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Abstract

Grammatical features vary widely across languages and this
variation has been studied in detail. The functions of gram-
matical features, however, are not entirely clear and a number
of puzzles remain. For example, why do some languages have
rich feature inventories but others have few if any grammatical
features? Why do many languages have features that appear
to encode semantic information (e.g. animacy) that is already
known to the listener? We present a computational framework
that addresses questions like these by formalizing one way in
which grammatical features aid communication. We use the
model to illustrate how morpho-syntactic feature inventories
help to solve the problem of communicating semantic struc-
tures under cognitive pressures.
Keywords: grammatical features; syntactic typology; infor-
mation theory

While the extent to which language influences cognition
is debated, it is generally accepted that cognitive pressures
shape language (e.g., Culbertson, 2012). Consistent with
this view, linguists have documented robust similarities (often
called universals) across the world’s languages (Greenberg,
1957). Yet despite solving the problem of communication
under similar cognitive pressures, language evolution in dif-
ferent environments has lead to very different communica-
tive systems. Inspired by the tradition of “competing motiva-
tions” (e.g., Haiman, 2010; Hawkins, 2004), we hypothesize
that extant languages achieve near-optimal tradeoffs among
the cognitive pressures within a given environment. This hy-
pothesis has been formalized using information theory and
positively evaluated against readily available samplings of the
world’s languages (for review see Gibson et al., 2019). Here,
we argue that the efficient communication approach is useful
for understanding grammatical feature inventories across lan-
guages. We describe a normative model for the communica-
tion of semantic structures that aims to capture how grammat-
ical features ensure robust communication of semantic depen-
dencies and semantic roles.

Across the languages of the world, word order and gram-
matical features are the two main strategies used to convey
semantic roles and dependencies. Prior work has formalized
the tradeoff between complexity and parsing efficiency in or-
der to explain cross-linguistic word order universals (Ferrer-
i-Cancho & Solé, 2003; Futrell, Mahowald, & Gibson, 2015;
Hahn, Jurafsky, & Futrell, 2020). Our approach relies on a
similar formal framework, but can be used to study the extent
to which both word order and grammatical features support

efficient communication of semantic structure. Because pre-
vious work has focused on word order, we focus here on the
role of grammatical features.

Grammatical features are often integral parts of the mor-
phological paradigms of a language, concisely conveying
highly frequent semantic distinctions and preserving the
structure of semantic dependencies across communicative
channels. Kibort and Corbett (2008) distinguish two kinds
of features: morpho-semantic features introduce additional
semantic content to the message (e.g., tense and evidential-
ity) and morpho-syntactic features (e.g., gender and case) re-
flect information about the dependencies between the lexical
concepts in the message, but often do not inherently convey
new semantic content. The evolution of morpho-semantic
grammatical features is well documented in the grammati-
calization literature (e.g., Heine, 2017) and is likely a prod-
uct of core cognitive pressures on a communication system.
There is a strong theoretical tradition approaching grammati-
calization in terms of frequency of use (Bybee, 2003; Haspel-
math, 2019), which has been mirrored in psycholinguistic ac-
counts in terms of productivity and reuse (Hawkins, 2004;
O’Donnell, 2015) and production efficiency (Zipf, 1949; Ma-
howald, Fedorenko, Piantadosi, & Gibson, 2013). In both ac-
counts, the frequency of linguistic units reflects communica-
tive need (Anderson & Schooler, 1991), and languages are
pressured to compress, or reduce the complexity of, highly
needed forms to aid language processing. Morpho-semantic
features follow the traditional frequency-driven productiv-
ity/reuse analyses and predict increased compression as com-
municative need/experience increases.

In addition to cognitive pressures of productive efficiency,
the evolution of morpho-syntactic grammatical features is
driven by pressures for robust communication of semantic
dependencies (Comrie, 1989; Jäger, 2007). For example,
consider the message, CAT FIELD CHASE MOUSE. A ratio-
nal pragmatic agent, armed with prior information about the
component lexical concepts, would reason that the likely in-
terpretation is that the cat was chasing the mouse. Language,
however, is used to convey both likely and unlikely events
(e.g., a mouse named Jerry chasing a cat named Tom). In
addition to lexical concepts, languages must therefore convey
semantic dependencies between lexical concepts and their se-
mantic roles. Word order and morpho-syntactic features are
both possible strategies for preserving this graph structure.
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Figure 1: A schematic of a grammatical encoder. As input
an AMR graph is serialized and reinforced with grammatical
features by an encoding algorithm and returns a linear string.

To make this concrete, consider the Abstract Meaning Rep-
resentation (AMR; Banarescu et al., 2013) graph at the top
of Figure 1. The lexical concepts (nodes) are connected by
directed, semantic dependencies (edges), which are each la-
beled with a semantic role. The edges are unordered but
the constraints of human language require the message to be
an incremental sequence, which requires serialization of the
graph structure. If we assume that all lexical concepts must be
realized, there are at least 24 possible serializations, or word
orders, that could be used to communicate the input struc-
ture in Figure 1. For example, we could serialize a hierarchy
by mentioning agents (arg0) before patients (arg1) which in
turn are mentioned before adjuncts (e.g., location). While
this might work well for cat chase mouse, man painted studio
would still be ambiguous between location (painting at the
studio) and patient (painting the studio) interpretations.

An obvious innovation would be to explicitly reinforce
structure by adding to the sentence. For example, in Figure 1,
English reinforces both the semantic role and the dependency
between CAT and CHASE through agreement—i.e., morpho-
logically tagging the head of the dependency (CHASE) with
the number information of the dependent (CAT). Addi-
tionally, English reinforces the semantic role of FIELD via
government—i.e., inserting a dependent morpheme (across),
and thus a new dependency, that carries the semantic role
of the head (FIELD). Head-marking and dependent-marking
strategies are present to varying degrees throughout the lan-
guages of the world (Nichols, 1986). Typically, adjunct se-

mantic roles (e.g., instrument and location) are dependency-
marked; whereas, quantifiers, delimiters and negation tend to
be head-marked (Nichols, 1986).

Adding grammatical markers may support robust commu-
nication of meaning, but increases the complexity of a lan-
guage. The primary goal of our work is to explore how gram-
matical complexity trades off against success at reconstruct-
ing semantic structures. We begin by explaining our norma-
tive model, then use it to discuss the properties of both nat-
ural languages and hypothetical languages that achieve near-
optimal tradeoffs between grammatical complexity and com-
municative success.

Theoretical framework
Consider a speaker who wishes to convey a semantic structure
(e.g. top panel of Figure 1) to a hearer. The language used by
speaker and hearer can be formalized as an encoder L that
maps semantic structures to strings of words.

Encoder. Given a graph to be communicated, the encoder
decides how to serialize the graph, which grammatical fea-
tures are added to the resulting sequence, and how these fea-
tures are realized (Figure 1). We define a distribution over en-
coders L by combining terms that correspond to these three
steps:

P(L |G) = P(S|G)P(F)P(R|F). (1)

The distribution is defined relative to a set G that includes
all unique graph structures that the encoder will encounter.
Each graph in G has a serialization, and S is the set of all
serializations. F is the set of grammatical features used by
the encoder, and R specifies the realizations of these features.

The serialization s of each graph g is drawn from a distri-
bution over all possible depth first traversal paths of a graph
with the dependency structure of g.1 P(s|g) is formulated us-
ing a Dirichlet-multinomial distribution, which favors reuse
of serialization strategies across graphs that share similar de-
pendency structures regardless of semantic role labels.

While serializations can differ for each unique graph, the
set of grammatical features F is a global property of the en-
coder. The features in G and their realizations R are sam-
pled from a probabilistic context free grammar (PCFG), with
uniform probability over production rules. The PCFG flips a
coin to decide if there will be features or not. If there will
be features, then each time a feature is determined, the PCFG
flips a coin to decide whether or not this is the last feature.
The PCFG contains rules for eleven features: number (single
SG, plural PL), gender (female F, male M), and case (nomi-
native NOM, accusative ACC, duration DUR, benefactive BEN,
instrument INST, locative LOC, manner).

Each feature has three possible realizations. First, a feature
can be expressed implicitly and assigned to a given word. For
example, in Spanish, gender is implicitly encoded in some
nouns (e.g., madre) with no overt linguistic markings. Sec-
ond, a feature can be lexicalized. For example, in English

1We also implemented a version which allows for cross-serial
dependencies and found that it produced qualitatively similar results.
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the definiteness of a noun is encoded in a determiner. Typ-
ically determiners proceed the noun they modify, but as we
are building a model of all possible encoders, each lexical-
ized feature may consistently appear either before or after the
lexical concept it modifies. Third, a grammatical feature can
be expressed via agreement. In agreement, the grammatical
features of a dependent of a given thematic relation are typ-
ically expressed on the head by explicit marking (e.g., verb
conjugation); however, we do not make directional restric-
tions.

The distribution over encoders in Equation 1 has two im-
portant qualitative properties. First, the P(S|G) term favors
encoders with consistent serialization patterns. For example,
an encoder that generates hero eats cereal and hero eats out-
side would be preferred to an encoder that generates hero ce-
real eat and hero eats outside because the former encoder
uses the same traversal pattern for both graphs. Second, the
P(F) term favors encoders that use smaller numbers of fea-
tures. Intuitively, then, the distribution P(L |G) is inversely
related to the complexity of L, and we will treat− logP(L |G)
as a measure of complexity.

Decoder. For convenience, we use an existing model of
parsing as our decoder. We use the modified MST depen-
dency parser (Le & Zuidema, 2015) because it builds in fewer
assumptions about language than alternatives (e.g., Klein &
Manning, 2004), and therefore can be used to evaluate both
attested and hypothetical languages. Future work should in-
vestigate how psychologically motivated parsers and noise
models influence decoding (for a start see Futrell & Levy,
2017).

Efficient communication. As formulated above, the
speaker uses the encoder L to deterministically generate a
message m based on the graph g to be conveyed. We assume
that this message is transmitted without error, and upon re-
ceiving it the hearer computes a distribution P(g′|m,L) over
possible graphs. Communication succeeds to the extent that
the hearer distribution assigns high probability to the origi-
nal graph g. More formally, the distortion associated with the
interaction is

d(g|L) =− log(P(g|m,L). (2)

Because the speaker is certain about the graph g to be con-
veyed, Equation 2 is equivalent to the KL divergence between
the representations of the speaker and hearer. In expectation
over all possible graphs, our distortion measure becomes the
cross-entropy or information loss for having used encoder L .

Our distortion measure trades off against complexity—
intuitively, as L becomes more complex by reinforcing struc-
ture, reconstructive distortion should drop. L achieves an ef-
ficient tradeoff between the two if no other encoder performs
better along both dimensions.

Our approach is closely related conceptually but formally
distinct from previous formulations of communicative effi-
ciency (Zaslavsky, Kemp, Regier, & Tishby, 2018; Hahn et
al., 2020) based on Rate-Distortion theory (Berger, 2003) or

the closely-related Information Bottleneck (Tishby, Pereira,
& Bialek, 2000). We use the same distortion measure as
this previous work, but formalize complexity in terms of
Kolmogorov complexity (similar to Steinert-Threlkeld, 2020)
rather than mutual information (as in Zaslavsky et al., 2018)
or entropy (as in Hahn et al., 2020; Ferrer-i-Cancho & Solé,
2003). Kolmogorov complexity is the length of the shortest
algorithm that produces an object, and our complexity mea-
sure− logP(L |G) can be interpreted as the number of bits re-
quired to specify an encoder L . Our decision is motivated by
our assumption that algorithmic complexity will better reflect
interpretable properties of the encoder than does mutual infor-
mation. Characterizing an encoder as a probability distribu-
tion (as required for mutual information) tells us little about
how linguistic representations affect compression or recon-
struction; whereas, characterizing an encoder as an algorithm
for mapping structures to strings (as required by Kolmogorov
complexity) forces us to think about how this mapping is ac-
tually carried out.

Method
To evaluate the model we constructed a minimal corpus of
AMR graphs with nodes reflecting the following structures:
1) Agent Verb Theme Location—as shown in Figure 1, 2)
Agent Verb Instrument, 3) Agent Verb Theme, 4) Agent Verb
Benefactor, 5) Agent Verb Duration, 6) Agent Verb Theme
Benefactor, 7) Agent Verb Location Duration, 8) Agent Verb
Location, 9) Agent Verb Theme Manner and 10) Agent Verb
Theme Instrument. Each lexical concept was manually anno-
tated for part of speech and grammatical feature. All possi-
ble assignments for arbitrary grammatical features like gen-
der and number were enumerated resulting in 352 graphs.2

For an initial analysis of this trade-off amongst extant lan-
guages, seed sentences for each graph in the corpus were
translated from English into Estonian, Japanese, Korean,
Spanish and Russian and the encoding function for each lan-
guage (Table 1) was specified by hand. As anchor points for
comparison, we also include three encoders which implic-
itly express typically head-marked features (gender, number),
typically dependent-marked features (case) or all features.
The word order of these anchor points was fixed to Span-
ish/English word order. For a subsequent analysis, we sam-
pled 450 counterfactual encoders from P(L |G) using MCMC
methods. We ran one chain initialized on each of the encoders
in Table 1 for 100 steps, retaining the top 50 encoders from
each chain. As a result, these encoders are conditioned on
the graphs in our corpus and therefore optimized for encod-
ing these graphs; whereas, the encoders of extant languages
might appear sub-optimal on our corpus G even if they are
optimal on a more naturalistic corpus.

To calculate the listener’s surprisal for our distortion met-
ric, we use the encoder to serialize our corpus of semantic

2In ongoing work we are annotating verb classes (Levin, 1993)
to create a more extensive corpus. Preliminary analyses suggest that
most unique structures for English verb classes are present in this
corpus.
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Encoder Agree Express Lexicalize
Dependent - ACC BEN DUR INST LOC MANNER NOM -

Head - F M SG PL -
All - F M SG PL ACC BEN INST LOC MANNER NOM -

English SGarg0 PL BEN DUR INST LOC
Estonian SGarg0 SG PL ACC BEN INST LOC NOM -
Japanese - - ACC BEN INST LOC NOM

Korean - ACC INST LOC NOM BEN DUR
Russian SGarg0 F M SG PL ACC INST NOM BEN LOC
Spanish SGarg0 PLarg0 F M SG PL BEN DUR INST LOC

Table 1: Features and realization for each encoder in Figure 2.
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Figure 2: Tradeoff between distortion and complexity for ex-
tant languages. The anchor points are encoders that use im-
plicit realization only (i.e. no agreement or lexicalization) and
include typically head-marked features only (HEAD), typi-
cally dependent-marked features only (DEPENDENT) or all
features (ALL).

graphs into messages, which we then use to train the mod-
ified MST dependency parser (Le & Zuidema, 2015). For
each message in the corpus, we construct a probability distri-
bution over each dependency by sampling the top 1000 most
likely parses and normalizing their parser score with additive
smoothing (α = 1e-5). To predict the semantic roles, we used
a naive Bayes classifier with smoothing (α = 1e-5) using part
of speech, grammatical features and agreement of these fea-
tures across head and dependent as predictors.

Results
Figure 2 plots the encoders for extant languages and our an-
chor points according to our metrics for complexity and dis-
tortion. Optimal solutions should be simple and have low
distortion and therefore lie towards the origin. Looking at
the anchor points, when typically head-marked features are
inherently expressed they result in high distortion. This is
unsurprising because it is rare that head-marked features in-
herently carry semantic information about structure; instead,
they carry information about structure through agreement. On
the other hand, expressing typically dependent-marked fea-
tures increases complexity (as there are more case features)
but greatly reduces distortion. The results for encoders cor-

responding to the six natural languages reveal two points of
interest. First, by comparing encoders with the most lexi-
calization (English, Japanese and Spanish) to the rest, we see
that lexicalizing increases distortion, presumably because this
introduces additional dependencies that the listener must cor-
rectly resolve. Second, we see that encoders expressing mul-
tiple typically head-marked features (Estonian, Spanish and
Russian) increase in complexity without decreasing in distor-
tion.

There are several possible reasons why our analysis does
not find that typically head-marked features reduce distortion.
First, our corpus may lack the complex structures that are usu-
ally reinforced by head-marking. For example, our corpus has
no complex noun phrases, no coordinate, subordinate or rel-
ative clauses, and no discourse structure. Another possibility
is that these features convey little information about semantic
structures when isolated from inflectional paradigms, which
are beyond the scope of our initial analysis. Alternatively, it
might be that by using all possible combinations of gender
and number in our corpus, we have removed correlations be-
tween structure and feature assignment that might appear in
naturalistic environments. Of course, it is possible that these
features do not convey structural information at all (see Dye,
Milin, Futrell, & Ramscar, 2017, for one such account of gen-
der). Our general framework can be used to investigate these
hypotheses but doing so will require the development of new
annotated corpora, containing both the semantic structures to
be conveyed and tags for both extant and potential grammat-
ical features.

To control for the limitations of our corpus, we com-
pared simulated encoders optimized for this corpus (left
panel of Figure 3) to typological generalizations about head-
and dependent-marking of extant languages (Nichols, 1986).
The right panel of Figure 3 shows how our simulated en-
coders realize grammatical features. Note first that 54% of
the encoders make use of both head-marking via agreement
(blue circles) and dependent-marking via lexicalization (red
squares) similar to attested languages. Further in line with
typological data, grammatical features associated with ad-
juncts (BEN DUR INST LOC MANNER) were more likely to be
dependency marked via lexicalization (49% of realizations)
than marked via agreement (1% of realizations); whereas, the
other grammatical features are more likely to be marked via
agreement (24% of realizations) than lexicalization (5% of
realizations). Note, however, that agreement is rarely used
along the Pareto front in line with our analysis of extant lan-
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Figure 3: Left: Trade-off between distortion and complexity for simulated encoders. Right: For each simulated encoder, the
realization of each grammatical feature is marked via color.

guage encoders.
Despite the limitations of our corpus, this simulation study

provides a first glimpse at how individual grammatical fea-
tures convey information about semantic dependencies and
roles. However, the simulations themselves do not provide
strong evidence that attested encoders achieve near optimal
trade-offs. Another way to test the trade-off is by lesioning
grammatical features present in natural language corpora to
see if the distortion and complexity associated with an en-
coder change as predicted by our trade-off. Assuming that
an attested encoder lies near the Pareto front, if we decrease
complexity by lesioning a grammatical feature then the dis-
tortion of the encoder should increase. Our model makes
differential predictions for the amount of increase depending
upon where the encoder lies along the frontier. For exam-
ple, we would expect larger increases in distortion after re-
moving features from Korean and smaller increases for Rus-
sian because the Pareto front appears steeper by Korean than
Russian. Unfortunately, our complexity measure makes it
difficult to test these predictions in detail because calculat-
ing the complexity of a natural language encoder (and there-
fore the change in complexity caused by lesioning features)
is extremely challenging. We therefore focus on one sim-
ple question and ask whether removing morpho-syntactic fea-
tures from natural languages increases the distortion associ-
ated with communicating dependencies. We cannot evaluate
communicative efficiency for semantic roles as there is no
sufficiently annotated corpus.

Lesion Studies
Given a corpus for a language, we lesion a feature by remov-
ing it entirely from the corpus (similar to Attia, Nikolaev, &
Elkahky, 2018). We focus here on case and gender. For case,
we trained the MST parser with and without grammatical case
for a sample of 19 languages in the UD treebank V2.4 (Nivre
et al., 2016) from 7 different language families. For gender,
we trained the parser on corpora with gender, without gen-

der, and with gender assignments randomly permuted for 11
languages (4 language families) from the same resource. Us-
ing 5-fold cross-validation, we compared the expected distor-
tion between a speaker and a hearer attempting to reconstruct
the semantic dependencies. If grammatical features aid com-
munication of dependencies, we expect that the natural lan-
guage encoders will show greater distortion when lesioned
than when intact.

The results are given in Table 2. As expected, removing
case increased distortion (binomial test p < 0.05). Surpris-
ingly, removing gender reduced distortion; yet, arbitrarily as-
signing gender increased distortion. Binomial tests for gen-
der do not reach significant differences, yet the results align
with our previous finding that typically head-marked features
did not reduce distortion (Figure 3) and the three hypothe-
ses proposed to explain this finding. The result for lesioning
gender completely is consistent with gender either reinforc-
ing a structure not present in our corpus (e.g., discourse) or
not reinforcing structure in the absence of a more complex
agreement paradigm. In line with our third hypothesis, the
swapped gender study suggests that the assignment of gender
is non-arbitrary and, thus, perhaps correlated with semantic
structure in natural language. From a methodological per-
spective, the gender lesion results demonstrate that commu-
nication is not improved by simply adding features.

Discussion
Our goal was to explore how grammatical features trade off
complexity and communicative distortion. Our results show
that grammatical case is important for communicating struc-
ture and influences this trade-off. All natural languages in
our sample use case, case is used across the Pareto front in
our simulations, and lesions of case in natural languages in-
creased distortion as expected if the languages lay along the
Pareto front. Grammatical gender and number, on the other
hand, do not appear to significantly influence communica-
tive robustness in our analyses; however, a number of short-
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Intact No Case ∆ No Case No Gender Swap Gender ∆ No Gender ∆ Swap Gender
Basque 13.48 14.14 -0.65 13.50 13.49 -0.02 -0.01
Bulgarian 6.23 6.24 -0.01 6.09 6.26 0.14 -0.03
Chinese 20.27 20.96 -0.69 - - - -
Croatian 17.30 17.45 -0.15 - - - -
Danish 16.93 17.07 -0.13 16.69 16.97 0.25 -0.03
Erzya 10.69 11.02 -0.33 10.64 10.55 0.05 0.14
Estonian 9.20 10.60 -1.40 - - - -
Finnish 6.05 6.92 -0.87 - - - -
Galician 26.99 - - 27.07 26.99 -0.08 0.008
Hebrew 19.43 19.54 -0.10 19.16 19.52 0.28 -0.08
Hindi 7.88 7.96 -0.08 7.74 7.92 0.14 -0.05
Hungarian 27.17 28.45 -1.28 - - - -
Korean 9.21 9.28 -0.07 - - - -
Latvian 12.20 12.80 -0.59 12.04 12.26 0.16 -0.05
Lithuanian 23.49 - - 23.55 24.07 -0.05 -0.58
Persian 20.48 20.54 -0.06 - - - -
Serbian 14.98 15.05 -0.07 14.67 15.08 0.32 -0.10
Slovak 4.26 4.33 -0.07 - - - -
Slovenian 9.64 9.79 -0.16 - - - -
Turkish 13.32 13.67 -0.35 - - - -
Urdu 16.45 16.33 0.12 16.02 16.45 0.43 0

Table 2: Our expected distortion measure for each language in our sample. Deltas reflect the difference in scores for Intact and
Lesioned languages (negative values denote worse reconstruction for the Lesioned language).

comings of our analysis have been identified and we identi-
fied three questions about gender that can be explored in our
framework: what if any structural information gender con-
veys, whether this information is contingent on an inflectional
paradigm, and whether this information is contingent on how
particular words are assigned to gender classes.

Our goal was not to argue for the optimality of natu-
ral languages, but rather to characterize the trade-off in-
volved in communicating semantic structure and to provide
a framework that helps to understand the conditions under
which grammatical features would provide an optimal solu-
tion. More comprehensive tests of the framework will require
the development of new annotated corpora, and our current
results suggest that this time-intensive step is well worth tak-
ing.
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Jäger, G. (2007). Evolutionary game theory and typology: A

case study. Language, 74–109.
Kibort, A., & Corbett, G. G. (2008). Grammatical features

inventory: Typology of grammatical features. University of
Surrey. doi: http://dx.doi.org/10.15126/SMG.18/1.16

Klein, D., & Manning, C. D. (2004). Corpus-based induc-
tion of syntactic structure: Models of dependency and con-
stituency. In Proceedings of the 42nd Annual Meeting on
Association for Computational Linguistics (p. 478).

Le, P., & Zuidema, W. (2015). Unsupervised dependency
parsing: Let’s use supervised parsers. arXiv preprint
arXiv:1504.04666.

Levin, B. (1993). English verb classes and alternations: A
preliminary investigation. University of Chicago press.

Mahowald, K., Fedorenko, E., Piantadosi, S. T., & Gibson, E.
(2013). Info/information theory: Speakers choose shorter
words in predictive contexts. Cognition, 126(2), 313–318.

Nichols, J. (1986). Head-marking and dependent-marking

grammar. Language, 56–119.
Nivre, J., De Marneffe, M.-C., Ginter, F., Goldberg, Y., Hajic,

J., Manning, C. D., . . . others (2016). Universal dependen-
cies v1: A multilingual treebank collection. In Proceed-
ings of the Tenth International Conference on Language
Resources and Evaluation (LREC’16) (pp. 1659–1666).

O’Donnell, T. J. (2015). Productivity and reuse in language:
A theory of linguistic computation and storage. MIT Press.

Steinert-Threlkeld, S. (2020). Quantifiers in natural language
optimize the simplicity/informativeness trade-off. In Pro-
ceedings of the 22nd Amsterdam Colloquium (p. 513-522).

Tishby, N., Pereira, F. C., & Bialek, W. (2000). The informa-
tion bottleneck method. arXiv preprint physics/0004057.

Zaslavsky, N., Kemp, C., Regier, T., & Tishby, N. (2018).
Efficient compression in color naming and its evolution.
Proceedings of the National Academy of Sciences, 115(31),
7937–7942.

Zipf, G. K. (1949). Human behavior and the principle of
least effort. Addison-Wesley Press.

3204


