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Abstract
Determinantal Point Processes (DPPs) are probabilistic
models of repulsion, capturing negative dependencies
between states. Here, we show that a DPP in
representation-space predicts inferential biases toward
mutual exclusivity commonly observed in word learning
(mutual exclusivity bias) and reasoning (disjunctive
syllogism) tasks. It does so without requiring explicit
rule representations, without supervision, and without
explicit knowledge transfer. The DPP attempts to
maximize the total ”volume” spanned by the set of
inferred code-vectors. In a representational system in
which combinatorial codes are constructed by re-using
components, a DPP will naturally favor the combination
of previously un-used components. We suggest that
this bias toward the selection of volume-maximizing
combinations may exist to promote the efficient retrieval
of individuals from memory. In support of this, we show
the same algorithm implements efficient ”hashing”,
minimizing collisions between key/value pairs without
expanding the required storage space. We suggest
that the mechanisms that promote efficient memory
search may also underlie cognitive biases in structured
inference.
Keywords: mutual exclusivity; determinantal point process;
memory; binding; compositionality; probabilistic models

Background and Motivation
Imagine that Tim and Tom are playing an Argentinian board
game called El Estanciero. Tim won. What happened to
Tom? Although you may not be certain, you don’t need
any more information to infer that it’s likely that Tom lost.
This is true despite the fact that you have no familiarity with
the particulars of the game or the people involved. This
reflects an inferential bias toward mutual exclusivity (ME):
the tendency to map individuals to 1/n possible relational
positions, and not to multiple positions in the same instance.
Although, in the El Estanciero example, you came equipped
with rich knowledge about the relational structure of games
that you could import, ME inferences have been observed
surprisingly early in human development (Halberda 2003,
Cesana-Arlotti et al. 2018), and in non-human species
(Pepperberg et al. 2019), and aren’t constrained to binary
relations.

For example, a classic finding in developmental
psychology is that, all else being equal, young children
prefer to map a novel word (”zurp”) to a novel referent
(cathode-ray tube), rather than mapping many words to the
same object, or many objects to the same word (Markman
& Wachtel, 1988; Halberda, 2003), a phenomenon known
as the mutual exclusivity bias (ME) in word-learning. At
the same time, work in a different cognitive domain has
found that pre-verbal infants assume that an individual object
can not be in two places at the same time, and thus make
inferences that resemble a formal disjunctive syllogism (A or
B (but not both). Not A. Therefore, B) (Cesana-Arlotti et al.
2018; See also Mody & Carey, 2016)).

Here, we argue that the class of ME inferences can
be fruitfully modeled using a Determinantal Point Process
(DPP) operating over a representational space. DPPs are
probabilistic models of repulsion between states: the more
similar two states are, the less likely they are to co-occur (See
Figure 1). DPPs originated in statistical physics to model
the location of fermions at thermal equilibrium (Macchi,
1975), but have since been extended to other branches of
mathematics and machine learning (Kulesza & Taskar, 2012).
In machine learning, they have recently gained traction in
the generation of sets of samples when sample diversity is
desirable, such as recommender systems looking to present
a broad sample of item-types to users ((Kulesza & Taskar,
2012, Gillenwater et al. 2012).

Here, we consider the inferential biases afforded by
DPPs over a representational space. Specifically, we show
(1) that when representations of possible combinations
(e.g., word/object or location/object combinations) are
combinations of re-usable codes, DPPs naturally predict
the mutual exclusivity bias in word learning and reasoning
by disjunctive syllogism. We then (2) suggest that these
inferential biases may owe to basic desiderata placed on the
data structures employed by an efficient memory system, and
provide evidence that DPPs effectively navigate a space/time
tradeoff regarding storage space and access time in encoding
and retrieval.

General Methods
We focus on two well-studied cases of mutual exclusivity
in cognitive science: The ”mutual exclusivity bias” in word
learning (Markman Wachtel, 1988; Merriman Bowman,
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Figure 1: Sampling in a plane for three types of point
processes. PPP’s contain no relational information, and
therefore, although likely to be spread across the space, can
be susceptible to ”clumping”. MPPs, by contrast, carry
relational information about the similarity between states,
directly promoting such clumping. DPPs use the same
similarity representation as MPPs, but, critically, repel similar
states, ensuring that samples are well distributed across the
space.

1991; Halberda, 2003) and the ability to complete disjunctive
syllogisms (Mody & Carey, 2016; Cesana-Arlotti et al.
2018). We first describe the modeling approach in abstract
terms, explaining the features that are common to both
use-cases.

DPP framework. Our model assumes a point process P
operating over a finite ground set Y of discrete items. Here,
the items are possible representations (i.e., encodings) and
more specifically, representations of particular combinations
(e.g., word/object or location/object combinations). We will
often use the generic terms ”keys” and ”values” when talking
about the representational components, motivated largely by
the connections we wish to make to memory.

The process defines a probability of selecting particular
subsets (S) of these combinations drawn from the ground set.

P(S⊆ Y ) = det(KS)

where K is an NxN positive semi-definite kernel matrix
whose entries encode pairwise similarities between N
possible discrete states, where N = m keys X n values. For
all analyses reported here, we use a linear kernel, computed
as a normalized inner product of each combination of the
mXn key/value vectors under consideration (See Figure 2 for
illustration).

DPPs select a particular configuration of items so as
to maximize the determinant (det) of the corresponding
sub-matrix of K, indexed by S. (Macchi, 1975; Kulesza
Taskar, 2012). Thus, the central computation in the current
case is arg maxS det(KS).

Geometrically, we can think of this determinant as the
volume spanned by the parallelpiped of the code vectors. The
more similar a set of vectors (small determinant), the less
likely they are to co-occur in a set. The less similar the vectors
(larger determinant), the more likely they are to co-occur in
S. This enables the modeling of repulsion between possible

states; it is central to the current work and its ability to model
aspects of higher-level cognition.

Here, the relevant representational states are
concatenations of two types of code vectors corresponding
to pre-factorized representations. As we noted above,
these factors may be thought of as ”keys” and ”values”, or
alternatively ”relations” and ”content”. Concretely, however,
in the situations we explore, they are representations of
words and their referents in the ME-bias case, and spatial
locations and objects in the disjunctive syllogism case. To
generate the code for a possible combination, we simply
concatenate vectors for the key/value components, keeping
the ordering and codes consistent across uses, consistent
with compositionality.1 Although we report simple key/value
concatenations here, we obtain the same results both by
summing key/value representations.

Although finding the maximum a posteriori (MAP) subset
in a DPP is NP-hard (Kulesza & Taskar, 2012), there
exist greedy methods that can effectively approximate it
(Gillenwater et al. 2012, Han et al. 2017). However, here,
we make the simplifying assumption that Y is itself a subset
of the vastly larger set of possible items that could have been
under consideration. For present purposes, we assume that
this context-dependent restriction of the possibility space can
be carried out by standard attentional mechanisms. Within
this small-cardinality space, we are able to exhaustively
search for the MAP subset (the sub-matrix that maximizes the
determinant). However, generating more plausible heuristic
methods that can scale to larger spaces remains a focus for
future work.

Throughout, we compare the DPP to two alternative
point process models in order to emphasize the conceptual
contribution of the DPP. First, a Poisson Point Process (PPP),
which assumes no similarity kernel K, treating each item as
independent. Here, we use P(S⊆ Y ) = ∏i∈y pi ∏i/∈y (1− pi),
where p is a flat prior across states. This is random uniform
selection. Second, a generic Markov Point Process (MPP),
which selects items based on the kernel K used for the
DPP, but selecting directly on the similarity scores of the
sub-matrix, rather than its determinant. In this, the MPP over
K can be considered in opposition to the DPP, favoring items
that are nearby in the code-space rather than far apart. Taken
together, one can think of these three models as capturing the
possibility of (a) random inference (PPP), (b) inference by
similarity (MPP) and (c) inference by repulsion (DPP). See
Figure 1. We note that we are not choosing to compare the

1We note that, although this encoding framework is simple,
it is motivated by empirical evidence concerning the nature and
organization of the projections from the mammalian entorhinal
cortex (EC) to the hippocampal sub-fields: a key circuit both
for simple forms of reasoning and memory (Zeithamova et al.,
2012). Specifically, a medial region of EC contains low-dimensional
representations of the spatial structure of the environment, while a
lateral region encodes sensory content (Behrens et al. 2018). These
separate representations are believed to then be bound together
in the hippocampus in order to encode different structure/content
combinations (Whittington et al. 2018).
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Figure 2: (A). Example of the word learning problem. The model’s task is to select a word/object mapping, conditioned on
3 existing associations. Humans tend to map the held-out word to the held-out object. (B) shows the representations used by
the models to guide inference. We assume separate, but combinable, codes for words (keys) and objects (values). The square
matrix in (C) represents pairwise similarities between possible word/object combinations. Brighter colors reflect more similar
combinatorial codes, darker colors less similar codes. Black bars across rows and columns reflect a hypothetical subset of
word/object mappings, as in A. (D) We evaluate the probability that the held-out word is mapped to the held-out object (mutual
exclusivity bias) across 1000 simulations with different word/object codes. A DPP naturally selects the novel unused word and
un-used object, exhibiting the mutual exclusivity bias.

DPP to these other point process models because we believe
that MPPs and PPPs are a priori particularly plausible models
of the relevant types of structured inference. Instead, we
believe they are useful to highlight fundamental properties of
the DPP (e.g., repulsion). We believe that first comparing the
predictions of a DPP against these clearly situates the DPP in
a consistent conceptual framework for expository purposes.

Mutual Exclusivity Bias in Word Learning. The ”mutual
exclusivity (ME) bias” in word learning refers to the
empirical observation that, all else being equal, young
children and adults prefer to map a novel word to a novel
referent. They prefer this both to mapping many words to
the same object, or many objects to the same word (Markman
& Wachtel, (1988); Merriman & Bowman, (1989); Halberda,
(2003); Lake, Linzen, Baroni (2019)). Here, we suggest that
this inferential bias follows directly from the consideration
of an associative encoding system that selects which codes
to bind under a Determinantal Point Process. A learner that
performs inference using a DPP will prefer combinations
that maximize the total volume of the representational space.
Under the assumption that components re-use codes across
possible uses (consistent with compositionality), a DPP
naturally favors combinations of previously un-used words
and objects.

We model a case involving 4 words and 4 objects, in which
the learner has 3 extant word/object associations (See Figure
2a). Here, we are agnostic as to whether those associations
were acquired in this particular episode, or whether they
were brought to the episode. Words and objects are random
code vectors, sampled from a multivariate Gaussian N (0,1).
These codes are concatenated to form possible word/object
combinations (See Figure 2c). We compute a linear kernel

over the representations of these combinations, reflecting
the covariance structure amongst the codes for different
word/object pairs. The different point process models then
select from the 13 remaining word/object combinations,
conditioned on the 3 previous word/object combinations.

We ran 1000 simulations involving different random word
and object vectors, and found that the DPP exhibits the
mutual exclusivity bias 99.3 % of the time. See Figure 2.
As would be expected, the PPP model randomly selects from
the 13 remaining possible conjunctions. The MPP prioritizes
re-use of codes across instances (re-using a word to refer
to multiple objects), given that its desideratum is to select
combinations similar to those already encountered. It has an
inferential bias of ”many-to-one”.

Thus, when codes for combinatorial states are
compositions of words and objects (keys and values), a
simple algorithm that maximizes the volume spanned by the
code vectors naturally produces a mutual exclusivity bias in
the word learning process. Re-using either words or objects
across different mappings in the same context works against
maximizing the volume spanned by the vectors, as the same
vector will contribute to multiple combinations.
Disjunctive Syllogism. Our second example involves the
ability to make inferences like those in a classical Disjunctive
Syllogism (DS) (Mody & Carey, 2016; Cesana-Arlotti
et al., 2018; Pepperberg et al. 2019). Formally, a
disjunctive syllogism starts with the representation of a
disjunction (premise 1: A or B), where ’or’ is XOR (one
or the other, but not both). Next, one acquires some
piece of information (premise 2: not A). Finally, a rule
is applied to derive the conclusion, conditioned on the
premises. (conclusion: Therefore, B). Notably, young
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Figure 3: (A). Rendering of Cesana-Arlotti (2018)’s experimental paradigm, based on their Figure 1. (B). To model this, we
assume a factored space of object and location codes under consideration and (C) populate a square matrix with the pairwise
similarities between possible object/location combinations (K). We highlight in red the items selected by arg max S ∈Y det(KS),
conditioned separately on each combination that could be observed (the diagonal). The DPP reliably favors the combination
that is most dissimilar (dark blue) to the observed object/location combination (bright yellow). (D). Cesana-Arlotti et al. (2018)
found that infants exhibit increased looking time to DS-inconsistent cases (results schematically depicted here). (E) The DPP
model naturally selects a combination of the un-used location and un-used object. If these inferences are used to generate
predictions and compared against the DS-consistent and DS-inconsistent cases, the DPP exhibits greater prediction errors when
the revealed object/location combination is DS-inconsistent, like pre-verbal infants.

children (Mody & Carey, 2016) including infants as young
as 12 months (Cesana-Arlotti et al. 2018) and non-human
animals (Pepperberg et al. 2019) all show aspects of this
inferential ability. Here, we show that a DPP defined over
the space of combinatorial representations predicts the key
empirical pattern.

For expository purposes, we focus on Cesana-Arlotti et al.
(2018)’s paradigm with pre-verbal infants. See Figure 3a for
a schematic of a trial. A trial begins with two objects on
a screen. Both are temporarily hidden behind an occluder,
obstructing the objects from the infant’s view. One object
is then seen to be scooped out from behind the occluder,
though the infant is unable to determine which of the two
objects it was. The occluder is then removed revealing (e.g.,)
object A. The inference by disjunctive syllogism, of course,
is that object B must therefore be the object in the bucket.
Infants’ expectations are assessed by measuring their looking
time. If it is then revealed that the bucket contains object
A, rather than object B (the ”DS-inconsistent” condition),
infants as young as 12 months old are surprised, evidenced by
increased looking time relative to the alternative outcome in
which object B is in the bucket (”DS-consistent” condition).

To model this, we assume 1x100 random code vectors
drawn from a multivariate Gaussian N (0,1) for each of two
objects (values) and two locations (keys). We concatenate
these to form a 4x200 matrix, in which the rows are
compositions of possible object/location combinations, and
the columns are the random features. As above, we compute
the covariance between each of the mXn combinations, here
obtaining a 4x4 kernel K encoding the similarities between
the codes for possible combinatorial states. For our analyses,
we simulated 1000 different possible instances of random
vectors, while also randomly selecting different superficial
trial structures (e.g., that the DS-consistent combination was
object A/location 1, object A/location2, object B/location1,
objectB/location2). As expected, given one conjunction
(e.g., object A in location 1), a DPP reliably selects the
un-used object and the un-used location (here, object B
in location 2), as it maximizes the volume spanned by
vectors encoding the combinations. See Figure 3. To
more directly relate the models’ inferences to the infant
looking time data, we next computed the MSE between the
object/location combination selected by the model and the
code for the stimulus in the DS-consistent (low-surprise)
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and DS-inconsistent (high-surprise) conditions. As expected,
the prediction error is high for the DPP model in the
DS-inconsistent, and at zero for the DS-consistent condition.
The MPP (similarity-based), and PPP (random) models do
not predict this direction of the ”surprisal” effect.

DPP Hashing for Collision-Free Encoding.
The empirical findings that we model here demonstrate a
number of notable features of ME biases, chief amongst
them: (a) they appear to be present remarkably early in
development (Cesana-Arlotti et al. 2018; Lewis et al.,
2020), (b) they have been observed, in different forms,
across representational domains (word learning and logical
reasoning about physical states), and (c) related work
suggests that at least one type (DS-like inferences) may
be present in some non-human species (Pepperberg et al.
2019). This raises a family of interesting theoretical questions
regarding their acquisition and nature. For example, are there
separate domain-specific biases, the existence of each owing
to its utility in a particular domain, or do these emerge from
a shared system? What are the relevant representational and
inferential systems, and how are they implemented? And, of
course, familiar questions regarding whether such inferential
biases are acquired over phylogenetic or ontogenetic time. 2

Although we certainly do not intend to definitively answer
these questions here, we add one theoretical suggestion to the
literature: we propose that ME may be a consequence of a
more general strategy for efficiently encoding and retrieving
unique tokens of key/value associations in memory. On such
an account, it would not be surprising that ME biases are
present across disparate representational domains, as long
as the domain requires binding of component parts and
storage for later retrieval. Moreover, it seems possible that
general mechanisms for encoding and retrieving of tokens
(individuals) might be be present early in development and
would be employed by different species.

Why would one think that encoding and retrieving
unique tokens of key/value associations in memory has
anything to do with mutual exclusivity? Recall, first, that we
assume that the bindings under consideration (word/object
or object/location combinations) are fundamentally
compositional: re-using codes to promote generalization to
novel combinations. However, a compositional encoding
scheme also creates the possibility of collisions between
distinct instances of similar states (imagine the classic
example of where you parked your car yesterday vs.
two days ago). One might therefore wish to index the
representations of individual instances in such a way as
to avoid mapping similar states to the same address. One

2The early-onset of the DS results of Cesana-Arlotti et al (2018)
at least raise the possibility that pieces of the relevant machinery
could be innate. However, recent computational modeling work
from Lake (2019) provides an existence proof that an ME bias can
itself be induced from domain-experience. Lake (2019) shows that
a neural network equipped with an external memory and trained in a
meta learning sequence-to-sequence paradigm can learn to apply an
ME bias to novel instances of word-object pairings.

way to achieve this is to spread the keys broadly across the
representational space (maximizing volume, as in a DPP).
That is, we suggest that ME biases may exist across domains
because those domains all draw on a shared memory system
for associative binding, and an important feature of this
system is its ability to avoid collisions by maximizing the
representational ”volume” of the memory keys. On this view,
ME biases would arise in any representational domain that
requires inference regarding novel combinations of familiar
components (word/object, object/location).

To better illustrate the potential benefit of dispersing keys
for efficient memory retrieval, it is instructive to consider
data structures for ”hashing” in computer science. A
hash-function is a way of mapping from a datum to a
unique index, such as a position in an array. Effective
hashing seeks to avoid the time demands that are produced by
sequential search techniques, which have a time-complexity
of (O(n)) or binary search (O(log n)). Instead, a good
hash-function enables (O(1)) access times, in which readout
time is invariant to the number of items in the memory. This
is a classic example of a space/time tradeoff (Sedgewick &
Wayne, 2011): If one is willing to expend the resources
necessary to construct a vast associative array, data would
almost never be mapped to the same position, and collisions
would be minimized. However, this is costly in terms of
space. By contrast, restricting the size of the array reduces the
amount of space consumed, but risks dramatically increasing
retrieval time, as one would have to search all the items in the
particular location currently indexed (i.e, linear probing and
chaining methods). Hashing seeks to effectively navigate this
trade-off, constraining both the size of the array that is needed
(space), while also minimizing the amount of computation
spent resolving collisions (time). DPPs in representational
space effectively avoid this tradeoff.

To see this, consider a toy case in which locations in
memory are indexed by a finite set of keys, and we are able
to select a key for each datum. We compare hypothetical
key-selection algorithms that hash based on PPPs, MPPs,
and DPPs where the latter two cases are defined over the
similarity kernel for the space of key/value combinations in
the dataset, as above. DPP-based key selection begins by
randomly sampling a key/value pair. Then, each subsequent
value in the dataset is tagged with the particular key that
maximizes the total volume of the dataset of key/value pairs
that have been hashed to that point (when concatenated
with the value). DPP-based key selection (unlike PPP and
MPP) thus implicitly discourages the re-use of keys, as
this would reduce the volume of the parallelpided spanned
by the code vectors for the association. Figure 4 shows
the results of 1000 simulations comparing the performance
of these different models. The probability of a collision
in such an idealized memory system is near 0 (Figure
4a).3 Notably, this ”collision-free” property is accomplished

3We find that these infrequent collisions in the DPP can be
completely eliminated by use of Pearson correlation to compute the
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Figure 4: DPP-driven codes enable efficient retrieval of unique items. We allow the keys of key/value pairs to be selected
as a MPP, PPP, or DPP. DPPs (A) minimize collisions between items. They do so in virtue of (B) selecting un-used keys to
maximize the volume spanned by the key/value code vectors, across the dataset. They thus efficiently manage the resource
tradeoff between search time and storage space.

without dramatically expanding the size of the array, as the
array size is no larger than the number of individual states we
wish to encode (Figure 4b). A DPP-based hash algorithm,
unlike random selection in a PPP, thus exploits the repulsive
property to distribute codes evenly across the representational
space.

Discussion
We have shown that Determinantal Point Processes
(DPPs)–probabilistic models of the negative interactions
between states– predict a class of commonly observed
biases in structured inference: specifically, inferential biases
toward (a) mutual exclusivity in word learning (Markman
& Wachtel, 1988; Halberda, 2003) and (b) completion of
disjunctive syllogisms (Mody & Carey, 2016; Cesana-Arlotti
et al., 2018). These inferences arise naturally from a DPP
because a DPP selects subsets so as to maximize the volume
spanned by the vectors (here, a subset of the possible
combinations). When the similarity is defined over re-usable
keys and values, the DPP prefers combinations of previously
unused components.

This framework does not require that the cognitive
system have explicit representations of rules, receive direct
supervision, or have mechanisms for transferring knowledge
between domains. This puts ME biases well-within the
cognitive reach of pre-verbal infants, language-learning
children, and non-human species that may lack the relevant
experience, cortical machinery, or both necessary to represent
and operate over abstract logical rules (See Mody & Carey,
(2016) for related discussion regarding disjunctive syllogism
in young children).

Instead, we suggest that the central driver of this bias
may be the promotion of an efficient memory system.
Maximizing the volume spanned by the vectors in code
space promotes memory retrieval by minimizing interference

similarity matrix.

(”collisions”). This is closely related to classic ideas
regarding pattern separation in an episodic memory system
(Marr, 1971; Treves & Rolls, 1994; O’Reilly & McClelland,
1994): a reduction in the similarity between two states
in a function’s output relative to their similarity in the
input. Pattern separation is canonically implemented by
projecting codes into a high-dimensional space where the
probability of collisions is low. The DPP has a similar
motivation here. However, a DPP precludes the need
to project into a higher-dimensionality in order to avoid
collisions, as it is able to uniquely map items to locations
with an array size equal to the number of keys (See Figure
4). Thus, a DPP may better navigate the time/space
tradeoff (Sedgewick & Wayne, 2011) than the strategy
of interference-reduction through dimensionality-expansion
standard in pattern separation. However, this savings in
storage may come at a computational cost, as computing
determinants has a time complexity of either O(n3) or
O(!) (depending on the algorithm)4. These quantities
therefore likely need to be approximated in order to
be implemented in a neural substrate. Approximating
them in a biologically plausible algorithm remains a
topic of ongoing work. Although pattern separation is
conventionally studied in the episodic memory literature, the
theoretical points that we make throughout regarding DPPs
in representation-space apply to working memory as well. In
some ways, the considerations regarding structured inference
are more closely to tied to what is conventionally thought

4We note, however, that although such exponential (or factorial)
scaling is detrimental in applied use-cases of hashing, it has an
intriguing connection to some empirically observed set-size effects
in uniform domains, characterized by rapid, non-linear decrease in
performance as n grows) (Miller, 1956; Luck & Vogel, 1997). One
possibility is that capacity limits that appear to stem from a fixed
number of ”slots” may instead owe to the computational complexity
of computing (or approximating) the determinants necessary to
encode unique (non-colliding) conjunctions. At the moment, this
remains speculative, however.
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of as ”working memory”, as we assume that attentional
mechanisms have already windowed into a smaller region
of the possibility space so that we can easily compute
the MAP over a sub-set of the broader set of possible
items. Better understanding how DPPs may relate to
the particular factorizations of memory systems standard
in cognitive science (e.g., episodic / working / semantic),
as well as specific aspects of the entorhinal/hippocampal
system5 also remain important topics of ongoing work. For
present purposes, however, the central distinction in memory
systems is simply that between a stable set of re-usable
representations and combinations of those representations in
particular instances (key/value pairs). While re-using codes
promotes generalization, it increases the risk of collisions
in the memory system. Here, we have suggested that
an algorithm that seeks to maximize the total volume of
the constructed combinations in a representational-space
(exhibiting repulsion) not only promotes efficient memory
encoding and retrieval, but may also underlie inferential
biases toward mutual exclusivity.
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