p(θk;λ) = λ

2 e−λ|θk|, where λ is a scale parameter (in this
work we set λ = 1). This prior corresponds to L1 regular-
ization (Murphy, 2013) and encourages values of θ towards
0. We then solved for the maximum a posteriori (MAP) esti-
mate of utility weights:

θ̂MAP = argmax
θ

p(c j,x1:N ,y1:N | θ)p(θ) (4)

We tested several optimizers and found that Powell’s conju-
gate direction method (Powell, 1964) produced the most con-
sistent and optimal results, which we report below.

Modeling Results In our analysis, we estimated MAP util-
ity functions based on participants’ object choices. This al-
lows us to compare utility functions across conditions to infer
differential impacts on learning. We model estimated fea-
ture coefficients for each participant over the last three trials
and plot the resulting weights on “Pink”, “Circle”, and “Pink-
Circle” in Figure 4. As pink circles were the most valuable
objects in the game, these coefficients reflect a critical com-
ponent of the learner’s acquisition of the target concept (Fig-
ure 2). Because “Solo-Full” players saw only object values
and generally played optimally, their weights reflect perfect
knowledge of the concept.

Learners across all conditions demonstrated a weak pref-
erence for “Pink” alone (Figure 4, left). This is likely an

Figure 4: Feature coefficients of the utility functions esti-
mated from learner behavior in Levels 8-10. The “Solo-Full”
condition is our baseline for perfect concept knowledge. Left:
learners displayed low preference for “Pink” (expected, due
to the presence of zero-value pink triangles). Center: learn-
ers in the “Demo” conditions favored “Circle“ (all colors) at
higher rate, suggesting more robust acquisition of a simpler
concept. Right: only learners in the “Chat-Full” condition
weighed the “Pink-Circle” conjunction feature optimally; this
color-shape feature was also the most common bigram in the
“Chat-Full” corpus (see Table 1).

incorrect generalization of “Pink” across circles and trian-
gles, as the presence of zero-value pink triangles should nul-
lify the significance of “Pink” as a feature. In contrast,
“Solo-Full” participants’ collection patterns showed no pref-
erence for pink. No learner condition weighed the “Cir-
cle” feature sufficiently, but the “Demo” conditions placed
a higher weight than others (Figure 4, center). A lin-
ear regression on the multiplayer conditions with contrast-
coded Communication, Visibility, and their interaction as
factors showed a significant effect of Communication (β =
−0.37, SE=.14, t(158) =−2.70, p< .01); other factors were
not significant. Finally, only learners in the “Chat-Full” con-
dition placed appropriate weight on the more sophisticated
“Pink-Circle” rule (Figure 4, right). A linear regression on
the multiplayer conditions with contrast-coded Communica-
tion, Visibility, and their interaction as factors showed signif-
icant effects of both Visibility (β =−0.36, SE=.12, t(158) =
−2.98, p < .01) and the Communication-Visibility interac-
tion (β =−0.58, SE=.24, t(158) =−2.39, p < .05).

Overall, learners in the “Demo” conditions appear to have
acquired a broader set of features but not the quantitative rela-
tionships between them– in some sense, a more complete but
less precise version of the concept. This pattern is supported
by the observed teaching behavior. Most “Demo” teachers
played optimally and thus necessarily collected all of the cir-
cles in whichever cluster they chose, which could reasonably
cause learners to weight generally accurate features (i.e. “Cir-
cle”) but make it harder to learn critical details (e.g. that the
teacher collected three circles and scored 18, but two were
worth 8 and one was worth 2). In contrast, “Full-Chat” teach-
ers prioritized and communicated pieces of the concept that
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they felt were most relevant (e.g. in the words of our favorite
teacher, “yellow circle | yellow circles | yellow circles | tellow
circles | any other circles too”).

Discussion
Communication rests on a foundation of shared context.
However, different forms of communication rely on differ-
ent contextual information. In our experiment, we ablated
a critical piece of visual information, changing the percep-
tual context shared by teacher and learner. This allowed us
to study the interaction between forms of communication and
shared context.

Our results highlight a discrepancy between demonstra-
tions and explanation: linguistic communication relies far
more on shared percepts. “Demo” teachers in both visibility
conditions adopted similar strategies, while “Chat” teachers
used very different language. “Chat-Full” teachers referenced
shared visual-perceptual attributes to communicate the target
concept, whereas “Chat-Partial” teachers struggled to estab-
lish shared references and gave single object values rather
than generalized information. While we induced perceptual
misalignment to vary context, a similar dynamic may ap-
ply to abstract domains: effectively communicating the The-
ory of Relativity requires knowing which conceptual building
blocks the learner has access to.

Our results also support the intuition that demonstra-
tion provides robust but nonspecific teaching, whereas
language– when successful– conveys more precise informa-
tion. “Demo” learners more reliably acquired the general
contours of object valuation but missed more subtle quanti-
tative relationships, such as the value of different color cir-
cles. On the other hand, the precision of language was itself
a double-edged sword: many “Chat-Full” teachers communi-
cated about the most valuable objects (“pink circles”) imme-
diately, but did not give other useful information (“triangles
are worthless”) until later, if at all.

One interpretation of “Showing” versus “Telling” is that
they place the inferential burden on different parties. Demon-
stration teaching in the form of optimal action is relatively
straightforward for the teacher yet poses challenges for the
learner, who must infer the rationale behind the act. In con-
trast, linguistic teaching is challenging for the teacher, who
must infer the gaps in the learner’s knowledge and use avail-
able shared context to communicate them.

Finally, the strengths and weaknesses of the teaching meth-
ods shown here can inform teaching under disjoint per-
ception. A robustness-precision tradeoff could help ex-
plain why demonstration learning has a long history of
success in reinforcement learning (Abbeel & Ng, 2004)
while language-based teaching remains relatively nascent
(Narasimhan, Barzilay, & Jaakkola, 2018; Co-Reyes et al.,
2019). Our results suggest a hybrid strategy– starting with
demonstrations to illustrate general behavior, followed by
specific linguistic corrections– could take maximum advan-
tage of both channels of communication.
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