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Human social intelligence is uniquely powerful. We collaborate with others to
accomplish together what none of us could do on our own, share the benefits of
collaboration fairly, and trust others to do the same (Humphrey, 1976; Tomasello,
1999, 2014). Even young children work and play collaboratively guided by norma-
tive principles, with a scale and sophistication unparalleled in other animal species
(Vygotsky, 1978; Warneken & Tomasello, 2006; Herrmann, Call, Hernandez-Lloreda,
Hare, & Tomasello, 2007; Spelke & Kinzler, 2007; Hamlin, 2013). This thesis seeks to
understand these everyday feats of social intelligence in computational terms. What
cognitive representations and processes underlie these abilities and what are their
origins? How can we apply these cognitive principles to build social machines that
can understand, learn from, and cooperate with people?

While cooperation is essential and beneficial, it is anything but inevitable. A
well studied challenge is the problem of conflicting incentives: cooperation requires
individuals to bare personal costs in order to create collective benefits. This can lead
to a “tragedy of the commons” where cooperation is not self-sustaining (Hardin, 1968;
Trivers, 1971). In addition to the challenge of incentives, successful cooperation also
poses hard cognitive challenges (Cosmides & Tooby, 1992; Pinker, 1997). How to
distinguish friend from foe? Who should we learn moral principles from and how do
we learn them so quickly? When is someone’s action deserving of condemnation or
praise? What are reputations, how do we learn them, and when do we manage our
own? Compared to the variety and complexity of these decisions and judgments, our
experiences are sparse. We rarely encounter the same exact situation twice. Yet we
solve these problems everyday, whether its our first day of elementary school or out to
dinner as part of a job interview. In the natural world, human social cognition is the
most sophisticated known solution to these problems. In contrast, our best artificial
intelligences are often exceeded by the commonsense social skills of a kindergartner.

Economists and computer scientists have developed formal quantitative frame-
works to try to understand these abilities, game theory being a prominent example
(Binmore, 1994; Gintis, 2009). However, these frameworks do not capture some of the
most interesting aspects of human cooperation. Compared to behavioral automata
(such as Tit-For-Tat) that are hand-designed for cooperation in a single task, or re-
inforcement learning algorithms that require long periods of trial-and-error learning,



people cooperate much more flexibly with much less experience (Fudenberg & Levine,
1998; Sigmund, 2010). In real life (unlike a repeated prisoners dilemma), each social
interaction is unique and complex. Real world cooperation requires coordination over
extended actions that unfold in space and time, as well as the ability to plan in an
infinite range of novel environments with potentially uncertain and unequal payoffs.
Distinctively human cooperation also requires abstraction: we learn and plan with
abstract moral principles that determine how the benefits of cooperation should be
distributed and how those who fail to cooperate should be treated. In contrast to ex-
isting formal frameworks, psychologists have identified rich cognitive capacities such
as “theory of mind,” “joint intentions,” or “moral grammar” that might underlie hu-
man cooperation (Wellman, 1992; Tomasello, Carpenter, Call, Behne, & Moll, 2005;
Mikhail, 2007). But without quantitative precision, their theories leave open many
different interpretations and often fail to generate definite, testable predictions or
explanations that could satisfy an economist or computer scientist.

I aim to combine the best features of these different disciplines by reverse-
engineering the cognitive capacities of social intelligence that psychologists have pro-
posed. I do so in terms sufficiently precise and rigorous that we can understand the
functional role of these capacities as an engineer would (Marr, 1982; Pinker, 1997;
Tenenbaum, Kemp, Griffiths, & Goodman, 2011). That is, I aim to explain how
our social intelligence works by asking what cognitive principles will be needed to
recreate it in machines. The specific tools I use integrate Bayesian models of learning
and multi-agent planning algorithms from artificial intelligence together with ana-
lytical frameworks from game theory and evolutionary dynamics. These models are
both formally precise and make possible fine-grained quantitative predictions about
complex human behavior in diverse domains. I test these predictions in large-scale
multi-person experiments.

As philosophers going back to Hume have noted, “there can be no image of
virtue, no taste of goodness, and no smell of evil” (Hume, 1738; Prinz, 2007). How
then can we learn concepts like moral theories when there is no explicitly moral
information in our perceptual input? If human cooperation builds on moral and social
concepts that are richer than the relative poverty of the stimulus, then something else
inside the mind must make up the difference.

Throughout this thesis I propose that the human mind bridges this gap by re-
cursively representing mental models of other agents that have motivations and minds
of their own (Dennett, 1989). These representations allow us to “read the minds” of
other people by recovering the latent causal factors such as the intentions, beliefs,
and desires that drove the agent to act (Heider, 1958; Wellman, 1992; Baker, Saxe, &
Tenenbaum, 2009; Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017). They also allow
us to predict what another agent is likely to do next through forward simulation,
or even consider, counterfactually, what an agent would have done differently had
circumstances been different.

I use the computational structure of these abstract representations to study



how they enable flexible social intelligence across three time-scales: evolutionary,
developmental, and in the moment. What are the evolutionary origins (biological
or cultural) of our moral and social knowledge and how do they enable distinctively
human cooperation? How is this knowledge rapidly learned with high fidelity during
development, accumulating over generations and giving rise to cumulative cultural?
Finally, how is social and moral knowledge generalized and deployed in the moment,
across an infinitude of possible situations and people, and how is this knowledge
collectively created? To answer these questions, I investigate the cognitive structures
that span across these time-scales: they emerge from evolution out of a world of non-
social agents, support acquisition during development, and enable flexible reasoning
and planning in any particular situation.

Evolution & Abstract Reciprocity

Explaining the evolution of cooperation — where individuals pay costs to benefit
others — has been a central focus of research across the natural and social sciences
for decades (Hardin, 1968; Ostron, 1990; Axelrod, 1985; M. A. Nowak, 2006; Rand
& Nowak, 2013). A key conclusion that has emerged from this work is the centrality
of reciprocity: evolutionary game theoretic models have robustly demonstrated how
repeated interactions between individuals (direct reciprocity) and within groups (in-
direct reciprocity) can facilitate the evolutionary success of cooperation. Although
these models can provide fundamental insights due to their simplicity, this simplicity
also imposes stark limits on their general applicability.

In particular, the winning cooperative strategies identified by these models, such
as tit-for-tat (M. A. Nowak & Sigmund, 1992) or win-stay-lose-shift (M. Nowak &
Sigmund, 1993), can rarely be applied to actual human interactions with a fixed set of
labeled actions. This is because these strategies are defined within the context of one
specific game (typically a particular Prisoner’s Dilemma). If confronted with an even
slightly different game representing a slightly different decision, nothing that agents in
a typical evolutionary simulation have learned generalizes at all. For example, agents
who cooperate in a prisoner’s dilemma — that is, to choose the C row or column in a
2x2 (or [C, D] x [C, D]) matrix — haven’t learned to be altruistic in dictator games or
to be trusting in public goods games, even though these are all very similar. This is
because what these automata have learned is just a policy of how to act in a particular
setting without any abstract knowledge of reciprocity.

Human interactions, in contrast, are almost infinitely varied. Even when the
same two people interact in the same context, no two interactions have exactly the
same payoff structure; and, more broadly, we engage in all manner of different in-
teractions across which the number of participants, the options available to each
participant, and the resulting payoffs differ markedly (and often unpredictably). Be-
cause of this variation, it is implausible (and impractical) to imagine that people
learn a specific strategy for every possible game. Rather than a specific strategy
specifying how to play a specific game, humans need a general strategy which can be



applied across contexts. That is, sophisticated cooperators need an abstract theory
of reciprocity.

In Chapter 2 I introduce a new approach to the evolution of cooperation which
solves this challenge. I do so by leveraging the key insight that people use others’
actions to make inferences about their beliefs, intentions, and desires (i.e. humans
have theory of mind). This stands in marked contrast to the standard evolutionary
game theoretic strategies, which respond only to other agents’ actions, without mak-
ing inferences about why a given agent chose a given action. Instead endowing agents
with theory of mind allows them to have a general utility function which they can
apply across all possible interactions and partners.
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Figure 1. (left) Game engine which creates an infinitude of unique social choices where the number
of players, the number of actions available to the decision making player, and the costs and/or
benefits to each affected player are sampled from stochastic distributions. Actions are not labeled so
decisions and inference must be made in terms of cost/benefit analysis. (right) Recursive Bayesian
inference produces rational belief updates after observing A either pay a cost to help B or observing
A withhold help.

I show that such a strategy — specifically, a conditional cooperator that uses re-
cursive Bayesian inference to preferentially cooperate with others who have the same
strategy — enables the evolution of cooperation in a world where every interaction
is unique (Figure 1). Furthermore, even in the context of repeated play of one spe-
cific iterated Prisoner’s Dilemma, natural selection favors our cognitively endowed
strategy over all of the standard behavioral strategies even in specific contexts those
strategies were designed for. And finally, the framework seamlessly integrates direct
and indirect reciprocity, with our cognitively endowed agent leading to the evolution
of cooperation when pairs of players interact repeatedly, when pairs play one-shot
games that are observed by others, or any combination of the two. Thus, we see
that cognitive complexity enables the evolution of cooperation more effectively than
purely behaviorist strategies. These results are also suggestive of how the challenge
of cooperation can drive the evolution of cognitive complexity — a defining feature of
humankind.



Development and Moral Learning

Scaling cooperation across the full range of social life confronts us with the need
to tradeoff the interests and welfare of different people: between our own interests
and those of others, between our friends, family or group members versus the larger
society, people we know who have been good to us or good to others, and people we
have never met before or never will meet. These trade-offs encoded as a system of
values are basic to any commonsense notion of human morality. While some societies
view preferential treatment of kin as a kind of corruption (nepotism), others view
it as a moral obligation (what kind of monster hires a stranger instead of his own
brother?). Large differences both between and within cultures pose a key learning
challenge: how to infer and acquire appropriate values, for moral trade-offs of this
kind?

In Chapter 3 I develop a computational framework for understanding the
structure and dynamics of moral learning, with a focus on how people learn to trade
off the interests and welfare of different individuals in their social groups and the
larger society (Kleiman-Weiner, Saxe, & Tenenbaum, 2017) . I posit a minimal set of
cognitive capacities that together can solve this learning problem: (1) an abstract and
recursive utility calculus to quantitatively represent welfare trade-offs; (2) hierarchical
Bayesian inference to understand the actions and judgments of others; and (3) meta-
values for learning by value alignment both externally to the values of others and
internally to make moral theories consistent with one’s own attachments and feelings.
The model explains how children can build from sparse noisy observations of how a
small set of individuals make moral decisions to a broad moral competence, able to
support an infinite range of judgments and decisions that generalizes even to people
they have never met and situations they have not been in or observed. It also provides
insight into the causes and dynamics of moral change across time, including cases
when moral change can be rapidly progressive, changing values significantly in just a
few generations, and cases when it is likely to move more slowly.

In-the-Moment Social Cognition
Learning to Cooperate and Compete

To reverse-engineer human cooperation, we need new tasks that highlight the
flexibility of human cognition. Inspired by stochastic games studied in multi-agent
computer science literature, in Chapter 4 I develop a new class of multi-agent games
which aim to incorporate some of the complexity and diversity of real life with the
formal precision of traditional economic games (Kleiman-Weiner, Ho, Austerweil,
Littman, & Tenenbaum, 2016). These games can be played intuitively by people
(Figure 2).

Empirically, I find that anonymously matched people robustly reciprocate even
when the game changes after each interaction. People can infer whether others intend
to cooperate or compete after observing just a single ambiguous movement and quickly
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Figure 2. (left) A social dilemma written as a matrix-form game. If both agents choose cooperate
they will collectively be better well off than if they both choose compete. However in any single
interaction, either agent would be materially better off by choosing to compete. (right) A social
dilemma as a two-player stochastic game. Agents (circles) score points by moving to squares of
their own color. The arrows show example plans that realize either cooperative and competitive
outcomes.

reciprocate the inferred intention. In new environments, people generalize abstract
intentions like cooperation and competition by executing a novel low-level movements
needed to realize those goals. Finally, many dyads develop roles and norms after a few
interactions that increase the efficiency of cooperation by coordinating their actions.
These novel empirical findings both demonstrate the power of human social cognition
and are the challenge for computational models to explain and replicate.

To understand and predict human behavior in these games I develop a novel
model that treats cooperation and competition as probabilistic planning programs.
To realize cooperation algorithmically, I formalize, for the first time, an influential
psychological account of collaboration known as “joint intentionality.” In our model,
each agent simulates a mental model of the group (oneself included) from an impartial
view or “view from nowhere” (Nagel, 1986). From this view the group itself is treated
as a single agent with joint control of each individual and with the aim of optimizing
a shared goal. An agent then plays its role in this joint plan leading to the emergence
of roles. Competition is realized by iterating a best response to the inferred intention
of the other player.

These models of abstract cooperation and competition serve a dual role: they
are abstract models of cooperative and competitive action and also the likelihood in a
hierarchical Bayesian model that infers whether or not other agents are cooperating.
This inference realizes a sophisticated form of theory of mind. With these pieces of
cognitive machinery in place, reciprocity is realized by mirroring the inferred inten-
tions of the other players. This model explains the key empirical findings and is a
first step towards understanding the cognitive microstructure of cooperation in terms
of rational inference and multi-agent planning.

In Chapter 5 I develop a novel scheme for probabilistic inference over an
infinite space of possible strategies (Kleiman-Weiner, Tenenbaum, & Zhou, in press).
Inferring underlying cooperative and competitive strategies from human behavior
in repeated games is important for accurately characterizing human behavior and
understanding how people reason strategically. Finite automata, a bounded model



of computation, have been extensively used to compactly represent strategies for
these games and are a standard tool in game theoretic analyses. However, inference
over these strategies in repeated games is challenging since the number of possible
strategies grows exponentially with the number of repetitions yet behavioral data is
often sparse and noisy. As a result, previous approaches start by specifying an finite
hypothesis space of automata which does not allow for flexibility. This limitation
hinders the discovery of novel strategies which may be used by humans but are not
anticipated a priori by current theory.

I present a new probabilistic model for strategy inference in repeated games by
exploiting non-parametric Bayesian modeling. With simulated data, I show the model
is effective at inferring the true strategy rapidly and from limited data which leads
to accurate predictions of future behavior. When applied to experimental data of
human behavior in a repeated prisoners dilemma, I uncover new strategies of varying
complexity and diversity.

Reputation and fairness

In Chapter 6 I study how humans allocate the spoils of a cooperative endeavor.
The ability to flexibly allocate a joint reward expands the scope of cooperation to cases
where benefits are unequally distributed. Lasting cooperation depends on allocating
those benefits fairly according to normative principles. Empirically I show that in
addition to preferences over outcomes such as the efficiency and equitability of a
distribution, we are also sensitive to the attributions others might make about us as
a result of our distribution decisions. We care about our reputations and whether we
will be seen as trustworthy and impartial partners in the future.

Preferences of this type require reasoning about and anticipating the beliefs
others will form as a result of one’s action. To explain these results I develop a model
which integrates theory of mind into a utility calculus (Kleiman-Weiner, Shaw, &
Tenenbaum, 2017). By turning the cognitive capacity to infer latent desires and beliefs
from behavior towards oneself, agents anticipate the judgments others will make about
them and incorporate those anticipated judgments as a weighted component of an
agent’s utility function. Across many scenarios tested with behavioral experiments my
model quantitatively explains both how people make hypothetical resource allocation
decisions and the degree to which they judge that others who made decisions in the
same contexts as impartial. These empirical results understood through our model,
shed light on the ways in which our cooperative behavior is shaped by the desire to
signal prosocial orientations.

Intention inference in moral judgment

Finally, in Chapter 7 I study the computational structure of moral judgment.
One puzzle of moral judgment is that while moral theories are often described in terms
of absolute rules (e.g., the greatest amount of good for the greatest number, or the



doctrine of double effect), our moral judgments are graded. Since moral judgments
are particularly sensitive to the agent’s mental states, uncertainty in these inferred
mental states might partially underlie these graded responses. I develop a novel com-
putational representation for reasoning about other people’s intentions based on coun-
terfactual contrasts over influence diagrams (Kleiman-Weiner, Gerstenberg, Levine,
& Tenenbaum, 2015; Halpern & Kleiman-Weiner, 2018). This model captures the
future-oriented aspect of intentional plans and distinguishes between intended out-
comes and unintended side effects a key feature needed for moral judgment.

I give a probabilistic account of moral permissibility which produces graded
judgments by integrating uncertainty about inferred intentions (deontology) with
welfare maximization (utilitarian). By grounding moral permissibility in an intuitive
theory of planning, I quantitatively predict the fine-grained structure of both intention
and moral permissibility judgments in classic and novel moral dilemmas.

Conclusion

I have shown that human social interactions are negotiated in the moment us-
ing abstract causal theories of other agents, guided by norms and morals learned
throughout development, which have been shaped by the evolutionary challenges of
cooperation. This thesis is a step towards understanding these cognitive abilities from
the perspective of reverse-engineering i.e., recreating these abilities in mathematically
precise models. The overarching formal framework of this thesis is the integration
of individually rational, hierarchical Bayesian models of learning, together with so-
cially rational multi-agent and game-theoretic models of cooperation. Together, these
models shine light on how the scale and scope of human social behavior is ultimately
grounded in the sophistication of our social intelligence.
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