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Abstract 

Recent experiments show that preverbal infants can reason 
probabilistically. This raises a deep puzzle because infants lack 
the counting and dividing abilities presumably required to 
compute probabilities. In the standard way of computing 
probabilities, they would have to count or accurately estimate 
large frequencies and divide those values by their total. Here, we 
present a novel neural-network model that learns and uses 
probability distributions without explicit counting or dividing. 
Probability distributions emerge naturally from neural-network 
learning of event sequences, providing a computationally 
sufficient explanation of how infants could succeed at 
probabilistic reasoning. Several alternative explanations are 
discussed and ruled out. Our work bears on several other active 
literatures, and it suggests an effective way to integrate Bayesian 
and neural-network approaches to cognition. 

Keywords: infants; probabilistic learning and inference; neural 
networks; sampling; control for frequency 

Introduction 
Succeeding in an uncertain world requires probabilistic 
reasoning: the ability to compute and act on relevant 
probabilities. Classical studies found that probabilistic 
reasoning does not develop in humans until around seven 
years of age (Piaget & Inhelder, 1975). However, a series of 
recent experiments shows that preverbal human infants can 
learn and reason with probabilities (Denison, Reed, & Xu, 
2013; Teglas et al., 2011; Xu & Garcia, 2008), even using 
them to guide their behavior (Denison & Xu, 2010, 2014).  

Collectively, the infant experiments present a deep and 
largely unnoticed puzzle: How could preverbal infants 
compute probability without explicitly counting and 
dividing? The standard method of calculating event 
probabilities is to divide the frequencies of each event by the 
number of possible events (Kolmogorov, 1956; Moran, 
1968). Here, we propose and evaluate a way to learn 
probability distributions with a computational system called 
Neural Probability Learning and Sampling (NPLS) that does 
not require explicit counting and dividing. Our results 
accurately simulate the infant data and generate testable 
predictions. We relate our work to several other active 
research lines on probabilistic and quantitative reasoning.  

Four of these experiments with 10-12-month-old infants 
ruled out a possible alternative explanation that infants might 
be using raw frequencies rather than probabilities (Denison 
& Xu, 2014). Earlier infant experiments invariably had 
confounded probabilities with raw event frequencies 
(Denison et al., 2013; Denison & Xu, 2010; Teglas et al., 
2011; Xu & Garcia, 2008). This confounding of probability 

and frequency raised the possibility that infants might be 
using event frequencies rather than computing probabilities. 

In the unconfounded experiments (Denison & Xu, 2014), 
infants were first exposed to two lollipop-like objects of two 
different colors in live displays and encouraged to approach 
the one they preferred (see Figure 1). Most approached the 
attractive pink one rather than the plain black one. Then 
infants saw two jars containing different proportions of these 
object colors. The jars were then covered, and one object was 
randomly removed from each jar and hidden in a separate 
cup, without revealing its color as only the lollipop handle 
was visible. When invited to approach and get the item they 
wanted, would they approach the cup with content drawn 
from the jar that held more of the preferred color or the other 
cup with content that was drawn from the jar with a higher 
proportion of the preferred color? Infant searches closely 
approximated the favorable proportions, indicating accurate 
learning and use of the probability distributions.  

In Experiment 1, the more favorable jar had a 12:4 
preferred item to un-preferred item ratio, while the 
unfavorable jar had a ratio of 12:36, yielding ground-truth 
probabilities of .75 vs. .25 (Table 1). Experiment 2 pitted 
probabilities against frequencies, with ratios of 16:4 vs. 
24:96, yielding ground-truth probabilities of .8 vs. .2. 
Experiment 3 was designed to test whether infants used a 
different heuristic, raw frequencies of un-preferred objects 
rather than proportions of preferred objects, using ratios of 
8:14 vs. 8:72, yielding unnormalized ground-truth 
probabilities of .36 vs. .1, respectively. Finally, Experiment 4 
challenged infants to distinguish a more subtle probability 
difference: .8 vs. .6. This was implemented with ratios of 6:15 
vs. 60:40. In each of the four experiments, infant search 
pattern proportions (.75, .79, .75, and .71 for Experiments 1-
4, respectively) closely matched normalized ground-truth 
probabilities (.75, .8, .78, and .57 for Experiments 1-4, 
respectively). The ground-truth binary search probabilities 
for Experiments 3 and 4 are calculated by dividing the 
unnormalized favorable and unfavorable ground-truth 
probabilities by their respective sums, as the probabilities of 
mutually exclusive and exhaustive events must sum to 1.  

Here, we simulate these four infant experiments with an 
enhanced neural-network model that also successfully 
simulates eight other infant probabilistic reasoning 
experiments reported in four other articles (Denison et al., 
2013; Denison & Xu, 2010; Teglas et al., 2011; Xu & Garcia, 
2008), thus covering most of the research on preverbal infant 
learning and use of probability distributions. Due to lack of 
space, these additional simulations are omitted here. 

3405
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).



 
Table 1: Ratios and probabilities in the four experiments 
Experiment 1 2 3 4 
Favorable 

ratio 
12:4 16:4 8:14 60:15 

Unfavorable 
ratio 

12:36 24:96 8:72 60:40 

Favorable 
probability 

.75 .80 .36 .80 

Unfavorable 
probability 

.25 .20 .10 .60 

 
 

 
 

 
 
 
 

Figure 1: Schematic representation of a test trial in the infant 
experiments. Infants were first familiarized with two 
populations with varying ratios of preferred vs. un-preferred 
objects. Next, the jars were covered and the experimenter 
randomly removed an object from each jar and placed it in 
one of the cups, either in front of the source jar for half the 
infants (solid lines) or the other jar for the other half of the 
infants (dashed lines). Then, each infant was invited to 
approach the cups to get their preferred object. Adapted from 
Denison and Xu (2014).  

Methods 
Learning in NPLS is based on a constructive neural learning 
algorithm called SDCC (Sibling-Descendant Cascade-
Correlation) that builds the interior of a neural network 
during learning, and has simulated many deterministic 
developmental phenomena in infants (Shultz, 2010, 2017; 
Shultz & Cohen, 2004). Probability distributions are 
estimated by a network’s output activation.  

SDCC networks are deterministic, feed-forward, networks 
that learn from examples by reducing overall prediction error 
(Baluja & Fahlman, 1994). Unit activations are passed 
forward from input units that describe examples to hidden 
units that transform inputs into more abstract representations, 
and finally to output units coding the response to particular 
input. Network output can be considered an expectation of 
what will happen at the output, while target output represents 
what is actually observed. During learning (in output phase), 
connection weights are adjusted to reduce network error:  

𝐸 =##$𝐴!" − 𝑇!"(
#

"!

									(1) 

where E is sum-of-squared error, A is the actual output 
activation for unit o and pattern p, and T is the target output 
activation for this unit and pattern. 

SDCC learning starts with a two-layer network (i.e., only 
the input and the output layer), and then recruits hidden units 
one at a time to solve the problem being learned. The 
algorithm constructs its own network topology, as opposed to 
being designed by a programmer. In input phase, input 
weights to candidate hidden units are trained to increase the 
covariation of candidate hidden unit output activation with 
network error. The highest correlating unit is then installed 
either on the highest layer of hidden units or on its own higher 
layer, depending on which has the better absolute covariation 
with network error. Input weights to each recruited hidden 
unit are frozen when the unit is installed. Weights are 
adjusted only one layer at a time, thus never requiring 
propagation of error signals backwards through the network. 
The function to maximize in input phase is a covariance 
between candidate-hidden-unit activation and network error: 
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where ℎ" is activation of the candidate hidden unit for pattern 
𝑝, ⟨ℎ⟩ is the mean activation of the candidate hidden unit for 
all patterns, 𝑒!" is the residual error at output 𝑜 for pattern 𝑝, 
and ⟨𝑒!⟩ is the mean residual error at output 𝑜 for all the 
training patterns.  

The networks use an asymmetric sigmoid activation 
function: 

𝑦$ =
1

1 + 𝑒%&! 								(3)	
 
where y is the output of receiving unit i, x is the net input to 
unit i, and e is the exponential function. Output activation 
thus ranges from 0 to 1, just like probabilities do.  

Several enhancements of SDCC are required to cope with 
learning and using probability distributions. First, because of 
its determinism, SDCC was not satisfied with the high error 
of probabilistic outcomes, recruiting new hidden units ad 
infinitum. This problem was solved by allowing NPLS to 
track its progress in error reduction over learning cycles. 
SDCC already had the capacity to monitor progress within 
both input and output phases, using parameters for threshold 
and patience. In output phase, SDCC adjusts connection 
weights to reduce error. When error reduction stagnates, the 
algorithm changes to input phase to recruit a new hidden unit, 
adjusting weights entering candidate units to increase the 
correlation between their activations and network error. In 
each of these two phases, stagnation is detected when there is 
no progress greater than the threshold parameter for the 
number of training epochs specified by the patience 
parameter. We extended this scheme by adding an outer loop 
with its own threshold and patience parameters to monitor 
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progress over learning cycles, where each such cycle is an 
input phase and the next output phase (Shultz & Doty, 2014). 
This allows NPLS to stop when learning stagnates. With this 
ability, NPLS can learn any unnormalized multivariate 
probability distribution from examples that specify whether 
or not an output occurs in the presence of a particular input 
(Kharratzadeh & Shultz, 2016).  

We run 20 NPLS networks in each of the four infant 
experiments, training them on event sequences with an input 
unit arbitrarily coding for the source jar (1 or 2) and an output 
unit coding 1 for presence and 0 for absence of an object type. 
With this deterministic binary coding, corresponding directly 
to the visual stimuli presented to the infants, networks learn 
to output the probability of drawing a preferred item from a 
favorable and an unfavorable source. Note that ground-truth 
probabilities are not used as learning targets; they are instead 
an emergent property of NPLS learning.  

Table 2 shows an example of the coding scheme for a 
simple binary distribution with ratios of 3:1 vs. 1:3. This 
requires 4 training patterns for each ratio. In 3 of 4 examples 
for container 1, a focal object appears. For container 2, a focal 
object appears in only 1 of 4 examples. Our simulations use 
the exact ratios from the infant experiments, realistically 
representing what the infant sees in the jars. There is an 
asymmetric sigmoid activation function on the output unit to 
keep outputs in 0-1 range of probabilities.  

 
Table 2: Schematic coding of a binary probability 

distribution 
 
 
 
 
 

 
 
A second problem is that SDCC could not probabilistically 

generate novel examples from example categories that it had 
learned. Following recent advances (Nobandegani & Shultz, 
2017), we pair a Markov-chain Monte Carlo sampling 
algorithm (MCMC) with each network to simulate how 
infants generate the more favorable container from the 
category of the preferred object, thus converting a 
deterministic neural network into a probabilistic generative 
model.  

Infant selection patterns can be mathematically 
characterized as a form of sampling from the underlying 
probability distribution. An infant could mentally draw a 
sample, cued by desire for the high probability of a preferred 
object, and this would identity the more favorable jar for 
obtaining that object. This sampling could guide physical 
search towards the cup supplied by that favorable jar.  

NPLS induces a probability distribution 𝑝(𝐗|𝐘) on the 
deterministic input-output mapping 𝑓(𝐗;𝑊∗) learned by an 
NPLS network, and uses MCMC to sample from that induced 
distribution. The induced distribution is given by:  
 

𝑝(𝐗|𝐘 = 𝑌) ∝ 𝑒𝑥𝑝(−β||𝑌 − 𝑓(𝐗;𝑊∗)||##) (4) 
 
where || ⋅ ||# is the l2-norm, 𝑊∗ the set of weights for a 
network after training, and β a damping factor. For an input 
instance 𝑿	 = 	𝑋 belonging to the desired class 𝑌, the network 
output 𝑓(𝑋;𝑊∗) is expected to be close to 𝑌 in the 𝑙#-norm 
sense. Equation 4 adjusts the probability of input instance 𝑋 
to be inversely proportional to the base-e exponentiation of 
the 𝑙# distance. Our NPLS system can handle any MCMC 
method, including Metropolis-Adjusted Langevin, a 
gradient-based MCMC method, which can be implemented 
in a biologically-plausible way (Moreno-Bote, Knill, & 
Pouget, 2011; Savin & Denève, 2014).   

Results 
For each experiment, the mean network probability estimates 
closely match ground-truth probabilities, consistent with the 
hypothesis that the infants were computing relevant 
probabilities (Denison & Xu, 2014). The mean estimated 
probability for the favorable location is considerably higher 
than that for the unfavorable location in every simulated 
experiment, as tested with a paired-sample t-test, p < .0001. 
All p values in this article represent 2-tailed comparisons. 
Mean network output activations correlate highly with 
ground-truth probabilities across the eight conditions of the 
four experiments, r(6) = 1.0, p = 9.1E-11.  

 

 
Figure 2. Ground-truth (blue and orange) and mean simulated 
probabilities (grey and gold) for each of four experiments on 
infant probabilistic reasoning (Denison & Xu, 2014). Error 
bars are standard deviations for 20 networks.  
 

Figure 2 shows the matches between of ground-truth 
probabilities and mean network output, with standard 
deviation bars around the simulation means. In each 
experiment, the size and direction of the location difference 
between favorable and un-favorable activations is apparent 
(grey vs. gold) and very close to ground truth probabilities 
(blue vs. orange). This represents the probabilistic knowledge 
that enables the sampling that could guide infant crawling 
towards the more favorable location for their preferred object. 
In contrast, predictions based on relative frequencies of the 
preferred object would expect no difference in Experiments 
1, 3, and 4 (where those frequencies are equal across the two 

3:1 1:3 
Input Output Input Output 

1 1 2 1 
1 1 2 0 
1 1 2 0 
1 0 2 0 
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sources) and a reversed difference for Experiment 2 (where 
the preferred object is less probable when it is more frequent).  

Simulation results for infant crawling patterns are shown 
in Figure 3, revealing a close match between infant crawling 
direction and mean samples generated by MCMC operating 
on the connection weights learned by NPLS. These sample 
means estimate infants’ probability of selecting the favorable 
vs. unfavorable jar, averaged over 1000 samples for each of 
20 networks. In each experiment, the mean selection-
probability for the favorable cup is higher than for the un-
favorable cup, p < .0001.  

 
Figure 3. Probability of selecting the favorable (blue) and 
unfavorable (orange) cups, as demonstrated by infant 
behavior (Denison & Xu, 2014) and model predictions for 
probability of choosing the favorable cup (grey) and 
unfavorable cup (gold), averaged over 20 networks each 
generating 1000 samples. Error bars denote standard 
deviations. 

 
Mean MCMC sample values correlate highly with infant 

search probabilities across the eight conditions of the four 
experiments, r(6) = .958, p = 1.74E-4. Mean MCMC sample 
values also correlate highly with ground-truth probabilities 
across the eight conditions of the four experiments, r(6) = 
.988, p = 4E-6. To compute the ground-truth sampling 
probabilities for Experiments 3 and 4 (corresponding to 
probability-matching behavior in binary searches), ground-
truth probabilities are normalized, by dividing the favorable 
and unfavorable probabilities by their respective sums. 

It is possible that these simple binary probability problems 
can be learned with only two weights: one from the bias unit, 
which is always on with an activation value of 1, and another 
from the input unit. In ongoing work, we devised a 
mathematical proof of that, identifying unique values of such 
weights for particular probabilities. We also found that NPLS 
networks could approximate those ideal weights, even 
without any hidden units. However, we prefer the model and 
parameters we present here because it provides an ideal 
combination of learning accuracy, learning speed, and 
generality. Our self-organized, recruitment model is more 

general because, in principle, it can learn any discrete 
probability distribution with an arbitrary, finite number of 
outcomes. The more outcome probabilities to learn, the more 
hidden units are generally recruited.  

Across the four simulation experiments, the mean number 
of hidden units recruited was 2.025, with a range of 0-3, and 
considerable variation in network topology.   

To provide further insight into how and why NPLS 
networks so readily learn binary probability distributions, we 
next provide a mathematical analysis. Presented with a 
frequency ratio N1:N0 (with N1 and N0 denoting, respectively, 
the number of preferred and un-preferred objects in a jar), 
NPLS adjusts its network topology and connection weights 
so that its output activation 𝑥 minimizes the sum-of-squared 
error 𝐸, partitioned by presence (target of 1) vs. absence 
(target of 0):  

 
𝐸 = ∑ (𝑥 − 1)#("

$)* +∑ (𝑥 − 0)#(#
+)*  (5) 

 
Because 𝑥∗, the optimal minimizer of E, is given by  
 

𝑑
𝑑𝑥 𝐸

⌋&)&	∗ = 0			 ⟹			 
 
2∑ (𝑥∗ − 1)("

$)* + 2∑ 𝑥∗(#
+)* = 0			 ⟹										(6) 

 

	𝑥∗ =
𝑁*

𝑁* +𝑁,
, 

the network’s output activation comes to closely approximate 
ground-truth probability. As such, relevant probabilities are 
mathematically guaranteed to be learned as an emergent 
property of the system, thus providing a novel explanation of 
how preverbal infants could learn probabilities without 
counting and dividing. This proof is generalizable to 
problems with more than two probabilities.  

Discussion 
Our model provides a computationally sufficient neural-level 
explanation of how preverbal infants could learn and use 
probability distributions without counting and dividing. From 
the deterministic encoding of the containers of colored 
objects seen by the infants, the networks directly learn the 
relevant probabilities without explicitly counting and adding 
favorable and unfavorable frequencies and without explicitly 
dividing those two frequencies by total frequencies.  

NPLS accomplishes this by autonomously building a 
network of the appropriate topology and adjusting its 
connection weights to reduce network prediction error. Other 
essential features of the model include using an asymmetric 
sigmoid activation function in the output unit (to keep outputs 
in the 0-1 range), learning cessation when error reduction 
stagnates (so that the network does not keep trying to learn 
probabilistic patterns ad infinitum), and pairing with an 
MCMC algorithm that uses network weights to 
probabilistically sample from the learned distribution.  
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Importantly, the relevant probability distributions are not 
supplied as learning targets, but rather emerge naturally from 
neural-network learning of event sequences. Our NPLS 
model simulates infant visual scanning of the colored-object 
contents of two jars. Our coding scheme for network learning 
realistically represents the results of these visual scans by 
pairing jar identity with relative frequencies of the two colors.  

It is likely that other algorithms could also learn the 
required underlying probability distributions, including the 
standard method of counting, summing, and dividing of 
counts by the sum. However, these are skills that infants are 
known to lack until several years and considerable schooling. 
Our NPLS model shows the computational sufficiency of 
techniques that infants could plausibly employ: learning 
associations between containers and color frequencies by 
adjusting synaptic weights between neurons and recruiting 
additional neural units as long as that is helping. And then 
making inferences in the opposite direction from the 
preferred color back to the identity of the most probable 
source jar.  

The primary goal of this work is to provide a 
computationally sufficient, neurally plausible account of 
preverbal infant probabilistic reasoning, demonstrated in 
Experiments 1-4 from Denison and Xu (2014), without 
invoking cognitive abilities that are beyond those infants; 
NPLS achieves that goal.   

Our model additionally assumes prior knowledge of 
physical objects in terms of their solidity, spatial location, and 
color, consistent with developmental work on core 
knowledge in infants (Spelke, 2000). 

When explaining remarkable infant abilities or any novel 
results, alternative explanations should be considered. Three 
alternate ideas can be ruled out because the maximum 
numerical value they can deal with is only 3-4 items: 
subitizing (Chi & Klahr, 1975), object files (Feigenson, 
Carey, & Hauser, 2002), and parallel individuation (Carey, 
Shusterman, Haward, & Distefano, 2017).  

Frequency of preferred items is ruled out by Experiments 
1, 2, and 4 (Denison & Xu, 2014). In each experiment, both 
infant searches and our simulations conformed to probability 
information and not to information on frequency of their 
preferred item. The same is true of Experiment 3 (Denison & 
Xu, 2014) for frequencies of un-preferred items.  

Because several other experiments attest that infant 
understandings of numerosity and ratio are independent of 
perceptual factors such as area, contour length, and density 
(McCrink & Wynn, 2007; Wynn, Bloom, & Chiang, 2002; 
Xu & Spelke, 2000), alternative explanations based on such 
non-numerical factors are also unlikely here. 

Explicit verbal counting could potentially provide accurate 
magnitude estimations of the large frequencies used in the 
infant probability experiments (Denison & Xu, 2014), but 
such counting abilities are still years away from these infants.  

There has been some speculation that the Approximate 
Number System (ANS) could somehow explain the infant 
results that we simulate here (Denison & Xu, 2014; McCrink 
& Birdsall, 2015). The ANS is a nonverbal system that allows 

approximate numerical estimation of collections of items at a 
glance, yielding magnitude values (Carey et al., 2017; 
Dehaene, 2009; Feigenson, Dehaene, & Spelke, 2004; 
Gallistel & Gelman, 1992). Use of the ANS for quantity 
comparison has been documented in infants as young as 6 
months (Feigenson et al., 2004; Xu & Spelke, 2000) and in a 
range of non-human animals (Agrillo, Piffer, Bisazza, & 
Butterworth, 2012; Merritt, MacLean, Crawford, & Brannon, 
2011). Brain-imaging studies suggest that the ANS engages 
the intraparietal sulcus of the parietal lobe of human brains 
(Dehaene, Piazza, Pinel, & Cohen, 2003; Piazza, Pinel, Le 
Bihan, & Dehaene, 2007).  

Perhaps infants could invoke the ANS for approximate 
magnitude estimation and then apply the standard method of 
calculating probability to these magnitude estimates: add the 
two estimates together and divide each frequency estimate by 
that sum. This seems unlikely because division is a relatively 
difficult and late-developing skill in children (Gallistel & 
Gelman, 1992; McCrink & Spelke, 2016). Also, the 
frequencies used in the unconfounded infant experiments 
(Denison & Xu, 2014), and in our simulations of those 
experiments, are considerably larger than the frequencies 
used in infant experiments on the ANS, which only went up 
to a maximum of 16 items (Xu & Spelke, 2000). The 
frequencies used in the infant experiments (Denison & Xu, 
2014) and our simulations are far larger, ranging from 4 to 
96, with a mean of 30 and standard deviation of 28.  

Also noteworthy is the tight accuracy of NPLS probability 
estimates in matching ground-truth probability computations, 
and the fact that MCMC sampling from those learned 
distributions closely matches the infant search patterns 
(Denison & Xu, 2014). In contrast, the ANS is known to be 
relatively imprecise, particularly with large numbers, small 
Weber fractions, and infants (Carey et al., 2017; Feigenson et 
al., 2004; Xu & Spelke, 2000). Moreover, even if the ANS 
could provide accurate estimates of these frequencies, it is 
unclear how the ANS could divide the target frequency by the 
total frequency of all relevant events, and do so with the 
precision achieved by the infant search patterns (Denison & 
Xu, 2014). Moreover, such operations in ANS have not been 
demonstrated in a working computational model, making it 
difficult to determine how much explanatory power it has in 
the area of probabilistic reasoning. These considerations 
suggest that successful infant probabilistic reasoning is not a 
product of the ANS.  

NPLS is currently the only model that has been 
demonstrated to produce computationally sufficient 
simulations of infant learning and use of probability 
distributions. As such, it is a genuine novelty in theories of 
early quantitative development. Additional simulations that 
are currently underway confirm its accuracy with more than 
two probabilities, including discretized continuous 
distributions. Several such simulations have also generated 
novel, testable predictions for infant experiments.  

Some other infant experiments measure probabilistic skills 
with infant surprise at unexpected outcomes instead of search 
for desired objects (Denison et al., 2013; Teglas et al., 2011; 
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Xu & Garcia, 2008). In other work, we simulate such 
differential surprise with the standard measure of network 
prediction error. Failed prediction triggers more surprise. 
Although our model can simulate both surprise and search, 
we are not aware of infant studies using both measures.  

In addition, our system is relevant to four other 
independent lines of research. One of these is the literature on 
probability matching in a wide variety of animal species, e.g., 
bees (Greggers & Menzel, 1913), fish (Behrend & Bitterman, 
1961), turtles (Kirk & Bitterman, 1965), and apes (De Petrillo 
& Rosati, 2019; Eckert, Call, Hermes, Herrmann, & 
Rakoczy, 2018). We will soon be exploring whether 
experiments with these other species can also be simulated.  

There is an active infant literature on transition 
probabilities, particularly in language learning and vision 
(Aslin, Saffran, & Newport, 1998; Lany & Gómez, 2008; 
Saffran, Aslin, Johnson, & Newport, 1999). This is 
considered to be a distinctly different phenomenon from 
learning of binary probability distributions (Denison & Xu, 
2014), with a distinctly different kind of neural-network 
modeling (Mareschal & French, 2017).  

There is also an emerging literature on statistical 
summaries (aka ensemble representation (Alvarez, 2011)). 
Visual cognition is enhanced when human adults quickly 
summarize the statistical properties (e.g., average and 
variation) of a collection, affording a precise, compact 
representation of large collections. This is analogous to our 
model, in which a probability estimate compactly 
summarizes numerous presences and absences in event 
sequences.  

As well, there is evidence that adult humans and monkeys 
can form quick, accurate representations of ratios from visual 
displays that are coded by neural firing rates in the same brain 
areas as whole numbers (Jacob, Vallentin, & Nieder, 2012; 
Kiani & Shadlen, 2009; Matthews & Chesney, 2015). Future 
research could explore these diverse phenomena, perhaps 
eventually achieving a unified model.  

Our modeling suggests a novel way to begin bridging 
across Bayesian and neural-network approaches and across 
different levels of analysis (Marr, 2010). Neural network 
models operate at a lower, implementational level compared 
to the higher, computational level of Bayesian models. Each 
approach often partakes of an intermediate, algorithmic level. 
Some Bayesian researchers propose bridging across these 
levels with MCMC sampling (Griffiths, Vul, & Sanborn, 
2012). We agree that sampling is important, but also find that 
accurate constraint-guided sampling is infeasible without 
some prior learning. The proposed model integrates learning 
and sampling by reasoning bidirectionally, forward from 
examples to probability distributions and backwards from 
probability distributions to examples (Nobandegani & 
Shultz, 2017, 2018). In hundreds of networks simulating 
more than a dozen empirical experiments, we have not seen 
an exception to the idea that successful learning is necessary 
for accurate sampling. Finally, rather than assuming that 
probability distributions are innate products of biological 
evolution, it makes more sense to assume evolution of a 

powerful learning system that can quickly and accurately 
register a wide range of novel probability distributions.   
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