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Abstract 

This paper proposes that the shape and parameter fits of 
existing probability weighting functions can be explained with 
sensitivity to uncertainty (as measured by information entropy) 
and the utility carried by reductions in uncertainty. Building on 
applications of information theoretic principles to models of 
perceptual and inferential processes, we suggest that 
probabilities are evaluated relative to a plausible expectation 
(the uniform distribution) and that the perceived distance 
between a probability and uniformity is influenced by the shape 
(relative entropy) of the distribution that the probability is 
embedded in. These intuitions are formalized in a novel 
probability weighting function, VWD(p), which is simpler and 
has less parameters than existing probability weighting 
functions. The proposed probability weighting function 
captures characteristic features of existing probability 
weighting functions, introduces novel predictions, and 
provides a parsimonious account of findings in probability and 
frequency estimation related tasks. 

Keywords: decision making under risk and uncertainty; 
probability weighting; information entropy; predictive coding 

Introduction 

We are faced with hundreds of decisions every day. These 

choices range from the seemingly simple and trivial, such as 

whether to cross a busy street or not, to the more complex and 

consequential, such as which job offer to accept or which 

public policy to vote on. Regardless of their domain, they all 

share a common characteristic: an assessment of the 

likelihood and qualitative nature of possible future outcomes. 

A classical framework for studying how people make 

choices that involve uncertain outcomes is the expected utility 

maximization paradigm. In the paradigm, participants are 

asked to choose between monetary gambles that each consist 

of a set of mutually exclusive outcomes and their respective 

probabilities. For example, a participant might be asked to 

choose between ‘Gamble A: $100 with certainty’ or ‘Gamble 

B: $200 with a 50% chance, $0 otherwise.’ When presented 

sequentially with varied outcome magnitudes and probability 

distributions, responses to these choice problems are 

presumed to reveal inner preference orderings between 

outcomes and attitudes to risk and uncertainty. Following the 

expected value maximization principle introduced by 

Bernoulli (1738/1954) and axiomatized by von Neumann and 

Morgenstern (1944/1947) as expected utility theory (EUT), 

participants are assumed to choose the gamble that has the 

highest expected utility (EU): 

 

𝐸𝑈(𝑋) = ∑ 𝑝𝑖 ∗ 𝑢(𝑥𝑖)
𝑛
𝑖=1                       (1) 

 

where X denotes a gamble, xi outcomes of the gamble, u(xi) 

their utilities, pi their respective probabilities, and n the 

number of outcomes in the gamble. 

Later studies (most notably Allais, 1953, and Ellsberg, 

1961; see also Camerer, 1989, for a review) have shown that, 

with an appropriate framing of the choice problem, people 

can be induced to make choices that violate the axioms of 

EUT. To account for this, a plethora of variations of EUT 

(termed non-expected utility theories) have been proposed 

(see e.g. Machina, 2008, for a review) that aim to account for 

the anomalies through adjusting the shape of the utility 

function and/or incorporating a probability weighting 

function, yielding 

 

𝐸𝑈(𝑋) = ∑ 𝑤(𝑝𝑖) ∗ 𝑢(𝑥𝑖)
𝑛
𝑖=1                    (2) 

 

where w(pi) denotes the weighted probability pi. 

Most notably, prospect theory (Kahneman & Tversky, 

1979) presumes a value (utility) function that is concave for 

gains, convex for losses, and steeper for losses than for gains, 

and a probability weighting function that overweights small 

probabilities and underweights larger probabilities. Later 

major applications of EUT (rank-dependent utility theory, 

Quiggin, 1982, and cumulative prospect theory, Tversky & 

Kahneman, 1992) suppose that probabilities are weighted 

cumulatively, i.e. that the outcomes of each gamble are 

multiplied with the weighted probability of receiving that 

outcome or more (gains) or that outcome or less (losses).  

Even though these theories are widely applied and can 

account for many findings that EUT or non-cumulative 

prospect theory cannot account for (Camerer, 2000; Machina, 

2008), recent research has introduced new sets of anomalies 

that are unexplained by rank-dependent utility theories (e.g. 

Birnbaum, 2006, 2008; Birnbaum et al., 2008). Some 

researchers in the field have proposed that novel expected 

utility based frameworks should be introduced (e.g. Luce, 

2008), and that the psychological underpinnings of these 

models should be more firmly established (e.g. Kahneman, 

2003). 

This paper suggests that the notion of information entropy 

and its postulated utility in perceptual and inferential 

processes could provide a theoretical framework that can 

explain properties of non-expected utility theories, introduce 

new empirical predictions, and give rise to new modeling 

paradigms. This approach is exemplified in a novel entropy-

based probability weighting function that does the above. 
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Probability Weighting as Sensitivity to 

Deviations from Maximum Entropy 

What Is Probability Weighting? 

Psychologically, a probability weighting function describes 

distortions in the experience of a subjective degree of belief 

(i.e. subjective probability). In the context of decision making 

under risk, subjective probabilities are presumed to equal the 

numerical probabilities presented to the participant, and 

choosing as if the outcome attached to a probability were 

more/less likely than it actually is is interpreted as over-

/underweighting the probability. Because probabilities p are 

restricted to the range [0, 1], a probability weighting function 

w(p) is restricted to the same range, defining w(0) = 0 and 

w(1) = 1. Based on accumulated experimental evidence (see 

e.g. Kahneman & Tversky, 1979; Gonzalez & Wu, 1999), 

small probabilities are generally overweighted (w(p) > p) and 

larger probabilities underweighted (w(p) < p), yielding an 

inverse-S-shaped, continuous, and monotonically increasing 

function. 

Existing Probability Weighting Functions 

Up to date, a plethora of probability weighting functions have 

been proposed (see e.g. al-Nowaihi & Dhami, 2010; 

Cavagnaro et al., 2013; and Stott, 2006), of which the 

Tversky-Kahneman weighting function (Tversky & 

Kahneman, 1992), the empirically derived linear-in-log-odds 

weighting function (Goldstein & Einhorn, 1987; Tversky & 

Fox, 1995; Gonzalez & Wu, 1999), and the axiomatically 

derived Prelec weighting function (Prelec, 1998) generally 

provide best fits with empirical data (al-Nowaihi & Dhami, 

2010; Cavagnaro et al., 2013; Stott, 2006). All of these 

functions share the properties listed above. They can differ, 

however, in their curvature (magnitude of over- or 

underweighting), elevation (amount of general over- or 

underweighting), fixed point w(p) = p, below which p is 

overweighted and above which p is underweighted, and 

inflection point w(p)’’ = 0, where the curvature of the 

function changes from concave to convex. These properties 

can be adjusted through parameters. 

Figure 1 depicts examples of weighting functions acquired 

using a range of parameter value combinations. The 1-

parameter-Prelec weighting function only controls the 

curvature α of the weighting function, whereas the linear-in-

log-odds and 2-parameter-Prelec weighting functions also 

adjust the elevation β of the weighting function. The Tversky-

Kahneman weighting function controls both with one 

parameter, γ. As illustrated by the figure, adding a parameter 

increases the flexibility of the weighting function. 

Applications of Entropy in Modeling Perceptual 

and Inferential Processes 

In other areas of experimental psychology, it has been shown 

that the perceptual organization of visual stimuli can be 

modeled as minimizing uncertainty or code length (see e.g. 

Attneave, 1954; Garner & Clement, 1963; or Feldman, 2016, 

for a more recent summary), and that information search can 

be modeled as maximizing the amount of uncertainty 

reduction that gaining a novel piece of information entails 

(Oaksford & Chater, 1994; Crupi et al., 2018). This suggests 

that reducing the amount of uncertainty carries utility both at 

the perceptual and at the cognitive level. Researchers have 

further suggested that perceptual processes may conform to 

the same principles that control reasoning under uncertainty 

(see e.g. Friston, 2010; Knill & Pouget, 2004; Summerfield 

& Tsetsos, 2015). Building on the conjecture that reducing 

uncertainty carries utility, the human cognitive system may 

be tuned to context-specific fluctuations in the uncertainty 

associated with frequencies or probabilities. In particular, if 

the brain were to encode deviations from predictions rather 

than all information present to conserve time and energy (as 

e.g. Bubic et al., 2010 suggest), probabilistic information 

could also be represented as a deviation from a plausible 

expectation rather than as an absolute magnitude. 

Furthermore, this representation could be influenced by the 

overall amount of uncertainty present in the choice context 

(cf. the influence of stimulus statistics on the noisiness of 

number representations, Prat-Carrabin & Woodford, 2020). 
 

 

 
 

Figure 1: Shapes and functional forms of existing probability 

weighting functions. 

An Information-Entropy Based Probability 

Weighting Function 

In experiments of decision making under risk, a probability p 

is embedded in a gamble that consists of a distribution of n 

probabilities pi that sum up to 1 and that are each associated 

with an outcome xi. When no prior information related to the 

gamble is given, a plausible expectation for the shape of the 

probability distribution is uniformity, i.e. that pi = 1/n for all 
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pi in the distribution. This is the distribution of maximum 

entropy. The notion of evaluating probabilistic information 

relative to a plausible expectation can be expressed as 

evaluating the distance |p – 1/n|. When p is associated with a 

positive outcome x and p > 1/n, |p – 1/n| carries positive 

utility (because p*x yields a larger expected value than 

1/n*x), whereas when p < 1/n, |p – 1/n| carries negative 

utility (because p*x yields a smaller expected value than 

1/n*x). In addition, the closer to 1/n (and further from 0 and 

1) p and other probabilities in the distribution are, the more 

uncertainty is involved with predicting the outcome of the 

gamble. If an increase in uncertainty carries negative utility 

for positive expectations and positive utility for negative 

expectations (as findings by Bouchouicha, Martinsson, 

Medhin, and Vieider, 2017, would suggest), when p > 1/n, 

the “goodness” of |p – 1/n| is tampered by the proximity of 

1/n, whereas when p < 1/n the “badness” of |p – 1/n| is 

lessened by the proximity of 1/n. Hence, the closer p (and 

other probabilities in the distribution) are to 1/n, the more the 

distance |p – 1/n| is discounted. A similar treatment for 

negative outcomes –x gives an equivalent result. 

Taken together, these inferences can be formalized as 

 

𝑤(𝑝) =
1

𝑛
+ (𝑝 −

1

𝑛
) ∗ (1 −

𝐻𝑑𝑖𝑠𝑡

𝐻𝑚𝑎𝑥
)                (3) 

 

where n denotes the number of probabilities in the 

distribution, Hdist refers to the Shannon entropy [–Σp*log2(p)] 

of the distribution, Hmax is the entropy of the uniform 

distribution [–log2(1/n)], Hdist/Hmax is equivalent to the 

Kullback-Leibler divergence D(Hdist || Hmax) and defined in 

the range [0, 1], and 1 –  Hdist/Hmax is the redundancy of the 

distribution. 

When combined with the requirement w(0) = 0, (3) can be 

applied to derive a probability weighting function 

 

𝑉𝑊𝐷(𝑝) =
𝑝
1−

𝐻𝑑𝑖𝑠𝑡
𝐻𝑚𝑎𝑥

∑ 𝑝
𝑖

1−
𝐻𝑑𝑖𝑠𝑡
𝐻𝑚𝑎𝑥𝑛

𝑖=1

                        (4) 

 

where VWD refers to Valence-Weighted Distance (the 

distance of p from 1/n weighted with x). Because Hmax 

changes when n changes and Hdist changes when p (or any 

other probability in the distribution) changes, VWD(p) is n-

dimensional. The fixed point of VWD(p) is at uniformity, i.e. 

at p = 1/n for all p, and the curvature of the weighting function 

(i.e. amount of over- or underweighting of p) is determined 

by the relative entropy Hdist/Hmax of the distribution. These 

two properties reflect the contextual influence of other 

probabilities on the evaluation of p and are illustrated in 

Figure 2. Because plotting VWD(p) for n probabilities 

requires n dimensions, the functions depicted are samples 

from the entire VWD(p). 

 

 
 

Figure 2: The influence of n (left panel) and distributional 

shape (right panel) on VWD(p). The left panel shows the 

shape of VWD(p) from n = 2 (highest curve) to n = 8 (lowest 

curve) when p is embedded in a distribution with n – 1 equal 

probabilities. The right panel illustrates the influence of the 

shape of the distribution [p, (1–p)/j, (j–1)*(1–p)/j] on the 

curvature of VWD(p) as j increases from 2 (most entropy) to 

5 (least entropy). As the entropy of the distribution increases, 

the curvature of the weighting function also increases.  
 

Comparing Properties of VWD(p) to Properties of 

Existing Probability Weighting Functions 

Figures 3 and 4 exemplify differences between the functional 

and empirical properties of VWD(p) as compared to existing 

weighting functions. Figure 3 shows the shape of VWD(p) for 

different n together with parameter estimates and functional 

shapes of the Tversky-Kahneman, 2-parameter-Prelec, and 

linear-in-log-odds weighting functions when fitted to 

VWD(p) with probability distributions of n = 2 to n = 10 that 

are maximally uniform. 

As portrayed in the figure, VWD(p) produces several fixed 

points without an alteration in parameter values: when n 

increases, the fixed point of the function changes. The other 

three functions, on the other hand, require different parameter 

value combinations to change the fixed point. In other words, 

when embedded in a distribution of different n, VWD(p) 

allows for the same probability to be weighted differently, 

whereas existing probability weighting functions presume 

that the same probability receives the same weight regardless 

of n. 

Equivalently, Figure 4 illustrates the impact of the entropy 

of the distribution that a probability p is embedded in on the 

shape of VWD(p), together with fitted parameters and shapes 

of the Tversky-Kahneman, 2-parameter-Prelec, and linear-in-

log-odds weighting functions. As with variation in n, 

VWD(p), changes curvature depending on the shape of the 

distribution, whereas adjusting the curvature of existing 

weighting functions requires adjusting their parameters. 

Formally, the flexibility of VWD(p) as compared to other 

weighting functions can be demonstrated in the n = 2 case 

when VWD(p) is compared to linear-in-log-odds. When 

n = 2, VWD(p) reduces to 
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𝑉𝑊𝐷𝑛=2(𝑝) =
𝑝
1−

𝐻𝑑𝑖𝑠𝑡
𝐻𝑚𝑎𝑥

𝑝
1−

𝐻𝑑𝑖𝑠𝑡
𝐻𝑚𝑎𝑥+(1−𝑝)

1−
𝐻𝑑𝑖𝑠𝑡
𝐻𝑚𝑎𝑥

 ,               (5) 

 

which is equivalent to the linear-in-log-odds weighting 

function without the elevation parameter β and with the 

curvature parameter α set to 1 – Hdist/Hmax. Because Hdist is 

influenced by p and Hmax is fixed for n (for n = 2, Hmax = 1), 

1 – Hdist/Hmax changes when p changes. α, on the other hand, 

is a constant. 

To summarize, unlike existing weighting functions, 

VWD(p) predicts that the weight given to a probability p 

depends on the probability distribution (gamble) that p is 

embedded in in two ways. Firstly, whether p is under- or 

overweighted is determined by whether it is above or below 

the fixed point, which varies depending on the number of 

probabilities n in the distribution. Secondly, the amount of 

over- or underweighting of p depends on the relative entropy 

of the distribution, which is governed by its shape.  

Hence, if both VWD(p) and existing probability weighting 

functions were fitted to data, VWD(p) should be able to 

capture qualitative patterns in the variation of the weight 

given to the same probability p across different n and 

distributional shapes, whereas existing weighting functions 

would predict the same weight for p regardless of n and 

distributional shape. Quantitatively, when fitted to subsets of 

data with different n, the parameters of existing probability 

weighting functions should change following the trends 

depicted in Figure 3, and fitting to subsets of data with 

different distributional shapes (amounts of entropy) should 

induce changes in parameter fits comparable to the ones 

presented in Figure 4. When fitted to aggregate data of 

gambles with different n and distributional shapes, VWD(p) 

should fit the data significantly better than existing 

probability weighting functions because it can account for 

their impact without an adjustment in parameter values. 

Plausibility of VWD(p) in Light of Earlier Studies 

Earlier studies in decision making under risk have found 

average α and β estimates ranging from 0.53 to 1 and 1 to 

1.18, respectively, for the 2-parameter-Prelec weighting 

function (Cavagnaro et al., 2013; Stott, 2006), from 0.44 to 

1.59 and 0.21 to 0.88, respectively, for the linear-in-log-odds 

function (Cavagnaro et al., 2013; Gonzalez & Wu, 1999; 

Stott, 2006), and γ averages in the range of 0.50 to 0.96 for 

the Tversky-Kahneman weighting function (Stott, 2006). 

Based on previous findings, Prelec (1998) presumed α to 

average at around 0.65 and β at 1. Tversky and Kahneman 

(1992) estimated the average fixed point to be located at 

around 0.34 for gains and 0.38 for losses, whereas Tversky 

and Fox (1995) found the fixed point to average at around 

0.30, and Gonzalez & Wu (1999) at around 0.39. Given that 

these studies use gambles with n = 2 or n = 3 outcomes, the 

fitted parameter values are consistent with the estimates 

depicted in Figure 3 and Figure 4. However, little data exists 

on choices made between gambles that involve distributions 

of n > 3 outcomes or that compare across gambles with 

different distributional shapes. 

In a slightly different area of study (decisions made based 

on experience), the hypothesis that the fixed point of w(p) 

should be at 1/n has been suggested by Fox and Rottenstreich 

(2003) and See et al. (2006), who propose that this is due to 

a guessing 1/n heuristic. In a proportion estimation task with 

n = 2 and n = 4 groups of colored dots, Zhang and Maloney 

(2012) find support for the 1/n fixed point hypothesis but not 

for the 1/n guessing heuristic and suggest that hedging 

towards 1/n is driven by some other cognitive process that is 

so far unknown. Their results are in line with results by 

Attneave (1953), who finds that the estimated frequency of 

letters in the English language (n = 26) is regressed towards 

0.044, which is far from 0.50 (the conventional fixed point 

presumed in proportion estimation) and close to 1/26.  

More generally, Zhang and Maloney (2012) suggest that 

probability and frequency related information is mentally 

represented as log odds, and present data of similar kinds of 

distortion functions that arise in a multitude of research areas 

across perception and cognition. A log odds representation, 

however, has to be complemented with additional 

assumptions to explain the 1/n phenomena. A task-general 

process account that resembles the framework proposed here 

is the assumption of a 1/n prior that biases probability or 

frequency estimates (e.g. Martins, 2006). However, in the 

context of decision making under risk, probabilities are not 

estimated, but given. Therefore, an ad hoc explanation has to 

be derived for how a prior can bias adopted (not estimated) 

numerical probabilities. The present approach explains the 

same results without making additional assumptions. 

 
 

 
 

Figure 3: Upper panels: least squares estimates of Tversky- 

Kahneman γ (left panel, y-axis), 2-parameter-Prelec α and β 

(middle panel, y-axis), and linear-in-log-odds α and β (right 

panel, y-axis) fitted to VWD(p) for n ranging from 2 to 10 (x-

axis). Lower panels: Fitted Tversky-Kahneman, 2-parameter-

Prelec, and linear-in-log-odds functions (blue curves) on 

VWD(p) (red curves). 
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Figure 4: Upper panels: least squares estimates of Tversky- 

Kahneman γ (left panel, y-axis), 2-parameter-Prelec α and β 

(middle panel, y-axis), and linear-in-log-odds α and β (right 

panel, y-axis) fitted to VWD(p) for n = 3 probability 

distributions with different levels of entropy (x-axis). Lower 

panels: Fitted Tversky-Kahneman, 2-parameter-Prelec, and 

linear-in-log-odds functions (blue curves) on VWD(p) (red 

curves). 

Contributions of the Proposed Approach 

Probability Weighting and Choices under Risk 

Novel Empirical Predictions If the approach presented in 

this paper would hold true, the weight given to a probability 

p should change when n is increased and the entropy of the 

distribution is altered as depicted in Figure 3 and Figure 4. 

Consequently, when fitted across gambles with different n 

and distributional shapes, VWD(p) should both capture 

qualitative trends and fit the data better than existing 

probability weighting functions. However, because 

individuals might differ in the amount of attention given to 

the number and magnitude of probabilities, VWD(p) would 

most likely need to be complemented with individual 

difference parameters when comparing to existing weighting 

functions. 

Psychological Explanation of Existing Findings In the 

choice literature, Kahneman (2003) and others have 

suggested that the shapes of probability weighting and value 

(utility) functions reflect the principle of diminishing 

sensitivity: probabilities and outcomes close to a reference 

point (0 or 1 for probabilities, status quo for wealth) are more 

discriminable than probabilities and outcomes further from 

the reference point. The present approach explains the 

location of these reference points with sensitivity to 

uncertainty (probabilities of 0 and 1, as well as status quo, are 

points of minimum entropy) and predicts that the point of 

least discriminability lies at maximum entropy. 

The proposal advanced here differs from the psychological 

interpretation of α and β given by Gonzalez and Wu (1999), 

who suggest that the α parameter reflects discriminability, 

whereas the β parameter reflects attractiveness of gambling. 

Because ibid. used certainty equivalents for two-outcome 

gambles to assess probability weighting, it is possible that 

their estimates of β reflect also the attractiveness of the 

gamble. However, in general, the present approach would 

suggest that both α and β reflect the uncertainty of the 

distribution that p is embedded in. 

Combining Entropy with Expected Utility The idea of 

combining expected utility with information entropy is not 

entirely novel in the area of decision making under risk. Luce 

et al. (2009) suggest combining the utility derived from 

gambling with the expected utility of outcomes. In a related 

approach, Yang and Qui (2014) propose an Expected Utility-

Entropy (EU-E) model that takes the form 

 

𝐸𝑈_𝐸(𝑋) = (1 − 𝜆) ∗ ∑ 𝑝𝑖 ∗ 𝑢(𝑥𝑖) − 𝜆 ∗ 𝐻𝑑𝑖𝑠𝑡𝑛
𝑖=1         (6) 

 

where 𝝀 denotes the weight given to expected utility vs. 

entropy. 

   These approaches, however, presume that expected utility 

and entropy are evaluated separately and that the penalty 

associated with entropy is uninfluenced by outcome 

magnitude. This appears unlikely given that the uncertainty 

associated with positive and negative outcomes is treated 

differently (e.g. Kahneman & Tversky, 1979). The approach 

presented here, on the other hand, embeds the influence of 

entropy in the evaluation of expected value, which makes the 

theory more parsimonious and provides one resolution to the 

problem of combining valence with uncertainty in 

psychological applications of information theory (see e.g. 

Luce, 2003). 

Other Areas of Experimental Psychology 

Parsimonious Explanation of Earlier Findings In a similar 

fashion as VWD(p) can be shown to be an extension of the 

linear-in-log-odds weighting function, it can also be shown 

to be an extension of the log odds representation proposed by 

Zhang and Maloney (2012). 

Zhang and Maloney’s general representation of frequency 

and probability weighting functions is 

 

𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
= 𝛾 ∗ 𝑙𝑜𝑔

𝑝

1−𝑝
+ (1 − 𝛾) ∗ 𝑙𝑜𝑔

𝑝0

1−𝑝0
        (7) 

 

where p0 denotes the intercept (fixed point) of the weighting 

function and γ is the slope of the logit function, i.e. the 

curvature of the weighting function. 

Expressed in the same format, the linear-in-log-odds 

weighting function is  

 

𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
= 𝛾 ∗ 𝑙𝑜𝑔

𝑝

1−𝑝
+ 𝜏                     (8) 

 

where γ is the curvature of the weighting function (α in our 

context) and β = eτ. 
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An equivalent expression to (7) is 

 

𝑙𝑜𝑔
𝑤(𝑝)

1−𝑤(𝑝)
= 𝑙𝑜𝑔

𝑝𝛾

(1−𝑝)𝛾
+ 𝑙𝑜𝑔

𝑝0
1−𝛾

(1−𝑝0)
1−𝛾             (9) 

 

and the VWD(p) weighting function can be expressed as 

 

𝑙𝑜𝑔
𝑤(𝑝𝑖)

1−𝑤(𝑝𝑖)
= 𝑙𝑜𝑔

𝑝𝑖
𝛾

∑ 𝑝
𝑗
𝛾𝑛

𝑗=1

                         (10) 

 

where i ≠ j, and γ = 1 – Hdist/Hmax. Comparing (9) and (10) 

shows that VWD(p) generalizes the log odds function by 

replacing the weighted log odds of p (i.e. the log of the ratio 

of p to 1 – p) with the logged ratio of (weighted) p to every 

other (weighted) probability in the same distribution. This 

replacement eliminates the need to add a β parameter or a 

fixed point p0 to the functional definition because it sets p0 

implicitly to 1/n. The proposed function also restricts the log 

odds function by setting γ to the redundancy of the 

distribution, due to which VWD(p) makes stronger a priori 

predictions. 

Redundancy in Psychophysics? It is widely known that 

studies on Stevens’s (1957) power law find different 

exponents for different kinds of quantities, such as for length, 

area, or volume. In light of the proposed framework, these 

exponents could reflect entropic properties of the context in 

which the quantity is estimated in a similar fashion as the 

slope of the log odds function reflects the redundancy of the 

choice context. 

    Formally, this can be illustrated using the Weber-Fechner 

law (a special case of Stevens’s power law) defined as 

 

𝑝 = 𝑘 ∗ 𝑙𝑜𝑔
𝑆

𝑆0
                             (11) 

 

where p is the perceived change in a physical stimulus, k is a 

sense-specific constant, S is the quantity of interest (novel 

stimulus), and S0 is the reference value. This can be 

equivalently expressed as 

 

𝑝 = 𝑙𝑜𝑔
𝑆𝑘

𝑆0
𝑘                                 (12) 

 

which, when compared to (10), suggests that the sense-

specific constant k could be determined by the redundancy of 

the stimulus environment and that each novel stimuli would 

be compared to every older stimuli in the evaluation context. 

In other words, if the number of reference stimuli were 

increased from one (the n = 2 case) to n > 2, the reference 

value would be a weighted average (or other combination) of 

the intensities of all stimuli (similarly as the reference point 

is (∑p)/n = 1/n in the present case) and the magnitude of 

perceived change would be altered correspondingly. 

Conclusion 

This paper proposed a line of research that applies 

information theoretic notions to decision making under risk 

and uncertainty, aiming to provide a psychological 

explanation for properties of existing probability weighting 

functions and to introduce testable novel predictions. Even 

though compatible with existing data, the predictions 

generated by this framework will still need to be 

systematically tested. If successful, these results will improve 

the predictive ability of models applied in the study of 

decision making under risk and provide a psychological 

explanation for so far unexplained properties of these models. 

Furthermore, because probability weighting functions tend to 

share characteristics with psychophysical weighting 

functions, the proposed approach is likely to have 

applications in these areas as well. If, as the present paper 

presumes, the utility associated with reducing uncertainty 

extends from perceptual processes to the inferential processes 

involved in decision making under risk, it could turn out that 

probability weighting functions and perceptual distortion 

functions share the same, information encoding based root. 
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