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Précis of Characterizing the limits of visual working memory 

Kirsten C. S. Adam 

1. Background and overview 

Working memory is a core facet of complex cognition 

Common everyday activities require the complex interaction of many cognitive 
processes. For example, when driving to the store we must, among other things, perceive 
rapid changes to our surroundings, shift our attention between the road and mirrors, 
temporarily track and remember approaching cars, and retrieve directions from long-
term memory. In such real-world situations, overlapping cognitive processes work in 
tandem and can be difficult to disentangle, but decades of cognitive science experiments 
have carefully dissected the constituent cognitive processes that contribute to complex 
behavior. Ongoing work seeks to further understand the separable contributions of 
processes like attention, working memory, and long-term memory.  

Working memory, in particular, plays a central role in complex cognition. Akin to a 
“buffer” (in a computer analogy), working memory acts as an interface between 
perception, memory, and action. Consistent with working memory’s role as the active 
workspace of complex cognition, individual differences in working memory 
performance predict individual differences in fluid intelligence (1, 2), academic 
attainment (3), and standardized test scores (4). In addition to predicting individual 
differences in young, healthy college students, working memory is likewise frequently 
disrupted in many clinical disorders, including schizophrenia (5–7), Parkinson’s (8), and 
Attention-Deficit/Hyperactivity Disorder (9). In sum, decades of individual differences 
work have revealed a strong correlative relationship between the amount of information 
that may be held in mind and the ability to perform complex cognitive tasks.  

Despite its importance for cognition, the amount of information that can be held in 
working memory is sharply limited. This online storage limit is thus a critical limiting 
factor in how much information we can juggle in mind. The experiments in this 
dissertation are motivated by two core questions relating to the broad impact of working 
memory on cognition, and to its underlying limits.   

Are individual differences in working memory performance driven by capacity or consistency?  

Why does working memory performance predict so many other behaviors and 
outcomes? The dominant interpretation has been that working memory capacity differs 
from person to person. Here, the term capacity implies that people differ in the ceiling – 
some people can store less information than others. If you can hold fewer items in mind, 
you then have fewer resources available for other tasks like problem-solving. Previous 
research on working memory has assumed that individuals differ in capacity; as such, 
visual working memory performance metrics (e.g. hit and false alarm rates) are typically 
converted into a single capacity score, “K” (10–12). In part because capacity scores appear 
to explain individual differences, this assumption has been largely untested. In Chapter 
2, I test an alternative model in which the consistency of performance explains individual 
differences. In this alternative model, most participants share the same upper-bound on 
performance, but differ in how often they achieve their capacity (i.e., they frequently store 
0 or 1 items even though they are capable of storing 3). Support for a consistency account 
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would invite major reinterpretation of much prior work on individual differences in 
working memory, and would suggest new avenues for interventions aimed at improving 
working memory function.    

Are information limits due to random guesses or to low-resolution representations? 

Although there is broad consensus that working memory can only hold a limited amount 
of information, there is stark disagreement as to how this information is distributed 
across remembered items. Some classes of models propose that the capacity of working 
memory is limited (13–15); if presented with more items than one can hold in mind, one 
will store only a sub-set of the items. Other classes of models propose that the resolution 
of remembered items is limited, rather than the number of items per se (13, 16–18). In 
resolution-limited models, people will store all items (though very imprecisely) when 
presented with a very large number of items. Much prior work has been devoted to this 
question, but has reached an empirical stalemate, in part because refined versions of both 
classes of model provide strong fits to observed data and, thus, fight to a tie (13). To break 
this stalemate, experiments in Chapters 3 and 4 use new behavioral task designs and 
neural decoding approaches to provide more diagnostic evidence for discriminating 
between these models. New experimental traction on the question of capacity limits is 
important for building robust cognitive and neural models of working memory storage, 
with potential implications for understanding how and why working memory is 
disrupted in clinical disorders.  

The work in this dissertation uses a complementary blend of novel task variants, 
behavioral modeling, and electroencephalogram (EEG) measures to interrogate the 
nature of information limits in visual working memory and to provide new insights into 
the limitations of this core cognitive system.  

2. Chapter 2: The contribution of attentional lapses to individual differences in visual 
working memory capacity  

Published as Adam, Mance, Fukuda & Vogel (2015), Journal of Cognitive Neuroscience 

Chapter 2 used new approaches to ask whether individual differences in working 
memory performance are best explained by capacity differences or consistency differences.  

Typical working memory measures are inadequate for measuring trial-to-trial variation 
in performance because they only probe a single item on each trial. To quantify the 
consistency of working memory performance, we designed a discrete whole-report task 
(Figure 1). In this task, participants report all items from the memory array. In Experiment 
2-1, we examined performance across many set sizes (1-6) and verified that this new task 
yielded similar behavioral performance as a typical change detection task. In 
Experiments 2-2 and 2-3, we held set size constant at 6 items. Holding the set size constant 
allowed us to examine endogenous fluctuations in performance while holding external 
task demands constant.  
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Figure 1. Discrete whole report task (Chapter 2). Participants remember the color of each square. At 
response, they use the mouse to click a color for each “response grid” at each location. They can report the 
items in any order, but must respond to all items.  

Working memory performance fluctuates from moment to moment 

Each trial of the discrete whole-report task yields an accuracy score that ranges from 0 
items correct to the maximum number (e.g. 6 items), allowing precise tracking of trial-to-
trial variations in performance (Figure 2). Both high- and low-performing participants 
experience “failures”, where they perform no better than random chance (they get only 0 
or 1 item correct out of 6). However, the frequency of these failures varies drastically 
across participants. The best performing participant had 0 failure trials throughout the 
session, whereas the worst performing participant had >35% failure trials.  

 
Figure 2.  Single trial performance fluctuations in Experiment 2-2. Participants are sorted on the y-axis 
by average memory performance. Performance fluctuates across trials, but each individual’s fluctuations 
are relatively consistent.  

Lapse and attentional control models of attention’s influence on working memory performance 

We developed computational models with parameters for both capacity and consistency. 
The capacity parameter of each model corresponded to the maximum number of items 
ever remembered by the participant. The model also allowed that participants can 
sometimes score higher than capacity because of random guesses (e.g., if you guess, you 
will sometimes be correct by chance). We tested two alternative models of how working 
memory capacity fluctuates over time: all-or-none lapses or graded loss of attentional 
control. All model-fitting procedures were blind to the full distribution of single-trial 
accuracy values. Instead, each model tried to predict mean accuracy; fit of each model 
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was then assessed by comparing its predictions to the full performance distribution for 
each participant. 

The “all-or-none lapse model” was Bernoulli-distributed; this model assumed that either 
participants store their full capacity, K, or they store nothing and guess randomly for all 
items. This model was based on previous work that added a lapse parameter to improve 
fits to models of change detection performance (19). The lapse model fit the data poorly, 
as it predicted a bimodal distribution of accuracy values: one peak at 0 correct (participant 
lapsed) and another peak at capacity. In contrast, the true performance distributions were 
unimodal. As shown in Figure 3, we also found that the vast majority of participants 
shared the same performance mode of 3 items correct.  

In contrast, the “attentional control” model assumed that participants experienced 
graded fluctuations of attention that caused them to under-achieve capacity. These 
fluctuations were modeled by a beta distribution (α parameter could vary from zero to 
six in steps of .01; the β parameter was constrained to one). Critically, this beta 
distribution dictated that performance could fluctuate only below capacity. To simulate 
performance for a single working memory trial, a value would be pulled from the beta 
distribution (range: 0 to 1), multiplied by the capacity parameter (K) and rounded to the 
nearest whole item (n); semi-random guesses were added for remaining responses (6-n), 
which sometimes led to trial accuracy above K. This model resulted in a unimodal 
distribution that closely matched participants’ true performance, even though initial 
model selection was blind to the underlying distribution. Most importantly, this model 
also revealed that the vast majority of participants (84%) were best fit by a capacity of 3 
items. The remaining participants were best fit by a capacity of 4. In other words – the 
worst-performing participants were still capable of maintaining 3 items in mind; they just 
did so much less consistently.  

 
Figure 3. Performance distributions in Experiment 2-2. (a) Median split visualization of performance for 
the top- and bottom-half of participants. (b) Average behavioral data (pink line) and model (grey bars).  

Trial-by-trial working memory performance can be predicted by frontal theta power and 
posterior alpha power  

Finally, we examined neural (EEG) correlates of working memory fluctuations. We 
hypothesized that performance fluctuates because people actually store fewer items, and 
we further predicted that fluctuations of working memory storage are related to 
momentary failures of executive attention. However, there are several other possible 

A B 



Précis of Characterizing the limits of visual working memory Kirsten Adam 

 5 

sources of behavioral errors, and not all of these are memory-related. For example,  poor-
performing participants may simply be task non-compliant – they may blink or move 
their eyes more often during the brief presentation of the memory array.  

As in Experiment 2-2, in Experiment 2-3 participants performed many trials of set size 6 
so that we could examine endogenous fluctuations of performance. We split trials into 
“good performance” trials (>3 correct) and “poor performance” trials (<3 correct). We 
found evidence that people actually stored fewer items for poor performance relative to 
good performance trials, as indexed by alpha power suppression (20, 21). Frontal theta 
power also predicted behavioral performance, supporting the interpretation that 
working memory failures arise from failures of executive attention as frontal theta 
covaries with cognitive control and is anti-correlated with default mode network activity 
(22–24). Intriguingly, frontal theta power began to predict eventual behavioral 
performance ~700 ms before the memory array had appeared. This pre-trial signal 
highlights a potential target for performance improvements via real-time neural 
feedback.  

 
Figure 4. Frontal theta power predicts working memory success. (a) Time-frequency plot of power 
difference for “good trials” (>3 correct) minus “poor trials” (<3 correct) at frontal electrodes (F1, F2, and 
Fz). (b) Theta band power (4–7 Hz) for good (red) and poor (blue) performance trials 

3. Chapter 3: Clear evidence for item limits in visual working memory 

Published as Adam, Vogel & Awh (2017), Cognitive Psychology 

The experiments in Chapter 2 revealed that “capacity” differences between participants 
are better described as differences in the consistency of visual working memory storage. 
Yet, these experiments could not speak directly to debates about the underlying cause of 
this mostly-common information limit (capacity vs. resolution). The experiments in 
Chapter 2 used a relatively coarse measure of memory fidelity (participants chose 1 of 9 
highly discriminable colors). In Chapter 3, we developed a novel variant of the 
continuous report task to better distinguish between capacity and resolution-limited 
models. 

Continuous whole-report task measures the fidelity of all items 

Rather than probing a single item, we instead asked participants to recall all items in a 
continuous whole-report task (Figure 5). This yields a separate response error 
distribution for each response within each set size condition (rather than one error 
distribution per set size). In Experiments 3-1 and 3-1b, participants freely recalled the 
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color of all items in any order that they wished. In Experiment 3-2a and 3-2b, participants 
had to respond to the item the computer randomly selected for them. This version 
controlled for the effects of output interference and time delays on response errors.  

 
Figure 5. Continuous-whole report task (Chapter 3) (a) Experiment 3-1a: Participants freely recall the color 
of all remembered items in any order. (b) Experiment 3-2a: The computer probes memory for all items in a 
random order, controlling for the effects of output interference and time decay. (inset) Orientation stimuli 
(Experiments 3-1b and 3-2b).  

Participants report no information about a subset of items from large arrays 

A key distinguishing feature of two competitive classes of models is whether or not 
people randomly guess. When fitting models to typical single-probe error distributions, 
both models do extremely well (Figure 6). Mixture models can achieve excellent fits to 
the average distribution by assuming that some items are remembered (with varying 
precision) and others are not (uniform  distribution). Continuous resource models can 
achieve excellent fits by including many low-precision representations. Thus, we tested 
whether random guesses are necessary to explain performance.  

 
Figure 6. Hypothetical mixture of distributions that could yield an identical set-size 6 error distribution 
in the standard continuous report task. (a) A mixture model in which some items are stored (with varying 

A B 
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fidelity) and other items are forgotten (dashed line). (b) A variable precision model in which all items are 
stored with varying fidelity. Representations are allowed to be extremely imprecise.  

Prior work established that participants have robust metaknowledge of the quality of 
remembered items (25, 26). In the free recall task, participants used this knowledge and 
tended to report the items in order of decreasing fidelity. Capacity-limited models predict 
that, when capacity is exceeded, the remaining responses for each participant will be 
uniformly-distributed. In contrast, resource models predict that all responses will contain 
useful information (i.e. non-uniform) about the memory item.  

We ran a model comparison for each response distribution of each participant; this model 
comparison tested whether each response distribution was better fit by a zero-parameter 
uniform distribution or by any of several competing models (e.g., standard mixture 
model, variable precision model). All participants showed at least 1 set-size 6 response 
that was best described as uniform (Figure 7). As predicted, these uniform distributions 
fell at the end of the response period, and the vast majority of subjects had 2-3 uniform 
responses (consistent with a modal capacity limit of 3-4 items). Note, however, this 
method does not precisely estimate participants’ true underlying capacity as in Chapter 
2, as they might sometimes report well-remembered items last (thus inflating capacity 
estimates).  

 
Figure 7. Most participants have no information beyond the 3rd or 4th response for set size 6 trials. (a) 
Set-size 6 responses for an example participant in the free-recall condition. Red fit lines indicate that a 
zero-parameter uniform distribution won the model competition. (b) Proportion of participants whose 
response was best fit by a uniform distribution. (c) Histogram of the number of uniform distributions (out 
of 6) for participants in the free recall experiment.  

Importantly, control experiments (Experiments 3-2a and 3-2b) revealed that uniform 
responses are not due to output interference or temporal decay. In fact, fidelity across 
responses decreased very little in this control experiment; output interference could 
explain only 16% of the decline observed in the free recall experiment. Additional 
analyses revealed that participants have excellent metaknowledge of random guesses; 

A 

B C 
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self-reported guess rates correlated with mixture model estimates of guess rates with a 
slope near 1.  

Hypothesized low-resolution responses mimic random guesses.  

Variable precision models assume that an aggregate distribution is made up of a mixture 
of many different widths of von Mises (circular normal) distributions, and some of these 
distributions are extremely imprecise. We used a simulation approach to test whether 
these very imprecise von Mises distributions may mimic random guesses.  

First, we quantified the widths of von Mises distributions used by the variable precision 
model to explain actual set size 6 data (Figure 8). Then, we tested how many trials would 
be needed to discriminate imprecise von Mises distributions from a uniform distribution. 
This analysis revealed that even with 1,000,000 noise-free trials per subject, we would be 
unable to distinguish a significant percentage of the hypothesized von Mises 
distributions from uniform. This supports the notion that a significant proportion of 
responses are random guesses, and that these random guesses can be mimicked by 
extremely imprecise distributions. 

 
Figure 8. Illustration of the potential for variable precision models to mimic uniform responses. (a) 
Decile split for the von Mises distributions used by the variable precision model for Set Size 6 aggregate 
data. (b) Simulation demonstrating that even 1 million noise-free trials per participant would be inadequate 
to detect the information contained in such an imprecise distribution.  

4. Chapter 4: Decoding the limits of simultaneous storage  

The experiments in Chapter 3 found strong supporting evidence that a substantial 
proportion of participants’ responses are random guesses. However, one weakness of 
these experiments is that they relied on purely behavioral measures that can probe only 
the final outcome of the trial. Thus, behavioral measures are somewhat insensitive to 
intermediate cognitive processes. For example, perhaps participants held some 
information about all items in mind for the majority of the delay period, but failed to 
retrieve this information at test. By acquiring neural evidence for whether each item was 
represented during the delay period, we could determine whether some items failed to 
be stored.  

A B 
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Univariate evidence for capacity limits in visual working memory  

Prior work has shown that univariate neural measures of working memory storage 
increase as a function of set size (suggesting that more items are stored), but appear to 
reach a plateau once capacity is filled (27–29). This has frequently been interpreted as 
evidence for capacity limits – the signal is thought to saturate when capacity is reached. 
Yet, interpretation of these univariate measures is fraught, as they measure the aggregate 
activity to an entire array, rather than item-level storage. Further, recent work has 
questioned the validity of interpreting this “plateau” in neural activation (30). Rather 
than examining an average univariate signal for the entire array, we need methods for 
reading out the representation of each individual item while it is being held in mind.   

The topography of alpha-band power tracks remembered locations 

Prior work has shown that the location of a single item held in memory can be tracked by 
the topography of alpha-band  power across the scalp (31) using an inverted encoding 
model (IEM) approach (32–34). The experiments in Chapter 4 take advantage of this IEM 
technique (Figure 9) to examine whether there was an active neural representation of each 
item throughout the delay interval.   

 
Figure 9. Inverted encoding model approach. The IEM  assumes that the power at each electrode reflects 
the weighted sum of spatially selective information channels which reflect the activity of underlying 
neuronal populations tuned to each location.   

For each participant, we partition data into independent training and test sets and apply 
an IEM routine at each time-point. Training data B1 (m electrodes × n1 observations) are 
used to estimate weights W (m electrodes x k channels) that approximate the relative 
contribution of eight equally-spaced spatial channels to the observed response C1 (k 
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channels × n1 measurements). The relationship between B1, C1, and W can be described 
by a general linear model: 

B" = WC" 

We obtain the weight matrix through least-squares estimation: 

W& = B"C"'(C"C"')
*"

 

In the test stage, we invert the model to transform the observed test data B2 (m electrodes 
× n2 observations) into estimated channel responses, C2 (k channels × n2 measurements), 
using the estimated weight matrix, W& , that we obtained in the training phase: 

C+, = (W& 'W& )
*"
W& 'B+ 

Each estimated channel response function is circularly shifted to a common center (0 
represents the remembered location). Here, the selectivity of tuning is quantified as the 
slope of the tuning function folded in half (larger numbers indicate more robust 
reconstruction).  

Reconstructing multiple remembered stimulus locations using alpha-band power 

First, in Experiment 4-1 we tested the ability of the model to generalize from 1 item to 
small multi-item arrays (2 and 3 items). Consistent with prior work (33, 35, 36), we found 
decreased fidelity of decoded representations for larger set sizes.  That is, an average 
reconstruction of an item from a set size 3 array was more imprecise than an average item 
from a set size 2 array. In addition, by training the model on set size 1 data and testing on 
each item as a function of response order, we could examine the quality of the 
reconstruction for each item. 

In Experiment 4-1, we could decode all items from the small arrays, but the critical 
question is whether we can decode all items from supra-capacity arrays. In Experiment 
4-2, we examined whether we could reconstruct the spatial location of all items from a 
supra-capacity array (set size 6). As before, participants freely recalled all items, and 
tended to report their best items first. Thus, we predicted that we should be unable to 
reconstruct the spatial locations of items that are not stored (responses 4-6).  
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Figure 10. Selectivity of decoded representations for set sizes 1 and 6 in Experiment 4-2. An Inverted 
Encoding Model was trained on set size 1 data then tested on each response from set size 6 data. During 
the delay period (gray dotted box), we could significantly decode only 3 out of 6 items.  

As predicted, we found that only a subset of items are encoded by the topographic 
distribution of alpha power, which tracks the active maintenance of spatial information 
in working memory (31, 37, 38) (Figure 10). These results provide converging evidence 
with the behavioral estimates of capacity limits, and demonstrate the feasibility of using 
encoding models to measure the contents of working memory in an item-specific fashion.  
This method has exciting potential for testing competing models of the neural codes 
supporting working memory (39–42).  

5. Conclusions 

Rethinking individual differences in working memory “capacity” 

Prior individual differences work has assumed that working memory capacity explains 
individual variation in performance, but Chapter 2 revealed that the consistency of 
performance is key. This finding has important implications for understanding working 
memory deficits in developmental and clinical population, and potential applications for 
interventions targeted toward improving working memory performance. For example, 
many working memory training interventions have the explicit goal of raising 
individuals’ capacity ceiling (43–46). My work suggests that, instead, interventions 
should focus on reducing the frequency of abject failures (47, 48). 

New avenues for neural correlates of working memory performance  

In Experiment 2-3, we showed that frontal theta power predicts behavioral performance 
even before the memory array has appeared. We have since replicated this finding, and 
this signal is a promising target for real-time neural feedback. In Experiments 3-1 and 3-
2, we demonstrated that we can use an inverted encoding model to examine how the 
representational quality of a neural code varies across individual items within an array. 
This work thus represents an exciting step forward from prior work that has examined 
the average representation of all items from a multi-item array (33, 35, 36). 
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Harnessing the power of trial-to-trial and item-to-item variability  

A key approach in these experiments was the development of measures that are sensitive 
to trial-by-trial and item-by-item variation in memory success. These methods allowed 
us to more directly examine the variation in mnemonic quality across items, and allowed 
us to generate new predictions for old models. Future work examining fluctuations of 
performance in other aspects of cognition may likewise reveal an important role of 
temporal and attention-related dynamics (e.g., successfully discriminating faint targets, 
trial-to-trial success in abstract reasoning). 
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