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 ---- Dissertation Precis for Glushko Prize in Cognitive Science (Dr Victoria Leong) ---- 

 

INTRODUCTION 

Speech Rhythm Cognition : A Multi-Disciplinary Account 

 Rhythm is our perceptual experience of the slow-varying temporal structure of the acoustic 

signal. The rhythm (or prosody) of speech is studied under many guises across the different 

disciplines of cognitive science. In my PhD thesis, I attempt to provide a contemporary, cross-

disciplinary account of speech rhythm cognition, synthesising perspectives from psychology, 

linguistics, neuroscience, and acoustics. The result is a new class of Amplitude Modulation Phase 

Hierarchy (AMPH) computational models that make use of the emergent temporal statistics of the 

speech signal to detect syllables and decode rhythm patterns, as infants might, providing a simulation 

of how infants' language acquisition is 'boot-strapped' from the speech signal. These cognitive models 

are neuro-plausible, psychologically-validated, and computationally-efficient, and may even be 

considered as artificially-intelligent. They serve dual functions as theoretical frameworks for 

understanding language development, and practical tools for the experimental analysis of speech data. 

In this precis, I first provide a general introduction to speech rhythm as it is studied in each cognitive 

discipline, before giving a chapter-by-chapter summary of my thesis.   

 Psychology & Education. In spoken English, rhythm manifests as the alternation of strong 

(S) and weak (w) syllables, as in the phrase "HA-ppy BIRTH-day" (S-w S-w). These Strong-weak 

rhythm patterns play a crucial role in 'boot-strapping' early language acquisition for English infants 

[1,2]. By the age of 7.5 months, infants already begin to use the strong-weak (S-w) rhythm pattern as 

a physical template for segmenting words from continuous speech [3]. Thus, rhythm patterns form an 

integral part of infants' developing mental representations of speech sounds, or, 'phonology' [4]. To 

support language acquisition in young learners, adults spontaneously exaggerate the rhythm and 

prosody of their speech when addressing infants or children [5,6], thereby highlighting word and 

phrase boundaries to the listener. Developmentally, children with good rhythm and prosodic 

awareness typically go on to develop good reading skills [7], while poor rhythm and prosodic skills 

are often found in children with dyslexia, who struggle to learn to read due to their impoverished 

phonological representations [8,9]. Thus, the study of speech rhythm has strong psychological and 

educational importance.  

 Linguistics. Historically, the study of prosodic rhythm  has been the domain of linguists [10-

16] and phoneticians [17-19]. In the early years, prominent linguists [10-11] established the notion of 

language 'rhythm classes', which claimed that languages in the world differ rhythmically according to 

the particular phonological level at which durational isochrony manifests. Languages like Spanish and 
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Figure 1(a). Example of the acoustic waveform of the speech signal, with its amplitude envelope overlaid as a 

bold red line. 1(b). Example of the different spectral envelopes for different acoustic frequencies in the same 

sentence, where each spectral envelope is shown as a different color. The envelopes are stacked vertically, with 

higher energy corresponding to a greater area underneath each curve. 1(c) Example of the different modulation 

rates present within a single envelope, notice that the dominant modulation rate in this sample is ~2.6 Hz, 

corresponding to the syllable rate of the utterance. 

 

Italian are rhythmically 'syllable-timed' because syllables are thought to be uttered at regular intervals, 

giving these languages a 'machine-gun'-like feel. Conversely, English and Dutch are 'stress-timed' 

because prosodic stress is thought to occur at regular intervals in these languages, while syllable 

intervals may compress or stretch in accommodation. Despite the intuitive appeal of this notion, 

researchers have repeatedly failed to find convincing evidence for durational isochrony at either the 

stress or the syllable level [20-22], spawning a reactionary generation of 'rhythm-metrics' predicated 

on the notion of segmental (phoneme) durational variation [17-19]. Rhythm-metric methods primarily 

capture distributional differences in the time intervals between successive consonants or vowels in 

different languages. These methods impose a formal phonetic framework on the acoustic signal which 

the signal does not actually possess [23-24]. Thus, the psychological model underlying rhythm-

metrics is relevant to expert listeners who already possess segmental knowledge, but cannot explain 

how even newborn infants are able to discern rhythm in the speech signal [25]. Infants' 'innate' 

sensitivity to rhythm must therefore depend on some emergent temporal property of the acoustic 

signal. Other articulatory [26], cognitive [27-28], and physiological models [29-30] have attempted to 

pinpoint what this temporal property (or properties) might be, but the question of what underlies 

speech rhythm remains unanswered.  
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Figure 2. Stylistic representation of the AM 

hierarchy with 3 dominant modulation rates 

corresponding to the timescales for prosodic stress, 

syllables and phonemes respectively. Please refer to 

Chapter 4 of the thesis for full details.

 

  Acoustics & Engineering. Meanwhile, in the field of speech acoustics and engineering, 

where a deep understanding of the temporal structure of speech exists, researchers have largely 

ignored the study of rhythm, except where it pertains to speech intelligibility or recognition (although 

see [31-35]). Nonetheless, a crucial and surprising finding by this field is that speech intelligibility 

depends heavily on the slow-varying  amplitude envelope of the signal [36], and in particular on 

amplitude modulation (AM) rates as slow as 4-16 Hz [37-38], which relate primarily to the syllable 

patterning in speech [34-35]. At the simplest level, the amplitude envelope can be thought of as the 

'outline' of the acoustic waveform, reflecting slow-varying fluctuations in the intensity of the signal 

over time (see Figure 1a). Real speech, however,  is more complex because different acoustic 

frequencies can each have different envelope patterns (Figure 1b). Furthermore, each envelope 

contains modulations that span a range of different rates, forming a 'modulation spectrum'. Within this 

spectrum, the modulation strength of some rates (e.g. the syllable rate) is more dominant than other 

rates (Figure 1c). Thus, if one were to divide the speech signal into 'a' acoustic frequency bands, there 

would be 'a' different spectral envelopes for the same sentence. Moreover, each of these 'a' spectral 

envelopes will contain amplitude modulation at 'b' different rates, resulting in an a x b spectro-

temporal representation of the envelope. Embedded within this spectro-temporal envelope are 

important cues to speech intelligibility, and also to prosodic rhythm and stress. 

 

 Neuroscience. The importance of 

envelope modulation patterns for speech 

perception has been captured in recent neural 

models that propose a relationship between speech 

rhythms and brain rhythms  [39-42]. For example, 

Poeppel and colleagues [40] argue that neuronal 

oscillations in the 'theta' (3-7 Hz) and 'gamma' (25-

40 Hz) range track syllable and phoneme patterns 

in speech respectively, by 'phase-locking' or 

'entraining' to the envelope modulation patterns at 

these two rates, concurrently sampling the speech 

signal at these two timescales. If human listeners 

are relying primarily on acoustic modulation 

patterns from the envelope to understand speech, 

then the envelope is also likely to be an important 

source of prosodic cues to rhythm and stress. 

 A Cross-Disciplinary Synthesis. In this thesis, two 'Amplitude Modulation Phase Hierarchy 

(AMPH)' models are developed to 'mine' the envelope's rich spectro-temporal structure for cues to 

speech rhythm and stress. Inspired by Poeppel's multi-timescale model of speech processing, the 
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AMPH models are based on major AM rates in the envelope that are nested together as an 'AM 

hierarchy'. In a statistical analysis of the modulation structure of speech (Chapter 4), the 3-tier AM 

hierarchy that emerges (statistically) bears an astounding symmetry to hierarchically-nested neuronal 

oscillations in the brain [40-41], as well as to hierarchically-nested linguistic prosodic structure [12-

16], with timescales corresponding to prosodic stress, syllables and phonemes respectively. Thus, the 

AMPH models provide a computational account of how hierarchical brain rhythms might extract 

hierarchical linguistic structure from the emergent hierarchical acoustic modulation structure of the 

speech signal. Furthermore, the AMPH models also function as psychological models of how infants 

bootstrap their language learning from the statistics in the speech signal (see [1-2]). Like the newborn 

infant, the AMPH models are capable of detecting prosodic rhythm patterns solely from the acoustic 

information in the speech signal, without the need for any prior manual speech labelling or phonetic 

segmentation. Finally, I use the AMPH models to address questions of educational importance, such 

as the assessment of speech rhythm perception and production in dyslexia, and the characterisation of 

rhythm in child-directed speech. As a testament to the highly multi-disciplinary nature of my work, 

portions of this thesis have been published or are currently under consideration by journals in 

psychology, linguistics, audiology and neuroscience (see References for details). What follows is a 

chapter-by-chapter summary of my thesis, structured in 4 parts :   

Part I : Introduction & Literature Review (Chapter 1) 

Part II : The Amplitude Modulation Phase Hierarchy (AMPH) Model (Chapters 2-3)   

Part III : The New Spectral AMPH Model (Chapters 4-6)  

Part IV : Using the S-AMPH Model in Data Analysis (Chapters 7-8) 

 

__________________________________________________________________________________ 

 

PART I 

 

Chapter 1 

 In this Introduction, I provide a panoramic survey of disciplines that have had historical, 

conceptual or methodological significance in the study of speech rhythm. I take, by turn, the 

perspective of the developmental psychologist (1.1), the linguist phonetician (1.2-1.3), the speech 

engineer (1.4-1.8), the cognitive neuroscientist (1.9), and the educator (1.11-1.12). In each 

personification, I explain the unique epistemology and concerns that have motivated the study of 

rhythm, and the attendant achievements and limitations of each field. It quickly becomes apparent to 

the reader that rhythm has had a long tradition of study within many of these fields. Yet, very little 

cross-disciplinary dialogue has occurred, perhaps because speech rhythm is studied under so many 

different guises and labels: prosody, language classes, perceptual-centres, the amplitude envelope, 
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syllable detection, neuronal oscillations, nursery rhymes, etc. I argue for a unifying, cross-disciplinary 

account of speech rhythm that leverages on the insights and advances of all these fields. What follows 

is my attempt to deliver just such an account of speech rhythm.  

 

PART II 

 Here, the first Amplitude Modulation Phase Hierarchy (AMPH) model for speech rhythm is 

introduced (Chapter 2). This original AMPH model is derived theoretically, on the basis of previous 

literature. The Stress Phase Code is introduced, which is an algorithm for computing 'Strong-weak' 

syllable stress patterns using AM statistics in the model. Finally, in Chapter 3, the core assumptions of 

the AMPH model are tested in a tone-vocoding experiment with human listeners.  

Chapter 2 

 The AMPH model represents speech AMs at different modulation rates as an AM hierarchy. 

The model assumes that speech contains amplitude modulation on certain key timescales, 

corresponding to the typical duration of major phonological units such as prosodic stress 'feet' (motifs 

of strong and weak syllables), syllables,  phonemes, etc. Each of these phonological tiers is assumed 

to occupy a separate AM tier, and individual AM cycles within each tier can be taken to represent 

individual phonological units. For example, Figure 3 shows the AM hierarchy for the nursery rhyme 

"Mary Mary quite contrary", which has a hierarchical prosodic structure of 8 syllables nested within 4 

stress feet, each of which have a 'S-w', or trochaic motif. 

 

 

 

 

 

 

 

 

 

 

Figure 3. AM hierarchy for the rhyme 'Mary Mary quite contrary'. AM cycles represent phonological units: 

Notice that the 8 Syllable AM cycles correspond to the 8 uttered syllables within the sentence. Oscillatory phase 

relationships determine prosodic prominence : Notice that the Stress Phase Code correctly predicts the 

trochaic pattern of alternating 'S' (strong) and  'w' (weak) syllables.  
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 Within this AM hierarchy representation, 'Strong (S)' - 'weak' (w) prosodic patterns of relative 

prominence are captured as oscillatory phase relationships between adjacent (nested) AM tiers. Thus, 

the pattern of syllable stress and rhythm (the key variable of interest) is specified by the phase 

relationship between the 'Syllable' AM (~5 Hz) and 'Stress' AM (~2 Hz) tiers, as shown in Figure 3b. 

In this example, the Syllable AM peak corresponding to the first syllable "Ma" occurs near the 

oscillatory peak of the parent Stress AM tier (vertical dotted line) whereas the second syllable "-ry" 

occurs near the Stress AM oscillatory trough. This phase pattern corresponds to a 'S-w' motif for the 

word "MA-ry". The Stress Phase Code is a computational algorithm which transforms these circular 

oscillatory phase relationships into a linear metric of prosodic prominence (Section 2.5.2, p.72). I also 

explain how poetic meter might relate to specific n:m phase-locking ratios between the Stress AM and 

the Syllable AM (Section 2.5.1, p. 68), and explore potential segmentation schemes that could emerge 

'for free' from this basic AMPH model (Section 2.6, p. 77). 

Chapter 3 

 Next, a rhythm perception experiment was conducted to assess the psychological validity of 

the AMPH model. A primary assumption is that Strong-weak syllable stress patterns arise from the 

phase-relationship between 'Syllable'-rate and 'Stress'-rate AMs in the envelope. If so, incremental 

phase displacements of the Stress-Syllable AM relationship should cause circular perturbations in the 

perceived syllable stress pattern. That is, phase-shifts in the Stress-Syllable AM relationship of up to 

1π radians (half a cycle) should move participants' perception of a given syllable toward the opposite 

prominence (e.g. from strong to weak), but larger shifts of up to 2 π radians (a full cycle) should bring 

perception back to the original value (e.g. strong). Thus, when phase-shifted by 1π radians, an 

originally trochaic (S-w) sentence should now be perceived to have an iambic (w-S) rhythm, and vice 

versa. By contrast, when phase-shifted by 2π radians, sentences should maintain their original rhythm 

pattern. This phase-shift prediction was tested in a rhythm perception experiment using tone-vocoded 

nursery rhyme sentences that had either a trochaic or an iambic rhythm pattern. In the vocoding 

process, AMs within the amplitude envelope were extracted and used to modulate a pure sine tone, 

while the original fine structure of the sentence was discarded. This process made the AM patterns 

audible, and effectively isolated rhythm while the sentence itself remained unintelligible (i.e. 

sounding like a sequence of rhythmic pulses). To control for methodological artifacts, I used two 

fundamentally different methods to extract AMs from the envelope, generating two parallel sets of 

vocoded stimuli. The first method was a traditional modulation filterbank [MFB] (Section 3.1.4.1, 

p.84), while the second method utilised Bayesian Probabilistic Amplitude Demodulation (PAD, [43], 

see Section 1.7.2, p. 33). Figure 4 provides an example of the normal and phase-shifted MFB stimuli 

used in the experiment. As shown in Figure 5, the results of the experiment indicated that participants 

did indeed base their rhythm perception upon the phase relationship between the Stress AM and the 

Syllable AM, producing the predicted circular pattern of responding with increasing phase-shifts.  
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Figure 5. Performance of participants in the tone-vocoder 

task for non-phase-shifted and phase-shifted Stress+Syllable 

AMs. 
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The first AMPH model was a simple theory-

driven model of how the speech rhythm percept 

might arise from AM patterns in the envelope. It 

made psychologically-accurate predictions as to 

how listeners would respond to perturbations in 

the Stress-Syllable AM phase-relationship. 

However, the AMPH model (1) did not take 

into account spectral differences in the envelope 

across acoustic frequencies and (2) was 

developed and tested exclusively using 

metronome-timed (durationally-regular) speech. 

These short-comings are addressed in Part III 

with an improved model. 

 

  

Figure 4. Illustration of the effect of phase-shifting on the rhythm pattern of 'Mary Mary'.(Top row): Tone-

vocoded stimuli used in the experiment. (Middle row): Corresponding Stress (bold) and Syllable (dotted) AM 

phase patterns. Phase values are projected onto a cosine function for visualisation purposes. Only Stress AMs 

were phase-shifted while Syllable AMs were held constant. (Bottom row) : Stress Phase Code prominence 

index (PI) scores of syllables. Strong syllables ('S') have a prominence value of  >0.5, weak syllables ('w') have 

a prominence value of <0.5.  

 

 



8 
 

PART III 

 

 Here, I introduce a new Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, 

which is based on a revised AM hierarchy that  is designed 'ground-up' from the actual modulation 

statistics of the speech signal (rather than relying on theoretical assumptions). The new model also 

incorporates a spectral dimension, to take into account speech modulation patterns at different 

acoustic frequencies (i.e. spectral envelopes), as well as at different temporal rates (i.e. the AM 

hierarchy). To generate this new spectro-temporal representation of the envelope, a principal 

component analysis (PCA) procedure is employed in Chapter 4.  In line with this new spectro-

temporal representation, new prosodic indices for computing 'Strong-weak' stress patterns are 

developed in Chapter 5. Finally, the original AMPH and new S-AMPH models are functionally 

compared in automatic syllable detection and prosodic stress transcription exercises (Chapter 6). 

Chapter 4 

 The aim of the PCA process is to derive a low-dimensional, data-driven representation of the 

dominant spectral and temporal modulation structure within the speech envelope. This new spectro-

temporal representation then goes on to form the basis for the new S-AMPH model. The dataset for 

the PCA analysis is a new and larger corpus of naturally-produced child-directed speech. In the first 

step, highly-detailed spectral and modulation rate representations of the data are extracted, simulating 

the fine frequency decomposition that occurs at the human cochlear. PCA is then applied to these 

'high-dimensional'  representations, with the aim of identifying major patterns of covariation within 

these detailed representations that signify the presence of dominant 'bands' of modulation in the 

spectral or rate domains. The PCA results suggest that the optimal spectro-temporal architecture for 

the speech signal is comprised of 5 major acoustic frequency bands, whose spectral envelopes are 

further decomposed into 3 major modulation rates (i.e. a 3-tier AM hierarchy). This 5 (spectral) x 3 

(modulation rate) representation is shown in Figure 6. Compared to the AMPH model, this new 

representation of the envelope is more complex in the spectral domain (5 spectral bands instead of 1), 

and less complex in the AM rate domain (3 modulation rates or AM tiers instead of 5). However, in 

both representations, the Syllable rate (~5 Hz) emerged as a dominant timescale, as did the Stress rate 

(~2 Hz). The endorsement of both Stress-rate and Syllable-rate modulations as major components of 

speech modulation structure lends confidence to later computations of prosodic stress, which depend 

critically on these two AM rates.  

 It is worth noting that the 3 dominant modulation rates (or timescales) that emerge from the 

PCA analysis bear a striking and biologically-fortuitous correspondence to 3 important timescales of 

neuronal oscillatory activity in the brain : 'delta', 'theta' and 'gamma' oscillations. According to multi-

timescale models of speech processing [40-41], these 3 bands of neural oscillatory activity are 
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implicated in the temporal sampling of phonological information on equivalent timescales: i.e. delta 

(stress patterns, ~2 Hz), theta (syllables, ~5 Hz) and gamma (phonemes, ~25 Hz). It is in reference 

these classic phonological timescales that the 3 AM tiers in the S-AMPH model are named the 'Stress 

AM', 'Syllable AM' and 'Phoneme AM' respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

 As proposed in the AMPH model, the prosodic strength of a syllable ('Strong' or 'weak') is 

related to the phase of the Stress AM at which it occurs. Chapter 5 outlines new algorithms for 

syllable detection, which take advantage of the enhanced spectral complexity of the S-AMPH model. 

The chapter also discusses a modified Prosodic Strength Index (PSI), which refines the phase 

computation of the original Stress Phase Code (Chapter 2), in order to reflect the actual Stress-phase 

distribution of syllables in naturally-produced speech.  

Chapter 6 

 If the modulation patterns contained within the 'Syllable' and 'Stress' tiers of the AM 

hierarchy reflect real syllables and prosodic stress in an utterance, it follows that one should be able to 

Figure 6. Signal-processing stages in the S-AMPH model. (a) Original acoustic waveform of the spoken 

sentence "Mary Mary quite contrary" . (b) In the S-AMPH model, the original speech signal is first filtered into 

5 frequency bands, and the Hilbert envelope is computed for each frequency band. (c) A 3-tier AM hierarchy is 

then extracted from the envelopes of each frequency band. The resulting 'Stress' (0.9-2.5 Hz), 'Syllable' (2.5-12 

Hz) and 'Phoneme' (12-40 Hz) AMs are shown overlaid in different colours. These correspond to prosodic 

stress patterns, syllable patterns and phoneme patterns respectively. This results in a 5 (frequency band) x 3 

(AM hierarchy) spectro-temporal representation of the speech amplitude envelope.   

 

 

(a) Original Waveform

(b) Frequency Bands

 

 

Band 1 : 100-300 Hz

Band 2 : 300-700 Hz

Band 3 : 700-1750 Hz

Band 4 : 1750-3900 Hz

Band 5 : 3900-7250 Hz

Band Filtered Speech

Spectral Band Envelope

(c) AM Hierarchy

 

 

Phoneme AM (12-40 Hz)
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Stress AM (0.9-2.5 Hz)
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Figure 7.  Example of an Iambic (w-S) patterned sentence, syllable peaks detected (red 

dots) and actual location of vowel nuclei (black dots). (bottom) Assignment of syllable 

prosodic strength using the PSI. Individual bars correspond to syllables, and the height 

of each bar shows the PSI value. Syllables with a PSI value of ≥0.4 were considered 

'Strong (S)', syllables with a PSI value of <0.4 were considered 'weak (w)'. In this 

example, all 28 syllables were correctly assigned as 'Strong (S)' or 'weak (w)'. 

 

use these AMs to automatically locate syllables and 'decode' stress patterns in speech. Accordingly, 

the S-AMPH and AMPH models were functionally evaluated to see if their 'Syllable' and 'Stress' AMs 

could successfully be used for (1) automatic syllable detection, and (2) automatic prosodic stress 

transcription. For this exercise, two manually-labelled speech corpora were used. In one corpus, the 

speakers produced metronome-timed (rhythmically-regular) speech, whereas in the other corpus, 

speech was freely-produced. Figure 7 shows an example of the performance of the S-AMPH model in 

both automatic syllable detection (black dot = actual syllable location, red dot = automatically-

detected syllable) as well as prosodic strength assessment. Syllable detection accuracy was assessed 

by using peaks in the Syllable AM to identify syllable vowel nuclei in the utterance. For this measure, 

both AMPH and S-AMPH models performed very well for metronome-timed speech, with the AMPH 

model registering ~94% accuracy and the S-AMPH model registering ~97% accuracy. For freely-

produced speech, the performance of both models decreased. However, the S-AMPH model still 

showed a distinctly superior performance, registering >80% accuracy as compared to ~60% accuracy 

achieved by the AMPH model. Therefore, the multi-band spectral complexity of the S-AMPH model 

made it better able to handle the challenges of syllable detection in natural speech.  

 In the 

prosodic stress 

transcription 

exercise, both 

models were again 

highly accurate for 

metronome-timed 

speech, yielding 

accuracies of ~93% 

(AMPH) and ~94% 

(S-AMPH). 

However, for 

freely-produced 

speech, 

performance for 

both models 

dropped to ~65% 

(AMPH) and ~70% (S-AMPH), with no statistical difference in the performance of the two models. 

Although the performance accuracy for both models might appear low, it is not dissimilar to the 

accuracy achieved by other models that are specifically designed for the purpose of automatic stress 

transcription [44]. Thus, the evaluation exercise provides empirical support for the assumption that the 
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Stress and Syllable AM patterns captured within the AMPH models correspond reasonably well to 

actual syllable and stress patterns in speech. If so, these models could be used to assess rhythmic 

differences in speech data, as discussed next.  

 

PART IV 

 In Part IV of this thesis, the S-AMPH model is used as a speech rhythm analysis tool in two 

real-world psychological studies on child-directed speech and dyslexia. 

Chapter 7 

 Child-directed speech (CDS) is prosodically-enhanced to accommodate the needs of the child 

listener. Here, the S-AMPH model is used to assess the rhythmic changes accompanying this prosodic 

enhancement. The key finding is that CDS is more rhythmically-regular than ADS across multiple 

timescales (stress, syllable and phoneme). CDS also shows a more tightly phase-locked AM 

hierarchical structure that indicates stronger prosodic patterning, and is associated with lowered 

entropy in the signal (see Figure 8). Surprisingly, the rhythmic patterning found in CDS storybook 

readings (e.g. 'Goldilocks') is as strong as that of nursery rhymes which have a  regular poetic meter. 

This suggests that adults spontaneously enhance the rhythmicity of their speech when they are reading 

to children, even if the material itself does not have a clear poetic meter. The rhythmic enhancements 

in CDS are consistent with the exaggeration of word and phrase boundaries in the acoustic signal, 

which could help the child to segment words from the speech stream more easily.  

 

 

 

 

 

 

 

 

 

 

Figure 8. (Left) Hierarchical distribution of peaks for each modulator tier with respect to the phase of the upper 

tier. The left plot shows the distribution of Syllable peaks with respect to Stress phase. The right plot shows the 

distribution of Phoneme peaks with respect to Syllable phase. The distributions shown are the mean 

distributions across of spectral bands 1-4. (Right) Corresponding conditional entropy (CE) scores for the 

distribution pattern of each speech corpus. Distributions with higher kurtosis have a lower entropy while 

distributions with lower kurtosis have a higher entropy. Errorbars show the standard error across 6 speakers.  

.  
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Chapter 8 

 Previous work by Goswami and colleagues [45, see Appendix 1of thesis] found that adults 

with dyslexia have poorer prosodic sensitivity to syllable stress patterns in words (e.g. differentiating 

between "MI-li-ta-ry" [S-w-w-w] and "mi-LI-ta-ry" [w-S-w-w]). This syllable stress deficit was 

related to poorer psycho-acoustic sensitivity to amplitude changes in non-speech sounds (sine tones). 

Since syllable stress patterns are transmitted by slow-varying AMs in the speech signal, the logical 

next step was to test whether dyslexics also showed impaired perception and production of speech 

AM patterns. In Chapter 8, I describe 3 speech rhythm tasks that are performed by dyslexic and non-

dyslexic adults, assessing speech AM perception, speech AM entrainment (tapping to speech AMs) 

and speech AM production respectively. In all 3 tasks, dyslexics consistently showed disruptions to 

syllable-level timing. For example, Figure 9 shows that in the tapping task (Section 8.3.3, p. 225), 

dyslexics entrained to an earlier phase of the Syllable AM cycle as compared to controls. Moreover, 

individual differences in syllable-timing (both in perception and production) were strongly related to 

participants' phonological and reading skills. The S-AMPH indices uncovered differences between 

dyslexics and controls that were not evident from conventional analysis. These deficits in syllable 

timing and temporal organisation had been predicted in theory [46], but had been difficult to uncover 

using conventional methods of speech analysis. Therefore, the S-AMPH proved to be a useful 

analytical tool to complement traditional methods of speech analysis. 

 

 

 

 

 

 

 

 

 

  

Figure 9. Please see Section 8.3.3, p. 225 for the task description. Compass phase plots of the distribution of 

Syllable AM taps for controls (left) and dyslexics (right). The top of the plot corresponds to the oscillatory peak, 

the bottom corresponds to the trough. Phase values increase in a clockwise direction. The length of radial spokes 

indicates the number of observations within each phase bin (with concentric circles indicating 2.5 and 5 

observations).The plots show that dyslexics tap at an earlier Syllable AM phase as compared to controls. 
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SUMMARY & CONCLUSION 

 

 In this thesis, I investigate speech rhythm from a multi-disciplinary perspective, aiming for a 

unifying account that transcends traditional boundaries. The resulting AMPH and S-AMPH models 

are signal-grounded, neuro-plausible, psychologically-validated, computationally-efficient, and 

ecologically-relevant to language development in the real world. From the perspective of a 

developmental psychologist, the AMPH models act as sensory-acoustic, computational accounts of 

the speech modulation statistics that infants might use to 'boot-strap' their early language acquisition. 

From the linguistic perspective, these amplitude-based models provide a useful tool for amplitude-

based measurement of speech rhythm, complementing the previous emphasis on durational metrics. 

As neural-grounded computational accounts, these models provide a deep description of how 

oscillatory mechanisms in the brain could engage with speech spectro-temporal structure to extract 

prosodic structure. Finally, from the educational perspective, the AMPH models are useful speech 

analysis tools that can be readily applied to address issues of interest to parents and teachers. 

Therefore, this thesis truly unites multiple cognitive disciplines, and is of relevance to a range of 

audiences.  

(3830 words excluding figures) 

__________________________________________________________________________________ 
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